1
|
Liang C, Duan X, Gao H, Shahab M, Zheng G. Chemoenzymatic synthesis of (1R,3R)-3-hydroxycyclopentanemethanol: An intermediate of carbocyclic-ddA. J Biosci Bioeng 2024; 138:111-117. [PMID: 38824112 DOI: 10.1016/j.jbiosc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The synthesis of carbocyclic-ddA, a potent antiviral agent against hepatitis B, relies significantly on (1R,3R)-3-hydroxycyclopentanemethanol as a key intermediate. To effectively produce this intermediate, our study employed a chemoenzymatic approach. The selection of appropriate biocatalysts was based on substrate similarity, leading us to adopt the CrS enoate reductase derived from Thermus scotoductus SA-01. Additionally, we developed an enzymatic system for NADH regeneration, utilising formate dehydrogenase from Candida boidinii. This system facilitated the efficient catalysis of (S)-4-(hydroxymethyl)cyclopent-2-enone, resulting in the formation of (3R)-3-(hydroxymethyl) cyclopentanone. Furthermore, we successfully cloned, expressed, purified, and characterized the CrS enzyme in Escherichia coli. Optimal reaction conditions were determined, revealing that the highest activity occurred at 45 °C and pH 8.0. By employing 5 mM (S)-4-(hydroxymethyl)cyclopent-2-enone, 0.05 mM FMN, 0.2 mM NADH, 10 μM CrS, 40 μM formic acid dehydrogenase, and 40 mM sodium formate, complete conversion was achieved within 45 min at 35 °C and pH 7.0. Subsequently, (1R,3R)-3-hydroxycyclopentanemethanol was obtained through a simple three-step chemical conversion process. This study not only presents an effective method for synthesizing the crucial intermediate but also highlights the importance of biocatalysts and enzymatic systems in chemoenzymatic synthesis approaches.
Collapse
Affiliation(s)
- Chaoqun Liang
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Bontac Bio-Engineering (Shenzhen) Co., Ltd., Shenzhen, Guangdong 518107, China
| | - Xiuyuan Duan
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hanzi Gao
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Shahab
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guojun Zheng
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Lewandowski D, Hreczycho G. Cobalt-Catalyzed Reduction of Aldehydes to Alcohols via the Hydroboration Reaction. Int J Mol Sci 2024; 25:7894. [PMID: 39063136 PMCID: PMC11487440 DOI: 10.3390/ijms25147894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
A method for the reduction of aldehydes with pinacolborane catalyzed by pincer cobalt complexes based on a triazine backbone is developed in this paper. The presented methodology allows for the transformation of several aldehydes bearing a wide range of electron-withdrawing and electron-donating groups under mild conditions. The presented procedure allows for the direct one-step hydrolysis of the obtained intermediates to the corresponding primary alcohols. A plausible reaction mechanism is proposed.
Collapse
Affiliation(s)
| | - Grzegorz Hreczycho
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego St. 8, 61-614 Poznan, Poland;
| |
Collapse
|
3
|
Partipilo M, Whittaker JJ, Pontillo N, Coenradij J, Herrmann A, Guskov A, Slotboom DJ. Biochemical and structural insight into the chemical resistance and cofactor specificity of the formate dehydrogenase from Starkeya novella. FEBS J 2023; 290:4238-4255. [PMID: 37213112 DOI: 10.1111/febs.16871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
Formate dehydrogenases (Fdhs) mediate the oxidation of formate to carbon dioxide and concomitant reduction of nicotinamide adenine dinucleotide (NAD+ ). The low cost of the substrate formate and importance of the product NADH as a cellular source of reducing power make this reaction attractive for biotechnological applications. However, the majority of Fdhs are sensitive to inactivation by thiol-modifying reagents. In this study, we report a chemically resistant Fdh (FdhSNO ) from the soil bacterium Starkeya novella strictly specific for NAD+ . We present its recombinant overproduction, purification and biochemical characterization. The mechanistic basis of chemical resistance was found to be a valine in position 255 (rather than a cysteine as in other Fdhs) preventing the inactivation by thiol-modifying compounds. To further improve the usefulness of FdhSNO as for generating reducing power, we rationally engineered the protein to reduce the coenzyme nicotinamide adenine dinucleotide phosphate (NADP+ ) with better catalytic efficiency than NAD+ . The single mutation D221Q enabled the reduction of NADP+ with a catalytic efficiency kCAT /KM of 0.4 s-1 ·mm-1 at 200 mm formate, while a quadruple mutant (A198G/D221Q/H379K/S380V) resulted in a fivefold increase in catalytic efficiency for NADP+ compared with the single mutant. We determined the cofactor-bound structure of the quadruple mutant to gain mechanistic evidence behind the improved specificity for NADP+ . Our efforts to unravel the key residues for the chemical resistance and cofactor specificity of FdhSNO may lead to wider use of this enzymatic group in a more sustainable (bio)manufacture of value-added chemicals, as for instance the biosynthesis of chiral compounds.
Collapse
Affiliation(s)
- Michele Partipilo
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Jacob J Whittaker
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Nicola Pontillo
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
- Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, Groningen, The Netherlands
| | - Jelmer Coenradij
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Andreas Herrmann
- Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, Groningen, The Netherlands
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Germany
| | - Albert Guskov
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Dirk Jan Slotboom
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| |
Collapse
|
4
|
Hecko S, Schiefer A, Badenhorst CPS, Fink MJ, Mihovilovic MD, Bornscheuer UT, Rudroff F. Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chem Rev 2023; 123:2832-2901. [PMID: 36853077 PMCID: PMC10037340 DOI: 10.1021/acs.chemrev.2c00304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Many successful stories in enzyme engineering are based on the creation of randomized diversity in large mutant libraries, containing millions to billions of enzyme variants. Methods that enabled their evaluation with high throughput are dominated by spectroscopic techniques due to their high speed and sensitivity. A large proportion of studies relies on fluorogenic substrates that mimic the chemical properties of the target or coupled enzymatic assays with an optical read-out that assesses the desired catalytic efficiency indirectly. The most reliable hits, however, are achieved by screening for conversions of the starting material to the desired product. For this purpose, functional group assays offer a general approach to achieve a fast, optical read-out. They use the chemoselectivity, differences in electronic and steric properties of various functional groups, to reduce the number of false-positive results and the analytical noise stemming from enzymatic background activities. This review summarizes the developments and use of functional group probes for chemoselective derivatizations, with a clear focus on screening for enzymatic activity in protein engineering.
Collapse
Affiliation(s)
- Sebastian Hecko
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Astrid Schiefer
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoffel P S Badenhorst
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Michael J Fink
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
5
|
Naouel C, Saoussen Z, Mounia M, Samira K, Karima S. Response surface methodology for optimization of enzymatic acylation of (
R
)‐(‒)‐
linalool application
to essential oils. FLAVOUR FRAG J 2023. [DOI: 10.1002/ffj.3735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Chaibrassou Naouel
- Systems and advanced materials Laboratory (LSAM) Badji Mokhtar Annaba‐University Annaba Algeria
| | - Zeror Saoussen
- Ecocompatible Asymmetric Catalysis Laboratory (LCAE) Badji Mokhtar Annaba‐University Annaba Algeria
| | - Merabet‐Khelassi Mounia
- Ecocompatible Asymmetric Catalysis Laboratory (LCAE) Badji Mokhtar Annaba‐University Annaba Algeria
| | - Kilani‐Morakchi Samira
- Systems and advanced materials Laboratory (LSAM) Badji Mokhtar Annaba‐University Annaba Algeria
| | - Sifi Karima
- Systems and advanced materials Laboratory (LSAM) Badji Mokhtar Annaba‐University Annaba Algeria
| |
Collapse
|
6
|
Resolution of Racemic Aryloxy-Propan-2-yl Acetates via Lipase-Catalyzed Hydrolysis: Preparation of Enantiomerically Pure/Enantioenriched Mexiletine Intermediates and Analogs. Catalysts 2022. [DOI: 10.3390/catal12121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The lipase kinetic resolution (KR) of aryloxy-propan-2-yl acetates, via hydrolysis, produced enantiomerically pure/enantioenriched mexiletine intermediates and analogs. Racemic acetates rac-1-(2,6-dimethylphenoxy)propan-2-yl acetate (rac-5a), rac-1-(2,4-dimethylphenoxy)propan-2-yl acetate (rac-5b), rac-1-(o-tolyloxy)propan-2-yl acetate (rac-5c) and rac-1-(naphthalen-1-yloxy)propan-2-yl acetate (rac-5d) were used as substrates. A preliminary screening (24 h, phosphate buffer pH 7.0 with 20% acetonitrile as co-solvent, 30 °C and enzyme:substrate ratio of 2:1, m:m) was carried out with twelve lipases using acetate 5a as substrate. Two enzymes stood out in the KR of 5a, the Amano AK lipase from Pseudomonas fluorescens and lipase from Thermomyces lanuginosus (TLL) immobilized on Immobead 150. Under these conditions, both the (R)-1-(2,6-dimethylphenoxy)propan-2-ol [(R)-4a] and the remaining (S)-1-(2,6-dimethylphenoxy)propan-2-yl acetate [(S)-5a] were obtained with enantiomeric excess (ee) > 99%, 50% conversion and enantiomeric ratio (E) > 200. The KR study was expanded to racemic acetates 5b-d, leading to the corresponding chiral remaining acetates with ≥95% ee, and the alcohols 4b-d with ≥98% ee, and conversion values close to 50%. The best conditions for KRs of rac-5b-d involved the use of lipase from P. fluorescens or TLL immobilized on Immobead 150, 24 or 48 h and 30 °C. These intermediates had their absolute configurations determined using 1H NMR spectroscopy (Mosher’s method), showing that the KRs of these acetates obeyed the Kazlauskas’ rule. Molecular docking studies corroborated the experimental results, indicating a preference for the hydrolysis of (R)-5a-d.
Collapse
|
7
|
Sun C, Wu S, Wu Y, Sun B, Zhang P, Tang K. Lipase AK from Pseudomonas fluorescens immobilized on metal organic frameworks for efficient biosynthesis of enantiopure (S)-1-(4-bromophenyl) ethanol. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
8
|
Wu J, Li X, Shi Z, He C. Single‐crystal‐to‐single‐crystal transformation and alcohols enantioseparation of homochiral Ir(III)‐metallohelix‐based porous molecular crystal. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jinguo Wu
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Xuezhao Li
- Dalian University of Technology Zhang Dayu College of Chemistry CHINA
| | - Zhuolin Shi
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Cheng He
- Dalian University of Technology Linggong Road 2 116024 Dalian CHINA
| |
Collapse
|
9
|
Zhu C, Wang H, Mu Y, Zhang Z, Cheng L, Li T, Fu Y, Wu X, Li Y. Construction of a chiral zinc-camphorate framework for enantioselective separation. Dalton Trans 2022; 51:9627-9631. [PMID: 35703410 DOI: 10.1039/d2dt01221a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chiral metal-organic framework (CMOF) with open chiral channels and multiple recognition sites is constructed from camphoric acid and a dipyridyl ligand. It can act as an efficient chiral solid adsorbent, capable of separating a variety of racemic alcohols and epoxides with excellent enantioselectivities.
Collapse
Affiliation(s)
- Chengfeng Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Hongzhao Wang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Yongfei Mu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Ziwei Zhang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Lanjun Cheng
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Tianfu Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Yanming Fu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Xiang Wu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Yougui Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| |
Collapse
|
10
|
Musa MM. Alcohol Dehydrogenases with anti-Prelog Stereopreference in Synthesis of Enantiopure Alcohols. ChemistryOpen 2022; 11:e202100251. [PMID: 35191611 PMCID: PMC8973272 DOI: 10.1002/open.202100251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Indexed: 01/03/2023] Open
Abstract
Biocatalytic production of both enantiomers of optically active alcohols with high enantiopurities is of great interest in industry. Alcohol dehydrogenases (ADHs) represent an important class of enzymes that could be used as catalysts to produce optically active alcohols from their corresponding prochiral ketones. This review covers examples of the synthesis of optically active alcohols using ADHs that exhibit anti-Prelog stereopreference. Both wild-type and engineered ADHs that exhibit anti-Prelog stereopreference are highlighted.
Collapse
Affiliation(s)
- Musa M. Musa
- Department of Chemistry Interdisciplinary Research Center for Refining and Advanced ChemicalsKing Fahd University of Petroleum and MineralsDhahran31261Saudi Arabia
| |
Collapse
|
11
|
Heitkämper J, Herrmann J, Titze M, Bauch SM, Peters R, Kästner J. Asymmetric Hydroboration of Ketones by Cooperative Lewis Acid–Onium Salt Catalysis: A Quantum Chemical and Microkinetic Study to Combine Theory and Experiment. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juliane Heitkämper
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Justin Herrmann
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Marvin Titze
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Soeren M. Bauch
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - René Peters
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Johannes Kästner
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
12
|
Affiliation(s)
- Congjian Ni
- Beijing Institute of Technology School of chemistry CHINA
| | - Xiaoli Ma
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Zhi Yang
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Herbert W. Roesky
- Georg-August-Universitat Gottingen Department of Chemistry Tammannstrasse 4 37077 Göttingen GERMANY
| |
Collapse
|
13
|
Brazilian contributions to alcohol dehydrogenases-catalyzed reactions throughout the 21st century. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
14
|
Wang Y, Xiang Q, Zhou Q, Xu J, Pei D. Mini Review: Advances in 2-Haloacid Dehalogenases. Front Microbiol 2021; 12:758886. [PMID: 34721367 PMCID: PMC8554231 DOI: 10.3389/fmicb.2021.758886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
The 2-haloacid dehalogenases (EC 3.8.1.X) are industrially important enzymes that catalyze the cleavage of carbon-halogen bonds in 2-haloalkanoic acids, releasing halogen ions and producing corresponding 2-hydroxyl acids. These enzymes are of particular interest in environmental remediation and environmentally friendly synthesis of optically pure chiral compounds due to their ability to degrade a wide range of halogenated compounds with astonishing efficiency for enantiomer resolution. The 2-haloacid dehalogenases have been extensively studied with regard to their biochemical characterization, protein crystal structures, and catalytic mechanisms. This paper comprehensively reviews the source of isolation, classification, protein structures, reaction mechanisms, biochemical properties, and application of 2-haloacid dehalogenases; current trends and avenues for further development have also been included.
Collapse
Affiliation(s)
- Yayue Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Qiao Xiang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- Zhengzhou Tuoyang Industrial Co., Ltd., Zhengzhou, China
| | - Dongli Pei
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| |
Collapse
|
15
|
Zhuang W, Liu H, Zhang Y, He J, Wang P. Effective asymmetric preparation of (R)-1-[3-(trifluoromethyl)phenyl]ethanol with recombinant E. coli whole cells in an aqueous Tween-20/natural deep eutectic solvent solution. AMB Express 2021; 11:118. [PMID: 34410519 PMCID: PMC8377109 DOI: 10.1186/s13568-021-01278-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
(R)-1-[3-(Trifluoromethyl)phenyl]ethanol ((R)-MTF-PEL) is an important chiral building block for the synthesis of a neuroprotective compound, (R)-3-(1-(3-(trifluoromethyl)phenyl)ethoxy)azetidine-1-carboxamide. In this work, an effective whole-cell-catalyzed biotransformation was developed to produce (R)-MTF-PEL, and its productivity was increased by medium engineering strategy. The recombinant E. coli BL21(DE3)-pET28a(+)-LXCAR-S154Y variant affording carbonyl reductase was adopted for the reduction of 3'-(trifluoromethyl)acetophenone to (R)-MTF-PEL with enantiomeric excess (ee) > 99.9%. The addition of 0.6% Tween-20 (w/v) boosted the bioreduction, because the substrate concentration was increased by 4.0-fold than that in the neat buffer solution. The biocatalytic efficiency was further enhanced by introducing choline chloride: lysine (ChCl:Lys, molar ratio of 1:1) in the reaction medium, because the product yield reached 91.5% under 200 mM substrate concentration in the established Tween-20/ChCl:Lys-containing system, which is the highest ever reported for (R)-MTF-PEL production. The optimal reduction conditions were as follows: 4% (w/v) ChCl:Lys, 12.6 g (DCW)/L recombinant E. coli cells, pH 7.0, 30 ℃ and 200 rpm, reaction for 18 h. The combined strategy of surfactant and NADES has great potential in the biocatalytic process and the synthesis of chiral alcohols.
Collapse
Affiliation(s)
- Wenjin Zhuang
- Key Laboratory of Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hanyu Liu
- Key Laboratory of Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ying Zhang
- Key Laboratory of Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junyao He
- Zhejiang Pharmaceutical College, Ningbo, 315100, China
| | - Pu Wang
- Key Laboratory of Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
16
|
Torres Domínguez HM, Hernández Villaverde LM, Le Lagadec R. Recent Advances on O-Ethoxycarbonyl and O-Acyl Protected Cyanohydrins. Molecules 2021; 26:4691. [PMID: 34361844 PMCID: PMC8347998 DOI: 10.3390/molecules26154691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Ethoxycarbonyl cyanohydrins and O-acyl cyanohydrins are examples of O-protected cyanohydrins in which the protecting group presents an electrophilic center, contributing to additional reaction pathways. The first section of this review describes recent advances on the synthesis of O-ethoxycarbonyl and O-acyl protected cyanohydrins. Reactions using KCN or alkyl cyanoformates as the cyanide ion source are described, as well as organic and transition metal catalysis used in their preparation, including asymmetric cyanation. In a second part, transformations, and synthetic applications of O-ethoxycarbonyl/acyl cyanohydrins are presented. A variety of structures has been obtained starting from such protected cyanohydrins and, in particular, the synthesis of oxazoles, 1,4-diketones, 1,3-diketones, 2-vinyl-2-cyclopentenones through various methods are discussed.
Collapse
Affiliation(s)
| | | | - Ronan Le Lagadec
- Instituto de Química, UNAM, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (H.M.T.D.); (L.M.H.V.)
| |
Collapse
|
17
|
Zhu C, Tang H, Yang K, Fang Y, Wang KY, Xiao Z, Wu X, Li Y, Powell JA, Zhou HC. Homochiral Dodecanuclear Lanthanide "Cage in Cage" for Enantioselective Separation. J Am Chem Soc 2021; 143:12560-12566. [PMID: 34342976 DOI: 10.1021/jacs.1c03652] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is extremely difficult to anticipate the structure and the stereochemistry of a complex, particularly when the ligand is flexible and the metal node adopts diverse coordination numbers. When trivalent lanthanides (LnIII) and enantiopure amino acid ligands are utilized as building blocks, self-assembly sometimes yields rare chiral polynuclear structures. In this study, an enantiopure carboxyl-functionalized amino acid-based ligand with C3 symmetry reacts with lanthanum cations to give a homochiral porous coordination cage, (Δ/Λ)12-PCC-57. The dodecanuclear lanthanide cage has an unprecedented octahedral "cage-in-cage" framework. During the self-assembly, the chirality is transferred from the enantiopure ligand and fixed by the binuclear lanthanide cluster to give 12 metal centers that have either Δ or Λ homochiral stereochemistry. The cage exhibits excellent enantioselective separation of racemic alcohols, 2,3-dihydroquinazolinones, and multiple commercially available drugs. This finding exhibits a rare example of a multinuclear lanthanide complex with a dual-walled topology and homochirality. The highly ordered self-assembly and self-sorting of flexible amino acids and lanthanides shed light on the chiral transformation between different complicated artificial systems that mimic natural enzymes.
Collapse
Affiliation(s)
- Chengfeng Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Haitong Tang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Keke Yang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yu Fang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Kun-Yu Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Zhifeng Xiao
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Xiang Wu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yougui Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Joshua A Powell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States.,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| |
Collapse
|
18
|
Bi S, Liu H, Lin H, Wang P. Integration of natural deep-eutectic solvent and surfactant for efficient synthesis of chiral aromatic alcohol mediated by Cyberlindnera saturnus whole cells. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Kwiatkowska M, Błaszczyk J, Sieroń L, Kiełbasiński P. Enzymatic Approach to the Synthesis of Enantiomerically Pure Hydroxy Derivatives of 1,3,5-Triaza-7-phosphaadamantane. J Org Chem 2021; 86:8556-8562. [PMID: 34137610 PMCID: PMC8279493 DOI: 10.1021/acs.joc.0c02586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Indexed: 11/28/2022]
Abstract
A series of enantiomerically pure derivatives of 6-(1-hydroxyalkyl)-1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane 5 were successfully synthesized for the first time. A series of hydrolytic enzymes was applied in a stereoselective acetylation performed under kinetic resolution conditions. Although the secondary alcohols: α-aryl-hydroxymethyl-PTA (phosphines) 5b-d', PTA-oxides 8b-d', and PTA-sulfides 9b-d' were found to be totally unreactive in the presence of all the enzymes and various conditions applied, the primary alcohols, i.e., the hydroxymethyl derivatives PTA oxide 8a and PTA sulfide 9a, were successfully resolved into enantiomers with moderate to good enantioselectivity (up to 95%). The absolute configurations of the products were determined by an X-ray analysis and chemical correlation.
Collapse
Affiliation(s)
- Małgorzata Kwiatkowska
- Division
of Organic Chemistry, Centre of Molecular
and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Jarosław Błaszczyk
- Division
of Organic Chemistry, Centre of Molecular
and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Lesław Sieroń
- Institute
of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź́, Poland
| | - Piotr Kiełbasiński
- Division
of Organic Chemistry, Centre of Molecular
and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| |
Collapse
|
20
|
Wu L, Qin L, Nie Y, Xu Y, Zhao YL. Computer-aided understanding and engineering of enzymatic selectivity. Biotechnol Adv 2021; 54:107793. [PMID: 34217814 DOI: 10.1016/j.biotechadv.2021.107793] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022]
Abstract
Enzymes offering chemo-, regio-, and stereoselectivity enable the asymmetric synthesis of high-value chiral molecules. Unfortunately, the drawback that naturally occurring enzymes are often inefficient or have undesired selectivity toward non-native substrates hinders the broadening of biocatalytic applications. To match the demands of specific selectivity in asymmetric synthesis, biochemists have implemented various computer-aided strategies in understanding and engineering enzymatic selectivity, diversifying the available repository of artificial enzymes. Here, given that the entire asymmetric catalytic cycle, involving precise interactions within the active pocket and substrate transport in the enzyme channel, could affect the enzymatic efficiency and selectivity, we presented a comprehensive overview of the computer-aided workflow for enzymatic selectivity. This review includes a mechanistic understanding of enzymatic selectivity based on quantum mechanical calculations, rational design of enzymatic selectivity guided by enzyme-substrate interactions, and enzymatic selectivity regulation via enzyme channel engineering. Finally, we discussed the computational paradigm for designing enzyme selectivity in silico to facilitate the advancement of asymmetric biosynthesis.
Collapse
Affiliation(s)
- Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Lipase Immobilized on MCFs as Biocatalysts for Kinetic and Dynamic Kinetic Resolution of sec-Alcohols. Catalysts 2021. [DOI: 10.3390/catal11040518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dynamic kinetic resolution (DKR) is one of the most attractive methods for enantioselective synthesis. In the reported studies, lipase B from Candida antarctica (CALB) immobilized on siliceous mesoporous cellular foams (MCF) functionalized with different hydrophobic groups, and two ruthenium complexes with substituted cyclopentadienyl ligands were investigated as catalysts for the chemoenzymatic DKR of (rac)-1-phenylethanol, using Novozym 435 as a benchmark biocatalyst. Studies on the (rac)-1-phenylethanol transesterification reaction showed that CALB supported on MCFs grafted with methyl groups is a promising biocatalyst and isopropenyl acetate is a preferable acylation agent. Both Ru-complexes activated by K3PO4 or t-BuOK, proved to be effective catalysts of the racemization reaction. The final DKR experiments using all catalysts combinations singled out, gave 96% conversion, and (R)-1-phenylethyl acetate enantiomeric excess of 98% in 8 h using K3PO4 activator.
Collapse
|
22
|
Titze M, Heitkämper J, Junge T, Kästner J, Peters R. Highly Active Cooperative Lewis Acid-Ammonium Salt Catalyst for the Enantioselective Hydroboration of Ketones. Angew Chem Int Ed Engl 2021; 60:5544-5553. [PMID: 33210781 PMCID: PMC7986937 DOI: 10.1002/anie.202012796] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/16/2020] [Indexed: 11/25/2022]
Abstract
Enantiopure secondary alcohols are fundamental high-value synthetic building blocks. One of the most attractive ways to get access to this compound class is the catalytic hydroboration. We describe a new concept for this reaction type that allowed for exceptional catalytic turnover numbers (up to 15 400), which were increased by around 1.5-3 orders of magnitude compared to the most active catalysts previously reported. In our concept an aprotic ammonium halide moiety cooperates with an oxophilic Lewis acid within the same catalyst molecule. Control experiments reveal that both catalytic centers are essential for the observed activity. Kinetic, spectroscopic and computational studies show that the hydride transfer is rate limiting and proceeds via a concerted mechanism, in which hydride at Boron is continuously displaced by iodide, reminiscent to an SN 2 reaction. The catalyst, which is accessible in high yields in few steps, was found to be stable during catalysis, readily recyclable and could be reused 10 times still efficiently working.
Collapse
Affiliation(s)
- Marvin Titze
- Universität StuttgartInstitut für Organische ChemiePfaffenwaldring 5570569StuttgartGermany
| | - Juliane Heitkämper
- Universität StuttgartInstitut für Theoretische ChemiePfaffenwaldring 5570569StuttgartGermany
| | - Thorsten Junge
- Universität StuttgartInstitut für Organische ChemiePfaffenwaldring 5570569StuttgartGermany
| | - Johannes Kästner
- Universität StuttgartInstitut für Theoretische ChemiePfaffenwaldring 5570569StuttgartGermany
| | - René Peters
- Universität StuttgartInstitut für Organische ChemiePfaffenwaldring 5570569StuttgartGermany
| |
Collapse
|
23
|
Titze M, Heitkämper J, Junge T, Kästner J, Peters R. Highly Active Cooperative Lewis Acid—Ammonium Salt Catalyst for the Enantioselective Hydroboration of Ketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Marvin Titze
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Juliane Heitkämper
- Universität Stuttgart Institut für Theoretische Chemie Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Thorsten Junge
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Johannes Kästner
- Universität Stuttgart Institut für Theoretische Chemie Pfaffenwaldring 55 70569 Stuttgart Germany
| | - René Peters
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
24
|
Ionic liquids for regulating biocatalytic process: Achievements and perspectives. Biotechnol Adv 2021; 51:107702. [PMID: 33515671 DOI: 10.1016/j.biotechadv.2021.107702] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/26/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
Biocatalysis has found enormous applications in sorts of fields as an alternative to chemical catalysis. In the pursue of green and sustainable chemistry, ionic liquids (ILs) have been considered as promising reaction media for biocatalysis, owing to their unique characteristics, such as nonvolatility, inflammability and tunable properties as regards polarity and water miscibility behavior, compared to organic solvents. In recent years, great developments have been achieved in respects to biocatalysis in ILs, especially for preparing various chemicals. This review tends to give illustrative examples with a focus on representative chemicals production by biocatalyst in ILs and elucidate the possible mechanism in such systems. It also discusses how to regulate the catalytic efficiency from several aspects and finally provides an outlook on the opportunities to broaden biocatalysis in ILs.
Collapse
|
25
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew Chem Int Ed Engl 2021; 60:88-119. [PMID: 32558088 PMCID: PMC7818486 DOI: 10.1002/anie.202006648] [Citation(s) in RCA: 573] [Impact Index Per Article: 191.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Biocatalysis has found numerous applications in various fields as an alternative to chemical catalysis. The use of enzymes in organic synthesis, especially to make chiral compounds for pharmaceuticals as well for the flavors and fragrance industry, are the most prominent examples. In addition, biocatalysts are used on a large scale to make specialty and even bulk chemicals. This review intends to give illustrative examples in this field with a special focus on scalable chemical production using enzymes. It also discusses the opportunities and limitations of enzymatic syntheses using distinct examples and provides an outlook on emerging enzyme classes.
Collapse
Affiliation(s)
- Shuke Wu
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Radka Snajdrova
- Novartis Institutes for BioMedical ResearchGlobal Discovery Chemistry4056BaselSwitzerland
| | - Jeffrey C. Moore
- Process Research and DevelopmentMerck & Co., Inc.126 E. Lincoln AveRahwayNJ07065USA
| | - Kai Baldenius
- Baldenius Biotech ConsultingHafenstr. 3168159MannheimGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| |
Collapse
|
26
|
Findrik Blažević Z, Milčić N, Sudar M, Majerić Elenkov M. Halohydrin Dehalogenases and Their Potential in Industrial Application – A Viewpoint of Enzyme Reaction Engineering. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zvjezdana Findrik Blažević
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia
| | - Nevena Milčić
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia
| | - Martina Sudar
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia
| | | |
Collapse
|
27
|
Hu C, Liu M, Yue X, Huang Z, Chen F. Development of a Practical, Biocatalytic Synthesis of tert-Butyl (R)-3-Hydroxyl-5-hexenoate: A Key Intermediate to the Statin Side Chain. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chen Hu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, P. R. China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, P. R. China
| | - Xiaoping Yue
- West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Zedu Huang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, P. R. China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, P. R. China
| |
Collapse
|
28
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biokatalyse: Enzymatische Synthese für industrielle Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006648] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuke Wu
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Radka Snajdrova
- Novartis Institutes for BioMedical Research Global Discovery Chemistry 4056 Basel Schweiz
| | - Jeffrey C. Moore
- Process Research and Development Merck & Co., Inc. 126 E. Lincoln Ave Rahway NJ 07065 USA
| | - Kai Baldenius
- Baldenius Biotech Consulting Hafenstraße 31 68159 Mannheim Deutschland
| | - Uwe T. Bornscheuer
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| |
Collapse
|
29
|
Marek M, Chaloupkova R, Prudnikova T, Sato Y, Rezacova P, Nagata Y, Kuta Smatanova I, Damborsky J. Structural and catalytic effects of surface loop-helix transplantation within haloalkane dehalogenase family. Comput Struct Biotechnol J 2020; 18:1352-1362. [PMID: 32612758 PMCID: PMC7306515 DOI: 10.1016/j.csbj.2020.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 11/24/2022] Open
Abstract
Engineering enzyme catalytic properties is important for basic research as well as for biotechnological applications. We have previously shown that the reshaping of enzyme access tunnels via the deletion of a short surface loop element may yield a haloalkane dehalogenase variant with markedly modified substrate specificity and enantioselectivity. Here, we conversely probed the effects of surface loop-helix transplantation from one enzyme to another within the enzyme family of haloalkane dehalogenases. Precisely, we transplanted a nine-residue long extension of L9 loop and α4 helix from DbjA into the corresponding site of DbeA. Biophysical characterization showed that this fragment transplantation did not affect the overall protein fold or oligomeric state, but lowered protein stability (ΔT m = -5 to 6 °C). Interestingly, the crystal structure of DbeA mutant revealed the unique structural features of enzyme access tunnels, which are known determinants of catalytic properties for this enzyme family. Biochemical data confirmed that insertion increased activity of DbeA with various halogenated substrates and altered its enantioselectivity with several linear β-bromoalkanes. Our findings support a protein engineering strategy employing surface loop-helix transplantation for construction of novel protein catalysts with modified catalytic properties.
Collapse
Affiliation(s)
- Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Bld. A13, 625 00 Brno, Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Bld. A13, 625 00 Brno, Czech Republic
| | - Tatyana Prudnikova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
| | - Yukari Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, 980-8577 Sendai, Japan
| | - Pavlina Rezacova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, 980-8577 Sendai, Japan
| | - Ivana Kuta Smatanova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Bld. A13, 625 00 Brno, Czech Republic
| |
Collapse
|
30
|
Tang W, Chen L, Deng J, Kuang Y, Chen C, Yin B, Wang H, Lin J, Wei D. Structure-guided evolution of carbonyl reductase for efficient biosynthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01411g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This study reported an attractive engineered carbonyl reductase from Gluconobacter oxydans through a structure-guided rational design to catalyze the synthesis of high concentration (R)-HPBE.
Collapse
Affiliation(s)
- Wen Tang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Lulu Chen
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Jian Deng
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Yuyao Kuang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering
- Biomedical Nanotechnology Center
- School of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
| | - Bo Yin
- National University of Singapore (Suzhou) Research Institute
- Suzhou 215123
- People's Republic of China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
31
|
Tang H, Yang K, Wang KY, Meng Q, Wu F, fang Y, Wu X, Li Y, Zhang W, Luo Y, Zhu C, Zhou HC. Engineering a homochiral metal–organic framework based on an amino acid for enantioselective separation. Chem Commun (Camb) 2020; 56:9016-9019. [DOI: 10.1039/d0cc00897d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A homochiral metal–organic framework is constructed from an amino acid-derived ligand and it exhibits high enantioseparation capacities for alcohols, epoxides, and ibuprofen.
Collapse
|
32
|
Voronin VV, Ledovskaya MS, Rodygin KS, Ananikov VP. Examining the vinyl moiety as a protecting group for hydroxyl (–OH) functionality under basic conditions. Org Chem Front 2020. [DOI: 10.1039/d0qo00202j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A method for the protection and deprotection of alcohols via vinylation and devinylation reactions is proposed. Stability of the vinyl protecting group under various conditions is studied and synthetic applicability is demonstrated.
Collapse
Affiliation(s)
| | | | - Konstantin S. Rodygin
- Institute of Chemistry
- Saint Petersburg State University
- Peterhof
- Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
| | - Valentine P. Ananikov
- Institute of Chemistry
- Saint Petersburg State University
- Peterhof
- Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
| |
Collapse
|
33
|
Assavapanumat S, Ketkaew M, Kuhn A, Wattanakit C. Synthesis, Characterization, and Electrochemical Applications of Chiral Imprinted Mesoporous Ni Surfaces. J Am Chem Soc 2019; 141:18870-18876. [DOI: 10.1021/jacs.9b10507] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sunpet Assavapanumat
- School of Molecular Science and Engineering, School of Energy Science and Engineering and Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- University of Bordeaux, CNRS, UMR 5255, Bordeaux INP, Site ENSCBP, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Marisa Ketkaew
- School of Molecular Science and Engineering, School of Energy Science and Engineering and Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- University of Bordeaux, CNRS, UMR 5255, Bordeaux INP, Site ENSCBP, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Alexander Kuhn
- University of Bordeaux, CNRS, UMR 5255, Bordeaux INP, Site ENSCBP, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Chularat Wattanakit
- School of Molecular Science and Engineering, School of Energy Science and Engineering and Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
34
|
Biocatalysis as Useful Tool in Asymmetric Synthesis: An Assessment of Recently Granted Patents (2014–2019). Catalysts 2019. [DOI: 10.3390/catal9100802] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The broad interdisciplinary nature of biocatalysis fosters innovation, as different technical fields are interconnected and synergized. A way to depict that innovation is by conducting a survey on patent activities. This paper analyses the intellectual property activities of the last five years (2014–2019) with a specific focus on biocatalysis applied to asymmetric synthesis. Furthermore, to reflect the inventive and innovative steps, only patents that were granted during that period are considered. Patent searches using several keywords (e.g., enzyme names) have been conducted by using several patent engine servers (e.g., Espacenet, SciFinder, Google Patents), with focus on granted patents during the period 2014–2019. Around 200 granted patents have been identified, covering all enzyme types. The inventive pattern focuses on the protection of novel protein sequences, as well as on new substrates. In some other cases, combined processes, multi-step enzymatic reactions, as well as process conditions are the innovative basis. Both industries and academic groups are active in patenting. As a conclusion of this survey, we can assert that biocatalysis is increasingly recognized as a useful tool for asymmetric synthesis and being considered as an innovative option to build IP and protect synthetic routes.
Collapse
|
35
|
Zeng X, Sun J, Liu C, Ji C, Peng Y. Catalytic Asymmetric Cyanation Reactions of Aldehydes and Ketones in Total Synthesis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xing‐Ping Zeng
- Key Laboratory of Small Functional Organic MoleculeMinistry of EducationJiangxi Normal University Nanchang Jiangxi 330022 People's Republic of China
| | - Jun‐Chao Sun
- Key Laboratory of Small Functional Organic MoleculeMinistry of EducationJiangxi Normal University Nanchang Jiangxi 330022 People's Republic of China
| | - Chao Liu
- Key Laboratory of Small Functional Organic MoleculeMinistry of EducationJiangxi Normal University Nanchang Jiangxi 330022 People's Republic of China
| | - Cong‐Bin Ji
- Jiangxi Provincial Research of Targeting Pharmaceutical Engineering TechnologyShangrao Normal University Shangrao Jiangxi 334001 People's Republic of China
| | - Yi‐Yuan Peng
- Key Laboratory of Small Functional Organic MoleculeMinistry of EducationJiangxi Normal University Nanchang Jiangxi 330022 People's Republic of China
| |
Collapse
|
36
|
Engleder M, Strohmeier GA, Weber H, Steinkellner G, Leitner E, Müller M, Mink D, Schürmann M, Gruber K, Pichler H. Weiterentwicklung der Substrattoleranz von
Elizabethkingia meningoseptica
Oleathydratase zur regio‐ und stereoselektiven Hydratisierung von Ölsäurederivaten. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Matthias Engleder
- ACIB GmbH – Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Österreich
| | - Gernot A. Strohmeier
- ACIB GmbH – Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Österreich
- Institut für Organische ChemieTechnische Universität Graz, NAWI Graz Stremayrgasse 9 8010 Graz Österreich
| | - Hansjörg Weber
- Institut für Organische ChemieTechnische Universität Graz, NAWI Graz Stremayrgasse 9 8010 Graz Österreich
| | - Georg Steinkellner
- ACIB GmbH – Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Österreich
- Innophore GmbH Am Eisernen Tor 3 8010 Graz Österreich
| | - Erich Leitner
- Institut für Analytische Chemie und LebensmittelchemieTechnische Universität Graz, NAWI Graz Stremayrgasse 9 8010 Graz Österreich
| | - Monika Müller
- InnoSyn B.V. Urmonderbaan 22 6167 RD Geleen Niederlande
| | - Daniel Mink
- InnoSyn B.V. Urmonderbaan 22 6167 RD Geleen Niederlande
| | | | - Karl Gruber
- ACIB GmbH – Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Österreich
- Institut für Molekulare BiowissenschaftenUniversität Graz, NAWI Graz, BioTechMed Graz Humboldtstraße 50 8010 Graz Österreich
| | - Harald Pichler
- Institut für Molekulare BiotechnologieTechnische Universität Graz, NAWI Graz, BioTechMed Graz Petersgasse 14 8010 Graz Österreich
- ACIB GmbH – Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Österreich
| |
Collapse
|
37
|
Engleder M, Strohmeier GA, Weber H, Steinkellner G, Leitner E, Müller M, Mink D, Schürmann M, Gruber K, Pichler H. Evolving the Promiscuity of Elizabethkingia meningoseptica Oleate Hydratase for the Regio- and Stereoselective Hydration of Oleic Acid Derivatives. Angew Chem Int Ed Engl 2019; 58:7480-7484. [PMID: 30848865 PMCID: PMC6563698 DOI: 10.1002/anie.201901462] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Indexed: 12/15/2022]
Abstract
The addition of water to non-activated carbon-carbon double bonds catalyzed by fatty acid hydratases (FAHYs) allows for highly regio- and stereoselective oxyfunctionalization of renewable oil feedstock. So far, the applicability of FAHYs has been limited to free fatty acids, mainly owing to the requirement of a carboxylate function for substrate recognition and binding. Herein, we describe for the first time the hydration of oleic acid (OA) derivatives lacking this free carboxylate by the oleate hydratase from Elizabethkingia meningoseptica (OhyA). Molecular docking of OA to the OhyA 3D-structure and a sequence alignment uncovered conserved amino acid residues at the entrance of the substrate channel as target positions for enzyme engineering. Exchange of selected amino acids gave rise to OhyA variants which showed up to an 18-fold improved conversion of OA derivatives, while retaining the excellent regio- and stereoselectivity in the olefin hydration reaction.
Collapse
Affiliation(s)
- Matthias Engleder
- ACIB GmbH—Austrian Centre of Industrial BiotechnologyPetersgasse 148010GrazAustria
| | - Gernot A. Strohmeier
- ACIB GmbH—Austrian Centre of Industrial BiotechnologyPetersgasse 148010GrazAustria
- Institute of Organic ChemistryGraz University of Technology, NAWI GrazStremayrgasse 98010GrazAustria
| | - Hansjörg Weber
- Institute of Organic ChemistryGraz University of Technology, NAWI GrazStremayrgasse 98010GrazAustria
| | - Georg Steinkellner
- ACIB GmbH—Austrian Centre of Industrial BiotechnologyPetersgasse 148010GrazAustria
- Innophore GmbHAm Eisernen Tor 38010GrazAustria
| | - Erich Leitner
- Institute of Analytical Chemistry and Food ChemistryGraz University of Technology, NAWI GrazStremayrgasse 98010GrazAustria
| | - Monika Müller
- InnoSyn B.V.Urmonderbaan 226167 RDGeleenThe Netherlands
| | - Daniel Mink
- InnoSyn B.V.Urmonderbaan 226167 RDGeleenThe Netherlands
| | | | - Karl Gruber
- ACIB GmbH—Austrian Centre of Industrial BiotechnologyPetersgasse 148010GrazAustria
- Institute of Molecular BiosciencesUniversity of Graz, NAWI Graz, BioTechMed GrazHumboldtstrasse 508010GrazAustria
| | - Harald Pichler
- Institute of Molecular BiotechnologyGraz University of Technology, NAWI Graz, BioTechMed GrazPetersgasse 148010GrazAustria
- ACIB GmbH—Austrian Centre of Industrial BiotechnologyPetersgasse 148010GrazAustria
| |
Collapse
|