1
|
Xu X, Weng X, Owens G, Chen Z. Iron nanoparticles synthesized using Euphorbia cochinchinensis leaf extracts exhibited highly selective recovery of rare earth elements from mining wastewater: Exploring the origin of high selectivity. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136320. [PMID: 39476688 DOI: 10.1016/j.jhazmat.2024.136320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Iron nanoparticles synthesized using Euphorbia cochinchinensis leaf extracts (Ec-FeNPs) showed high selectivity for rare earth elements (REEs) recovery from mining wastewater. REEs recovery efficiencies were > 90 %, with distribution coefficients ranging from 2483.9 to 37500 mL/g, which were consistently much higher than non-REEs (15.0 - 234.8 mL/g). Moreover, even after 5 consecutive reuse cycles, Ec-FeNPs effectively adsorbed > 60 % of REEs. Application of advanced characterization techniques found that the high selectivity of Ec-FeNPs for REEs was mainly due to the biomolecules present in the Ec extract. During the synthesis of FeNPs, these biomolecules are modified on the surface of Ec-FeNPs, giving Ec-FeNPs an enhanced ability to separate REEs from non-REEs. The biomolecule capping layer, which is modified on the surface of Ec-FeNPs, constitutes a primary source of high selectivity. LC-MS identified amino acids, carbohydrates, and organic acids as the major biomolecule categories in the capping layer. Density functional theory (DFT) confirmed that the biomolecule capping layer of Ec-FeNPs had the strongest interaction with REEs; an association confirmed by Spearman's correlation analysis. The adsorption mechanism of REEs by Ec-FeNPs mainly involved a combination of ion exchange, electrostatic adsorption, and surface complexation. Overall, the novel findings reported here provide new perspectives for the design of absorbents with highly selective recovery of REEs from mining wastewater.
Collapse
Affiliation(s)
- Xinmiao Xu
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Xiulan Weng
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China.
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China.
| |
Collapse
|
2
|
Wei X, Mao X, Han J, Qin W, Zeng H. Novel nitrogen-rich hydrogel adsorbent for selective extraction of rare earth elements from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135679. [PMID: 39222561 DOI: 10.1016/j.jhazmat.2024.135679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Efficient recovery of rare earth elements (REEs) from wastewater is crucial for advancing resource utilization and environmental protection. Herein, a novel nitrogen-rich hydrogel adsorbent (PEI-ALG@KLN) was synthesized by modifying coated kaolinite-alginate composite hydrogels with polyethylenimine through polyelectrolyte interactions and Schiff's base reaction. Various characterizations revealed that the high selective adsorption capacity of Ho (155 mg/g) and Nd (125 mg/g) on PEI-ALG@KLN is due to a combination of REEs (Lewis acids) via coordination interactions with nitrogen-containing functional groups (Lewis bases) and electrostatic interactions; its adsorption capacity remains more than 85 % after five adsorption-desorption cycles. In waste NdFeB magnet hydrometallurgical wastewater, the recovery rate of PEI-ALG@KLN for Nd and Dy can reach more than 93 %, whereas that of Fe is only 5.04 %. Machine learning prediction was used to evaluate adsorbent properties via different predictive models, with the random forest (RF) model showing superior predictive accuracy. The order of significance for adsorption capacity was pH > time > initial concentration > electronegativity > ion radius, as indicated by the RF model feature importance analysis and SHapley Additive exPlanations values. These results confirm that PEI-ALG@KLN has considerable potential in the selective extraction of REEs from wastewater.
Collapse
Affiliation(s)
- Xuyi Wei
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China
| | - Xiaohui Mao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada; College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Junwei Han
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada.
| | - Wenqing Qin
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada
| |
Collapse
|
3
|
Mondal H, Karmakar M, Datta B. Ligand-selective turn-off sensing, harvesting and post-adsorptive use of Dy(III) and Yb(III) by intrinsically fluorescent flower-shaped Gum Acacia-grafted hydrogels. Sci Rep 2024; 14:18373. [PMID: 39112525 PMCID: PMC11306756 DOI: 10.1038/s41598-024-65932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
Rare earth metals (REMs), such as Dysprosium (Dy) and Ytterbium (Yb), have experienced unprecedented demand in recent times due to their applications in high-end technologies. REMs are found only in select geographic locations placing tremendous economic constraints on their use. In this work, we have developed Gum Acacia-grafted hydrogels (GmAc-FluoroTerPs) that are capable of selective detection and capture of Dy and Yb. The intrinsically blue fluorescent polymer hydrogel GmAc-FluoroTerP has been optimized for Dy(III) and Yb(III) specific quenching, enabling limit of detection of the REMs at 0.13 nM and 60.8 pM, respectively. A comprehensive structural characterization of the fluorescent hydrogel has been performed via NMR, FTIR, XPS, EPR, TGA, XRD, TEM, SEM, EDX, TCSPC, and DLS. In addition to an in situ generated fluorophore, GmAc-FluoroTerP displays a distinctive aggregation induced emission enhancement in mixed solvents. The complexation of Dy(III)/Yb(III) with GmAc-FluoroTerP hydrogel has been characterized by XPS, TCSPC, and logic gate analyses, and the adsorptive capacity for Dy(III) and Yb(III) are found to be best reported till date as 125.57 mg g-1 and 102.27 mg g-1, respectively. Desorption at acidic pH allows recovery of the REMs. We also report semiconducting behaviour of the native fluorescent hydrogel, that is enhanced upon adsorptive capture of Dy(III) and Yb(III), with calculated band gaps at 1.37, 0.77, and 0.49 eV, respectively. The convergent sensing, capture, and reuse of Dy(III) and Yb(III) presented in this work promises a hitherto unreported template for application on other REMs.
Collapse
Affiliation(s)
- Himarati Mondal
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382055, India.
| | - Mrinmoy Karmakar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382055, India
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382055, India.
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382055, India.
| |
Collapse
|
4
|
Fan X, Wang S, Zhang Y, Zhao M, Zhou N, Fan S. Effect of citric acid modification on the properties of hydrochar and pyrochar and their adsorption performance toward methylene blue: crucial roles of minerals and oxygen functional groups. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:664. [PMID: 38926195 DOI: 10.1007/s10661-024-12836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Modification is widely used to enhance the adsorption performance of pristine hydrochar (HBC) and pyrochar (BC). However, comparisons between modified HBC and BC toward pollutant removal have rarely been reported. In this study, pristine HBC and BC derived from rice straw were first produced, and then citric acid (CA) was used as a modifier to synthesize CA-modified HBC (CAHBC) and CA-modified BC (CABC). Furthermore, the adsorption performance of biochars toward methylene blue (MB) was investigated. The results showed that BC exhibits relatively rough surfaces and contains more minerals (ash), whereas HBC has plentiful O-containing functional groups and fewer minerals. CA modification partially removed minerals from the surface of BC, which weakened the ion exchange, surface complexation, and n-π interaction, resulting in a lower adsorption ability toward MB. By contrast, CA produced more O-containing functional groups on the surface of HBC, which strengthened the hydrogen bonding and electrostatic interaction, thus increasing the adsorption capacity toward MB. The two-compartment model showed a good fit to the adsorption process of MB on CAHBC, and the isotherm data for MB adsorption by HBC and CAHBC are suitable for the Freundlich model. The highest adsorption amount of MB using CAHBC was 80.13 mg·g-1, which was 27.66% higher than that for CABC. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis indicated that the carboxyl groups in the surface functional groups of CAHBC played a crucial role in the MB adsorption process. In addition, CAHBC showed a good performance for a wide range of pH values (4.0-10.0) and under the interference of coexisting ions, and also presented a recycling ability. Furthermore, the adsorption of MB on CAHBC biochar was a spontaneous, exothermic, degree-of-randomness-increasing process. Consequently, CA modification of HBC is a promising strategy and could be used for MB removal from aquatic environments.
Collapse
Affiliation(s)
- Xinru Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shuo Wang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yushan Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Manquan Zhao
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Na Zhou
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shisuo Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
5
|
Ménard M, Ali LMA, Vardanyan A, Charnay C, Raehm L, Cunin F, Bessière A, Oliviero E, Theodossiou TA, Seisenbaeva GA, Gary-Bobo M, Durand JO. Upscale Synthesis of Magnetic Mesoporous Silica Nanoparticles and Application to Metal Ion Separation: Nanosafety Evaluation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3155. [PMID: 38133052 PMCID: PMC10745894 DOI: 10.3390/nano13243155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
The synthesis of core-shell magnetic mesoporous nanoparticles (MMSNs) through a phase transfer process is usually performed at the 100-250 mg scale. At the gram scale, nanoparticles without cores or with multicore systems are observed. Iron oxide core nanoparticles (IO) were synthesized through a thermal decomposition procedure of α-FeO(OH) in oleic acid. A phase transfer from chloroform to water was then performed in order to wrap the IO nanoparticles with a mesoporous silica shell through the sol-gel procedure. MMSNs were then functionalized with DTPA (diethylenetriaminepentacetic acid) and used for the separation of metal ions. Their toxicity was evaluated. The phase transfer procedure was crucial to obtaining MMSNs on a large scale. Three synthesis parameters were rigorously controlled: temperature, time and glassware. The homogeneous dispersion of MMSNs on the gram scale was successfully obtained. After functionalization with DTPA, the MMSN-DTPAs were shown to have a strong affinity for Ni ions. Furthermore, toxicity was evaluated in cells, zebrafish and seahorse cell metabolic assays, and the nanoparticles were found to be nontoxic. We developed a method of preparing MMSNs at the gram scale. After functionalization with DTPA, the nanoparticles were efficient in metal ion removal and separation; furthermore, no toxicity was noticed up to 125 µg mL-1 in zebrafish.
Collapse
Affiliation(s)
- Mathilde Ménard
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| | - Lamiaa M. A. Ali
- IBMM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (L.M.A.A.); (M.G.-B.)
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria 21561, Egypt
| | - Ani Vardanyan
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (A.V.); (G.A.S.)
| | - Clarence Charnay
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| | - Laurence Raehm
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| | - Frédérique Cunin
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| | - Aurélie Bessière
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| | - Erwan Oliviero
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| | - Theodossis A. Theodossiou
- Department of Radiation Biology, Institute for Cancer Research, Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway;
| | - Gulaim A. Seisenbaeva
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (A.V.); (G.A.S.)
| | - Magali Gary-Bobo
- IBMM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (L.M.A.A.); (M.G.-B.)
| | - Jean-Olivier Durand
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| |
Collapse
|
6
|
Yang Y, Yan Q, Weng X, Owens G, Chen Z. Improved recovery selectivity of rare earth elements from mining wastewater utilizing phytosynthesized iron nanoparticles. WATER RESEARCH 2023; 244:120486. [PMID: 37633210 DOI: 10.1016/j.watres.2023.120486] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 08/12/2023] [Indexed: 08/28/2023]
Abstract
While rare earth elements (REEs) play key roles in many modern technologies, the selectivity of recovering of REEs from mining wastewater remains a critical problem. In this study, iron nanoparticles (FeNPs) synthesized from euphorbia cochinchinensis extracts were successfully used for selective recovery of REEs from real mining wastewater with removal efficiencies of 89.4% for Y(III), 79.8% for Ce(III) and only 6.15% for Zn(Ⅱ). FTIR and XPS analysis suggested that the high selective removal efficiency of Y(III) and Ce(III) relative to Zn(Ⅱ) on FeNPs was due to a combination of selective REEs adsorption via complexing with O or N, ion exchange with H+ present in functional groups contained within the capping layer and electrostatic interactions. Adsorptions of Y(III) and Ce(III) on FeNPs conformed to pseudo second-order kinetics and the Langmuir isotherm model with maximum adsorption capacities of 5.10 and 0.695 mg∙g-1, respectively. The desorption efficiencies of Y(III) and Ce(III) were, respectively, 95.0 and 97.9% in 0.05 M acetic acid, where desorption involved competitive ion exchange between Y(III), Ce(III) and Zn(Ⅱ) with H+ contained in acetic acid and intraparticle diffusion. After four consecutive adsorption-desorption cycles, adsorption efficiencies for Y(III) and Ce(III) remained relatively high at 52.7% and 50.1%, respectively, while desorption efficiencies of Y(III) and Ce(III) were > 80.0% and 95.0%, respectively. Overall, excellent reusability suggests that FeNPs can practically serve as a potential high-quality selectivity material for recovering REEs from mining wastewaters.
Collapse
Affiliation(s)
- Yalin Yang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Qiuting Yan
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Xiulan Weng
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China.
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China.
| |
Collapse
|
7
|
Yeh SL, Alexander D, Narasimhalu N, Koshani R, Sheikhi A. Mussel-Inspired Nanocellulose Coating for Selective Neodymium Recovery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44154-44166. [PMID: 37523242 DOI: 10.1021/acsami.3c04512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Neodymium (Nd) is one of the most in-demand rare earth elements (REEs) for developing the next generation of magnetic medical devices and clean energy. Eco-friendly and sustainable nanotechnology for REE recovery may be highly suitable to address the limited global supply while minimizing the environmental footprints of current practice, such as solvent extraction. Here, we present a novel one-step mussel-inspired nanocellulose coating (MINC) using bifunctional hairy cellulose nanocrystals (BHCNC), bearing dialdehyde and dicarboxylate groups. The dialdehyde groups enable dopamine-mediated orthogonal conjugation of BHCNC to substrates, such as microparticles, while the high content of dicarboxylate groups yields high-capacity and selective Nd removal against ferric, calcium, and sodium ions. To the best of our knowledge, the MINC-treated substrate provides the most rapid selective removal and recovery of Nd ions even at low Nd concentrations with a capacity that is among the highest reported values. We envision that the MINC will provide new opportunities in developing next-generation bio-based materials and interfaces for the sustainable recovery of REEs and other precious elements.
Collapse
Affiliation(s)
- Shang-Lin Yeh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dawson Alexander
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Naveen Narasimhalu
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Roya Koshani
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
8
|
Zhang Y, Guo W, Liu D, Ding Y. Tuning the Dual Active Sites of Functionalized UiO-66 for Selective Adsorption of Yb(III). ACS APPLIED MATERIALS & INTERFACES 2023; 15:17233-17244. [PMID: 36962007 DOI: 10.1021/acsami.3c00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The recovery of rare earth elements (REEs) from discharged electronic devices or mineral waste water is highly essential but still facing challenges. In this work, two amino-functionalized carboxyl-UiO-66 (UiO-66-COOH-TETA and UiO-66-(COOH)2-ED) prepared via the postmodification method were employed as the adsorbents for Yb(III) capture. The experimental results revealed their superior adsorption capacities of 161.5 and 202.6 mg/g, respectively. Meanwhile, their adsorption processes can be described by the pseudo-second-order kinetic model and Langmuir model. Effects of initial pH and temperature on adsorptions were systematically evaluated, affording an optimal operating condition (i.e., pH of 5.5-6, T of 65 °C, t of 10 h). Moreover, the fabricated materials exhibited great reusability after five adsorption-regeneration cycles. UiO-66-COOH-TETA demonstrated good separation selectivity for Yb(III) over light REEs (i.e., 3.98 of Yb/Ce, 3.51 of Yb/Nd). Based on the density functional theory calculations and characterization analysis (XPS, Zeta, mapping, and IR), the adsorption mechanisms were mainly attributed to significant electrostatic attraction and strong surface complexation between N and O sites and Yb(III).
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430073, China
| | - Weidong Guo
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430073, China
| | - Donghao Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430073, China
| | - Yigang Ding
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|
9
|
Elbarbary AM, Sharaf El-Deen SEA, Abu Elgoud EM, Sharaf El-Deen GE. Radiation fabrication of hybrid activated carbon and functionalized terpolymer hydrogel for sorption of Eu(III) and Sm(III) ions. RADIOCHIM ACTA 2023. [DOI: 10.1515/ract-2023-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Abstract
In this work, a hybrid composite of activated carbon (AC) functionalized with terpolymer hydrogel of polyvinyl alcohol/polyacrylamide/polyacrylic acid (PVA/PAAm/PAA) was prepared by γ-irradiation and used efficiently for sorption of Eu(III) and Sm(III) ions from aquatic solutions. Sewage sludge from the wastewater treatment plant was used to prepare AC, then activated by zinc chloride (ZnCl2) and thermal treatment at 550 °C. The modification of AC by functionalized terpolymer has successfully occurred mainly to limit its precipitation and to increase its adsorption capacity which allowed capable interaction with the metal ions. Different advanced techniques were used to investigate the structure and properties of (PVA/PAAm/PAA)/AC composite before and after the sorption process. Using 20 kGy is sufficient to get gel fraction of 87.5% and equilibrium swelling was 39.1 g/g. The (PVA/PAm/PAA)/AC composite hydrogel showed a pHpzc at pH ∼3. FTIR and EDS confirmed the successful integration of the functional groups and constituent elements of AC into terpolymer hydrogel components. XRD results confirmed the typical diffraction peaks of AC in the composite and the calculated average crystallite size was 167.4 nm. The SEM morphology of AC appeared as grains distributed well into the composite. The effect of synthesized AC, PVA/PAAm/PAA and (PVA/PAAm/PAA)/AC sorbents were tested to uptake of Eu(III) and Sm(III) ions. The highest uptake was noticed for (PVA/PAAm/PAA)/AC composite and it was selected for studying the parameters affecting the sorption process such as pH, shaking time, initial concentration, and adsorbent dosage. Results of the experimental data showed that Langmuir isotherm and Pseudo-second-order kinetic models fit well the sorption process of both Eu(III) and Sm(III) ions with maximum sorption capacities of 173.24 and 160.41 mg/g and uptake percentage of 82.3% and 83.4%, respectively at the optimum conditions of pH 4, 180 min, 100 mg/L metal concentration and 0.01 g adsorbent mass. The thermodynamic parameters indicated endothermic and spontaneous nature of the sorption process. Additionally, the as-prepared composite afford high selectivity and uptake capacity for Eu(III) and Sm(III) ions at pH 4 even in the presence of competing cations; Cd(II), Co(II), Sr(II) and Cs(I). The (PVA/PAAm/PAA)/AC composite was used efficiently as a unique and selective adsorbent for the sorption of Eu(III) and Sm(III) ions.
Collapse
|
10
|
Advances of magnetic nanohydrometallurgy using superparamagnetic nanomaterials as rare earth ions adsorbents: A grand opportunity for sustainable rare earth recovery. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Zhao Y, Liang T, Miao P, Chen T, Han X, Hu G, Gao J. Green Preparation of Aminated Magnetic PMMA Microspheres via EB Irradiation and Its Highly Efficient Uptake of Ce(III). MATERIALS (BASEL, SWITZERLAND) 2022; 15:6553. [PMID: 36233885 PMCID: PMC9572679 DOI: 10.3390/ma15196553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The modification of polymers can significantly improve the ability to remove rare earth ions from wastewater, but so far few studies have focused on the irradiation-induced grafting method. In this study, a novel magnetic chelating resin for Ce(III) uptake was first synthesized by suspension polymerization of PMMA@Fe3O4 microspheres followed by irradiation-induced grafting of glycidyl methacrylate (GMA) and subsequent amination with polyethyleneimine (PEI). The FT-IR, SEM, TG and XRD characterization confirmed that we had successfully fabricated magnetic PMMA-PGMA-PEI microspheres with a well-defined structure and good thermal stability. The obtained adsorbent exhibited a satisfactory uptake capacity of 189.81 mg/g for Ce(III) at 318.15 K and an initial pH = 6.0. Additionally, the impact of the absorbed dose and GMA monomer concentration, pH, adsorbent dosage, contact time and initial concentration were thoroughly examined. The pseudo-second order and Langmuir models were able to describe the kinetics and isotherms of the adsorption process well. In addition, the thermodynamic data indicated that the uptake process was spontaneous and endothermic. Altogether, this research enriched the Ce(III) trapping agent and provided a new method for the removal rare earth pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jie Gao
- Correspondence: (T.C.); (J.G.)
| |
Collapse
|
12
|
Hovey JL, Dittrich TM, Allen MJ. Coordination Chemistry of Surface-Associated Ligands for Solid–Liquid Adsorption of Rare-Earth Elements. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Bao S, Wang Y, Wei Z, Yang W, Yu Y. Highly efficient recovery of heavy rare earth elements by using an amino-functionalized magnetic graphene oxide with acid and base resistance. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127370. [PMID: 34879566 DOI: 10.1016/j.jhazmat.2021.127370] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 05/26/2023]
Abstract
In the application of various magnetic materials for water treatment, control of surface resistance to acid and alkali corrosion remains largely overlooked, which could greatly extend their service life. We herein prepare amino grafted magnetic graphene oxide composites using a simple one-step cross-link reaction between the graphene oxide and magnetic Fe3O4/C nanoparticles. The as-prepared magnetic graphene oxide composites have long-term stability under acid and alkali solutions and shows an excellent performance in removing Ho(III), a representative rare earth element (REE) from water. The observed adsorption capacity of 72.1 mg Ho(III)/g exceeded that of most magnetic materials previously reported. Regeneration of the magnetic composites was realized in acid and alkali solutions but their structural integrity and physicochemical properties retained even after 18 adsorption-desorption cycles. The current adsorbent also shows excellent adsorption performance for other heavy REEs, such as Er(III), Eu(III), Lu(III), Tm(III), Y(III) and Yb(III). This work can provide a new strategy for constructing an acid and base resistance magnetic graphene oxide for the high-efficient recovery of heavy REEs from aqueous solution.
Collapse
Affiliation(s)
- Shuangyou Bao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China; Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark
| | - Yingjun Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
14
|
Liao C, Liu YP, Ren H, Jiang XY, Yu JG, Chen XQ. Rational assembly of GO-based heterocyclic sulfur- and nitrogen-containing aerogels and their adsorption properties toward rare earth elementals. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126484. [PMID: 34186427 DOI: 10.1016/j.jhazmat.2021.126484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
An aromatic heterocyclic compound, 2-aminobenzothiazole (ABT), was used to decorate graphene oxide (GO) by a facile hydrothermal self-assembly procedure. The developed three-dimensional (3D) GO-ABT composite aerogels could be utilized as high-powered and sustainable adsorbents for the enrichment and recovery of low concentration rare earth elements (REEs) from aqueous solutions. The composition and microstructure of GO-ABT composites were explored various characterization methods. The enrichment properties of GO-ABT composites for REEs were investigated in detail, revealing the existence of S-, N- and -NH2 in ABT, as well as the carboxyl and hydroxyl groups of GO which might act as the major REE binding sites. The adsorption of GO-ABT composites for low concentration REEs could reach equilibrium in 30 min. Our investigations confirmed that the optimal pH value of GO-ABT composites for REEs was pH 4.0-5.0. For the adsorbent regeneration study, 50.0 mg of GO-ABT15:1/120 °C/6 h composite was used toward 20.0 mL of Er3+ solutions. After ten regeneration cycles, the adsorption rates of GO-ABT composites for Er3+ remained around 100%, and the desorption rates maintained over 90%. The long-term storage of the adsorbent did not affect its adsorption ability, while desorption rates increased, indicating it possessed relatively higher stability.
Collapse
Affiliation(s)
- Cong Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yi-Ping Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hao Ren
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xin-Yu Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
15
|
Partially Reduced Graphene Oxide Modified with Polyacrylonitrile for the Removal of Sm3+ from Water. Processes (Basel) 2021. [DOI: 10.3390/pr9050818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
An in situ emulsion polymerization method was used for the synthesis of polyacrylonitrile nanoparticles amino-functionalized partially reduced graphene oxide (PAN-PRGO). After that, hydrolyzed polyacrylonitrile nanoparticles amino-functionalized partially reduced graphene oxide (HPAN-PRGO) nanocomposite was achieved by the modification of nitrile groups of the composite polymer chains to carboxylic groups, aminoethylene diamine, and amidoxime functional groups through partial hydrolysis using a basic solution of sodium hydroxide for 20 min. Different synthesized materials were characterized and compared using well-known techniques including transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FT-IR), Raman spectra, and X-ray diffraction (XRD). The nanocomposite was structured through the interaction between acrylonitrile’s (AN) nitrile groups and amino-functionalized graphene oxide nanosheets’ amino groups to successfully graft polyacrylonitrile over the surface of functionalized nanosheets as approved by characterization techniques. The synthesized composite was examined for the removal of samarium ions (Sm3+) from water. Different experimental conditions including pH, contact time, initial concentration, and adsorbent dose were investigated to determine the optimum conditions for the metal capture from water. The optimum conditions were found to be a contact time of 15 min, pH 6, and 0.01 g of adsorbent dosage. The experimental results found, in a good agreement with the Langmuir isotherm model, the maximum adsorption capacity of Sm3+ uptake was equal to 357 mg/g. A regeneration and reusability study of synthesized composite up to six cycles indicated the ability to use HPAN-PRGO nanocomposite several times for Sm3+ uptake. The obtained results prove that this polymer-based composite is a promising adsorbent for water treatment that must be studied for additional pollutants removal in the future.
Collapse
|
16
|
Ali I, Babkin AV, Burakova IV, Burakov AE, Neskoromnaya EA, Tkachev AG, Panglisch S, AlMasoud N, Alomar TS. Fast removal of samarium ions in water on highly efficient nanocomposite based graphene oxide modified with polyhydroquinone: Isotherms, kinetics, thermodynamics and desorption. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115584] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Feng S, Du X, Bat-Amgalan M, Zhang H, Miyamoto N, Kano N. Adsorption of REEs from Aqueous Solution by EDTA-Chitosan Modified with Zeolite Imidazole Framework (ZIF-8). Int J Mol Sci 2021; 22:3447. [PMID: 33810580 PMCID: PMC8038009 DOI: 10.3390/ijms22073447] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan (CS) modified with ethylenediamine tetraacetic acid (EDTA) was further modified with the zeolite imidazole framework (ZIF-8) by in situ growth method and was employed as adsorbent for the removal of rare-earth elements (REEs). The material (EDTA-CS@ZIF-8) and ZIF-8 and CS were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and nitrogen adsorption/desorption experiments (N2- Brunauer-Emmet-Teller (BET)). The effects of adsorbent dosage, temperature, the pH of the aqueous solution, contact time on the adsorption of REEs (La(III), Eu(III), and Yb(III)) by EDTA-CS@ZIF-8 were studied. Typical adsorption isotherms (Langmuir, Freundlich, and Dubinin-Radushkevich (D-R)) were determined for the adsorption process, and the maximal adsorption capacity was estimated as 256.4 mg g-1 for La(III), 270.3 mg g-1 for Eu(III), and 294.1 mg g-1 for Yb(III). The adsorption kinetics results were consistent with the pseudo-second-order equation, indicating that the adsorption process was mainly chemical adsorption. The influence of competing ions on REE adsorption was also investigated. After multiple cycles of adsorption/desorption behavior, EDTA-CS@ZIF-8 still maintained high adsorption capacity for REEs. As a result, EDTA-CS@ZIF-8 possessed good adsorption properties such as stability and reusability, which have potential application in wastewater treatment.
Collapse
Affiliation(s)
- Sihan Feng
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan; (S.F.); (X.D.); (M.B.-A.); (H.Z.)
| | - Xiaoyu Du
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan; (S.F.); (X.D.); (M.B.-A.); (H.Z.)
| | - Munkhpurev Bat-Amgalan
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan; (S.F.); (X.D.); (M.B.-A.); (H.Z.)
| | - Haixin Zhang
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan; (S.F.); (X.D.); (M.B.-A.); (H.Z.)
| | - Naoto Miyamoto
- Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan;
| | - Naoki Kano
- Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan;
| |
Collapse
|
18
|
Self-separation of the adsorbent after recovery of rare-earth metals: Designing a novel non-wettable polymer. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Li J, Gong A, Qiu L, Zhang W, Shi G, Li X, Li J, Gao G, Bai Y. Selective extraction and column separation for 16 kinds of rare earth element ions by using N, N-dioctyl diglycolacid grafted silica gel particles as the stationary phase. J Chromatogr A 2020; 1627:461393. [DOI: 10.1016/j.chroma.2020.461393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/16/2020] [Accepted: 07/05/2020] [Indexed: 11/29/2022]
|
20
|
Moradi E, Mehrani Z, Ebrahimzadeh H. Gelatin/sodium triphosphate hydrogel electrospun nanofiber mat as a novel nanosorbent for microextraction in packed syringe of La3+ and Tb3+ ions prior to their determination by ICP-OES. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Asadollahzadeh M, Torkaman R, Torab-Mostaedi M. Extraction and Separation of Rare Earth Elements by Adsorption Approaches: Current Status and Future Trends. SEPARATION & PURIFICATION REVIEWS 2020. [DOI: 10.1080/15422119.2020.1792930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mehdi Asadollahzadeh
- Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Rezvan Torkaman
- Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Meisam Torab-Mostaedi
- Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|