1
|
Tolkkinen K, Mankinen O, Mailhiot SE, Telkki VV. Ultrafast T1- T1ρ NMR for Correlating Different Motional Regimes of Molecules. Anal Chem 2024; 96:16534-16542. [PMID: 39383336 PMCID: PMC11503516 DOI: 10.1021/acs.analchem.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Nuclear magnetic resonance (NMR) relaxation times provide detailed information about molecular motions and local chemical environments. Longitudinal T1 relaxation time is most often sensitive to relatively fast, nano- to picosecond ranges of molecular motion. Rotating frame T1ρ relaxation time reflects a much slower, micro- to millisecond range of motion, and the motional regime can be tuned by changing spin-lock field strength. Conventional methods for measuring T1 and T1ρ relaxation times are time-consuming, since experiments must be repeated many times with incremented magnetization recovery or decay delay. In this work, we introduce two novel and efficient NMR methods to correlate the T1 and T1ρ relaxation times. The first method, IR-SPICY, combines the conventional T1 inversion recovery (IR) with the single-scan T1ρ detection-based spin-lock cycle (SPICY). The second method, ultrafast (UF) IR-SPICY, allows measurement of whole two-dimensional T1-T1ρ correlation data in a single scan, in a couple of seconds, based on spatial encoding of the T1 dimension. We demonstrate the performance of the methods by studying relaxation of water in porous silica and hydrogel samples, latter acting as a model of the articular cartilage extracellular matrix. The methods allow correlating different molecular motional regimes, potentially providing unprecedented information about various chemical and biochemical systems, such as structures and fluid dynamics in porous materials, macromolecular changes in tissues, and protein dynamics. One to three orders of magnitude shortened experiment time enable the studies of changing or degrading samples. Furthermore, the single-scan approach may significantly facilitate the use of modern nuclear-spin hyperpolarization techniques to enhance the sensitivity of T1-T1ρ measurements by several orders of magnitude.
Collapse
Affiliation(s)
- Katja Tolkkinen
- NMR Research Unit, Faculty
of Science, University of Oulu, P.O. Box 3000, Oulu 90014, Finland
| | - Otto Mankinen
- NMR Research Unit, Faculty
of Science, University of Oulu, P.O. Box 3000, Oulu 90014, Finland
| | - Sarah E. Mailhiot
- NMR Research Unit, Faculty
of Science, University of Oulu, P.O. Box 3000, Oulu 90014, Finland
| | - Ville-Veikko Telkki
- NMR Research Unit, Faculty
of Science, University of Oulu, P.O. Box 3000, Oulu 90014, Finland
| |
Collapse
|
2
|
Mailhiot S, Mankinen O, Li J, Kharbanda Y, Telkki VV, Urbańczyk M. CAT on MOUSE: Control and automation of temperature for single-sided NMR instruments such as NMR-MOUSE. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:252-258. [PMID: 37344254 DOI: 10.1002/mrc.5376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Temperature-dependent experiments are a rapidly growing area of interest for low-field NMR. In this work, we present a new device for wide-range temperature control for single-sided NMR instruments. The presented device, called CAT, is simple to build, inexpensive, and easy to modify to accommodate different samples. We present the capabilities of the device using a freezing temperature study of acetic acid/water mixtures. Additionally, we present the stability of the device over long measurement times. We believe that by introducing such a device with an open-source design, we allow researchers to use it in a wide range of applications and to fully incorporate variable-temperature studies in the world of single-sided instruments.
Collapse
Affiliation(s)
| | - Otto Mankinen
- NMR Research Unit, University of Oulu, Oulu, Finland
| | - Jing Li
- NMR Research Unit, University of Oulu, Oulu, Finland
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, Gif-sur-Yvette, France
| | - Yashu Kharbanda
- NMR Research Unit, University of Oulu, Oulu, Finland
- Laboratoire Navier (Ecole des Ponts ParisTech-Université Gustave Eiffel), Champs-sur-Marne, France
| | | | - Mateusz Urbańczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Kharbanda Y, Urbańczyk M, Zhivonitko VV, Mailhiot S, Kettunen MI, Telkki VV. Sensitive, Efficient and Portable Analysis of Molecular Exchange Processes by Hyperpolarized Ultrafast NMR. Angew Chem Int Ed Engl 2022; 61:e202203957. [PMID: 35499690 PMCID: PMC9400989 DOI: 10.1002/anie.202203957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/08/2022]
Abstract
Molecular exchange processes are ubiquitous in nature. Here, we introduce a method to analyze exchange processes by using low-cost, portable, single-sided NMR instruments. The inherent magnetic field inhomogeneity of the single-sided instruments is exploited to achieve diffusion contrast of exchange sites and spatial encoding of 2D data. This so-called ultrafast diffusion exchange spectroscopy method shortens the experiment time by two to four orders of magnitude. Furthermore, because full 2D data are measured in a single scan (in a fraction of a second), the sensitivity of the experiment can be improved by several orders of magnitude using so-called nuclear spin hyperpolarization methods (in this case, dissolution dynamic nuclear polarization). As the first demonstration of the feasibility of the method in various applications, we show that the method enables quantification of intra- and extracellular exchange of water in a yeast cell suspension.
Collapse
Affiliation(s)
| | - Mateusz Urbańczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Sarah Mailhiot
- NMR Research Unit, University of Oulu, Oulu, 90540, Finland
| | - Mikko I Kettunen
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | |
Collapse
|
4
|
Kharbanda Y, Urbańczyk M, Zhivonitko VV, Mailhiot S, Kettunen MI, Telkki V. Sensitive, Efficient and Portable Analysis of Molecular Exchange Processes by Hyperpolarized Ultrafast NMR. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Mateusz Urbańczyk
- Institute of Physical Chemistry Polish Academy of Sciences Warsaw Poland
| | | | | | - Mikko I. Kettunen
- Kuopio Biomedical Imaging Unit A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
| | | |
Collapse
|
5
|
Telkki VV, Urbańczyk M, Zhivonitko V. Ultrafast methods for relaxation and diffusion. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:101-120. [PMID: 34852922 DOI: 10.1016/j.pnmrs.2021.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Relaxation and diffusion NMR measurements offer an approach to studying rotational and translational motion of molecules non-invasively, and they also provide chemical resolution complementary to NMR spectra. Multidimensional experiments enable the correlation of relaxation and diffusion parameters as well as the observation of molecular exchange phenomena through relaxation or diffusion contrast. This review describes how to accelerate multidimensional relaxation and diffusion measurements significantly through spatial encoding. This so-called ultrafast Laplace NMR approach shortens the experiment time to a fraction and makes even single-scan experiments possible. Single-scan experiments, in turn, significantly facilitate the use of nuclear spin hyperpolarization methods to boost sensitivity. The ultrafast Laplace NMR method is also applicable with low-field, mobile NMR instruments, and it can be exploited in many disciplines. For example, it has been used in studies of the dynamics of fluids in porous materials, identification of intra- and extracellular metabolites in cancer cells, and elucidation of aggregation phenomena in atmospheric surfactant solutions.
Collapse
Affiliation(s)
| | - Mateusz Urbańczyk
- NMR Research Unit, University of Oulu, P.O. Box 3000, FIN-90014, Finland; Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | | |
Collapse
|
6
|
Tickner BJ, Zhivonitko VV, Telkki VV. Ultrafast Laplace NMR to study metal-ligand interactions in reversible polarisation transfer from parahydrogen. Phys Chem Chem Phys 2021; 23:16542-16550. [PMID: 34338685 PMCID: PMC8359933 DOI: 10.1039/d1cp02383g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Laplace Nuclear Magnetic Resonance (NMR) can determine relaxation parameters and diffusion constants, giving valuable information about molecular structure and dynamics. Information about relaxation times (T1 and T2) and the self-diffusion coefficient (D) can be extracted from exponentially decaying NMR signals by performing a Laplace transform, which is a different approach to traditional NMR involving Fourier transform of a free induction decay. Ultrafast Laplace NMR uses spatial encoding to collect the entire data set in just a single scan which provides orders of magnitude time savings. In this work we use ultrafast Laplace NMR D-T2 correlation sequences to measure key relaxation (T2) and diffusion (D) parameters of methanolic solutions containing pyridine. For the first time we combine this technique with the hyperpolarisation technique Signal Amplification By Reversible Exchange (SABRE), which employs an iridium catalyst to reversibly transfer polarisation from parahydrogen, to boost the 1H NMR signals of pyridine by up to 300-fold. We demonstrate use of ultrafast Laplace NMR to monitor changes in pyridine T2 and D associated with ligation to the iridium SABRE catalyst and kinetic isotope exchange reactions. The combined 1440-fold reduction in experiment time and 300-fold 1H NMR signal enhancement allow the determination of pyridine D coefficients and T2 values at 25 mM concentrations in just 3 seconds using SABRE hyperpolarised ultrafast Laplace NMR.
Collapse
Affiliation(s)
- Ben. J. Tickner
- NMR Research Unit, Faculty of Science, University of Oulu90014Finland
| | | | | |
Collapse
|
7
|
Singh K, Jacquemmoz C, Giraudeau P, Frydman L, Dumez JN. Ultrafast 2D 1H- 1H NMR spectroscopy of DNP-hyperpolarised substrates for the analysis of mixtures. Chem Commun (Camb) 2021; 57:8035-8038. [PMID: 34291258 PMCID: PMC8477446 DOI: 10.1039/d1cc03079e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/15/2021] [Indexed: 01/22/2023]
Abstract
We show that TOCSY and multiple-quantum (MQ) 2D NMR spectra can be obtained for mixtures of substrates hyperpolarised by dissolution dynamic nuclear polarisation (D-DNP). This is achieved by combining optimised transfer settings for D-DNP, with ultrafast 2D NMR experiments based on spatiotemporal encoding. TOCSY and MQ experiments are particularly well suited for mixture analysis, and this approach opens the way to significant sensitivity gains for analytical applications of NMR, such as authentication and metabolomics.
Collapse
Affiliation(s)
- Kawarpal Singh
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | | | | | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | | |
Collapse
|
8
|
Zhan H, Zhan F, Gao C, Lin E, Huang C, Lin X, Huang Y, Chen Z. Multiplet analysis by strong-coupling-artifact-suppression 2D J-resolved NMR spectroscopy. J Chem Phys 2021; 155:034202. [PMID: 34293873 DOI: 10.1063/5.0056999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Benefitting from the capability of recording scalar (J) couplings and bonding information, 2D J-resolved NMR spectroscopy constitutes an important tool for molecular structure analysis and mixture component identification. Unfortunately, conventional 2D J-resolved experiments generally encounter challenges of insufficient spectral resolution and strong coupling artifacts. In this study, a general NMR approach is exploited to record absorption-mode artifact-free 2D J-resolved spectra. This proposal adopts the advanced triple-spin-echo pure shift yielded by chirp excitation element to eliminate J coupling splittings and preserve chemical shifts along the F2 dimension, and it additionally utilizes the echo-train J acquisition to reveal the multiplet structure along the F1 dimension in accelerated experimental acquisition. Thus, it permits one to extract multiplet structure information from crowded spectral regions in one-shot experiments, with considerable resolution advantage resulting from completely decoupling F2 dimension and absorption-mode presentation, thus facilitating analysis on complex samples. More importantly, this method grants the superior performance on suppressing strong coupling artifacts, which have been affirmed by experiments on a series of chemical samples. As a consequence, this proposed method serves as a useful tool for J coupling measurements and multiplet structure analyses on complex samples that contain crowded NMR resonances and strong coupling spin systems, and it may exhibit broad application potentials in fields of physics, chemistry, and medical science, among others.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Fengqi Zhan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Cunyuan Gao
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Enping Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Chengda Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Xiaoqing Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
9
|
Chighine K, Léonce E, Boutin C, Desvaux H, Berthault P. 129Xe ultra-fast Z spectroscopy enables micromolar detection of biosensors on a 1 T benchtop spectrometer. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:409-420. [PMID: 37904767 PMCID: PMC10539730 DOI: 10.5194/mr-2-409-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/31/2021] [Indexed: 11/01/2023]
Abstract
The availability of a benchtop nuclear magnetic resonance (NMR) spectrometer, of low cost and easily transportable, can allow detection of low quantities of biosensors, provided that hyperpolarized species are used. Here we show that the micromolar threshold can easily be reached by employing laser-polarized xenon and cage molecules reversibly hosting it. Indirect detection of caged xenon is made via chemical exchange, using ultra-fast Z spectroscopy based on spatio-temporal encoding. On this non-dedicated low-field spectrometer, several ideas are proposed to improve the signal.
Collapse
Affiliation(s)
- Kévin Chighine
- Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Estelle Léonce
- Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Céline Boutin
- Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Hervé Desvaux
- Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Patrick Berthault
- Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Zhan H, Hao M, Feng Y, Cao S, Ni Z, Huang Y, Chen Z. Diffusion Analysis on Complex Mixtures under Adverse Magnetic Field Conditions by Spatially-Selective Pure Shift-Based DOSY. J Phys Chem Lett 2021; 12:1073-1080. [PMID: 33471531 DOI: 10.1021/acs.jpclett.0c03549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Diffusion-ordered NMR spectroscopy (DOSY) serves as a noninvasive spectroscopic method for studying intact mixtures and identifying individual components present in mixtures according to their diffusion behaviors. However, DOSY techniques generally fail to discriminate complex compositions which exhibit crowded or overlapped NMR signals, particularly under adverse magnetic field conditions. Herein, we exploit the spatially selective pure shift-based DOSY strategy to address this challenge by eliminating inhomogeneous line broadenings and extracting pure shift singlets, thereby expediting diffusion analyses on complex mixtures. More importantly, this strategy is further applied to observing and analyzing electro-oxidation processes of blended alcohols, suggesting its potential to monitoring in situ electrochemical reactions. This study demonstrates a meaningful NMR trial for diffusion analysis on complex mixtures under adverse experimental circumstances, and particularly, it provides a proof-of-concept technique for electrochemical studies and shows promising prospects for applications in chemistry, biology, energy, etc.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Mengyou Hao
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Ye Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Shuohui Cao
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Zhikai Ni
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Gouilleux B, Farjon J, Giraudeau P. Gradient-based pulse sequences for benchtop NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 319:106810. [PMID: 33036709 DOI: 10.1016/j.jmr.2020.106810] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Benchtop NMR spectroscopy has been on the rise for the last decade, by bringing high-resolution NMR in environments that are not easily compatible with high-field NMR. Benchtop spectrometers are accessible, low cost and show an impressive performance in terms of sensitivity with respect to the relatively low associated magnetic field (40-100 MHz). However, their application is limited by the strong and ubiquitous peak overlaps arising from the complex mixtures which are often targeted, often characterized by a great diversity of concentrations and by strong signals from non-deuterated solvents. Such limitations can be addressed by pulse sequences making clever use of magnetic field gradient pulses, capable of performing efficient coherence selection or encoding chemical shift or diffusion information. Gradients pulses are well-known ingredients of high-field pulse sequence recipes, but were only recently made available on benchtop spectrometers, thanks to the introduction of gradient coils in 2015. This article reviews the recent methodological advances making use of gradient pulses on benchtop spectrometers and the applications stemming from these developments. Particular focus is made on solvent suppression schemes, diffusion-encoded, and spatially-encoded experiments, while discussing both methodological advances and subsequent applications. We eventually discuss the exciting development and application perspectives that result from such advances.
Collapse
Affiliation(s)
- Boris Gouilleux
- Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, France
| | - Jonathan Farjon
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Patrick Giraudeau
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| |
Collapse
|
12
|
Urbańczyk M, Kharbanda Y, Mankinen O, Telkki VV. Accelerating Restricted Diffusion NMR Studies with Time-Resolved and Ultrafast Methods. Anal Chem 2020; 92:9948-9955. [PMID: 32551510 PMCID: PMC7439255 DOI: 10.1021/acs.analchem.0c01523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Restricted
diffusion of fluids in porous materials can be studied
by pulsed field gradient nuclear magnetic resonance (NMR) non-invasively
and without tracers. If the experiment is repeated many times with
varying diffusion delays, detailed information about pore sizes and
tortuosity can be recorded. However, the measurements are very time-consuming
because numerous repetitions are needed for gradient ramping and varying
diffusion delays. In this paper, we demonstrate two different strategies
for acceleration of the restricted diffusion NMR measurements: time-resolved
diffusion NMR and ultrafast Laplace NMR. The former is based on time-resolved
non-uniform sampling, while the latter relies on spatial encoding
of two-dimensional data. Both techniques allow similar 1–2
order of magnitude acceleration of acquisition, but they have different
strengths and weaknesses, which we discuss in detail. The feasibility
of the methods was proven by investigating restricted diffusion of
water inside tracheid cells of thermally modified pine wood.
Collapse
Affiliation(s)
| | | | - Otto Mankinen
- NMR Research Unit, University of Oulu, 90014 Oulu, Finland.,Oulu Functional NeuroImaging Group, Research Unit of Medical Imaging, Physics and Technology, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90029 Oulu, Finland
| | | |
Collapse
|
13
|
Abstract
The exchange of molecules between different physical or chemical environments due to diffusion or chemical transformations has a crucial role in a plethora of fundamental processes such as breathing, protein folding, chemical reactions and catalysis. Here, we introduce a method for a single-scan, ultrafast NMR analysis of molecular exchange based on the diffusion coefficient contrast. The method shortens the experiment time by one to four orders of magnitude. Consequently, it opens the way for high sensitivity quantification of important transient physical and chemical exchange processes such as in cellular metabolism. As a proof of principle, we demonstrate that the method reveals the structure of aggregates formed by surfactants relevant to aerosol research. Analysis of exchange processes is time consuming by two-dimensional exchange NMR spectroscopy. Here the authors demonstrate a single-scan ultrafast Laplace NMR approach based on spatial encoding to measure molecular diffusion, with an increase by a factor six in the sensitivity per unit time.
Collapse
|
14
|
Zhivonitko VV, Ullah MS, Telkki VV. Nonlinear sampling in ultrafast Laplace NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 307:106571. [PMID: 31445478 DOI: 10.1016/j.jmr.2019.106571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Ultrafast Laplace NMR (UF-LNMR) reduces the experiment time of multidimensional relaxation and diffusion measurements to a fraction. Here, we demonstrate a method for nonlinear (in this case logarithmic) sampling of the indirect dimension in UF-LNMR measurements. The method is based on the use of frequency-swept pulses with the frequency nonlinearly increasing with time. This leads to an optimized detection of exponential experimental data and significantly improved resolution of LNMR parameters.
Collapse
Affiliation(s)
| | - Md Sharif Ullah
- NMR Research Unit, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | | |
Collapse
|
15
|
Korchak S, Emondts M, Mamone S, Blümich B, Glöggler S. Production of highly concentrated and hyperpolarized metabolites within seconds in high and low magnetic fields. Phys Chem Chem Phys 2019; 21:22849-22856. [DOI: 10.1039/c9cp05227e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We introduce two experiments that allow for the rapid production of hyperpolarized metabolites. More than 50% 13C polarization in 50 mM concentrations is achieved. This can be translated to portable low field NMR devices.
Collapse
Affiliation(s)
- Sergey Korchak
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry
- 37077 Göttingen
- Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Straße 3A
- 37075 Göttingen
| | - Meike Emondts
- DWI-Leibniz Institute for Interactive Materials
- D-52056 Aachen
- Germany
- Institut für Technische Chemie und Makromolekulare Chemie
- RWTH-Aachen University
| | - Salvatore Mamone
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry
- 37077 Göttingen
- Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Straße 3A
- 37075 Göttingen
| | - Bernhard Blümich
- Institut für Technische Chemie und Makromolekulare Chemie
- RWTH-Aachen University
- Worringerweg 2
- Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry
- 37077 Göttingen
- Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Straße 3A
- 37075 Göttingen
| |
Collapse
|
16
|
Zhang G, Ahola S, Lerche MH, Telkki VV, Hilty C. Identification of Intracellular and Extracellular Metabolites in Cancer Cells Using 13C Hyperpolarized Ultrafast Laplace NMR. Anal Chem 2018; 90:11131-11137. [PMID: 30125087 PMCID: PMC6168181 DOI: 10.1021/acs.analchem.8b03096] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Ultrafast
Laplace NMR (UF-LNMR), which is based on the spatial
encoding of multidimensional data, enables one to carry out 2D relaxation
and diffusion measurements in a single scan. Besides reducing the
experiment time to a fraction, it significantly facilitates the use
of nuclear spin hyperpolarization to boost experimental sensitivity,
because the time-consuming polarization step does not need to be repeated.
Here we demonstrate the usability of hyperpolarized UF-LNMR in the
context of cell metabolism, by investigating the conversion of pyruvate
to lactate in the cultures of mouse 4T1 cancer cells. We show that 13C ultrafast diffusion–T2 relaxation correlation measurements, with the sensitivity enhanced
by several orders of magnitude by dissolution dynamic nuclear polarization
(D-DNP), allows the determination of the extra- vs intracellular
location of metabolites because of their significantly different values
of diffusion coefficients and T2 relaxation
times. Under the current conditions, pyruvate was located predominantly
in the extracellular pool, while lactate remained primarily intracellular.
Contrary to the small flip angle diffusion methods reported in the
literature, the UF-LNMR method does not require several scans with
varying gradient strength, and it provides a combined diffusion and T2 contrast. Furthermore, the ultrafast concept
can be extended to various other multidimensional LNMR experiments,
which will provide detailed information about the dynamics and exchange
processes of cell metabolites.
Collapse
Affiliation(s)
- Guannan Zhang
- Department of Chemistry , Texas A&M University , 3255 TAMU, College Station , Texas 77843 , United States
| | - Susanna Ahola
- NMR Research Unit, Faculty of Science , University of Oulu , P.O. Box 3000, 90014 Oulu , Finland
| | - Mathilde H Lerche
- Department of Electrical Engineering, Center for Hyperpolarization in Magnetic Resonance , Technical University of Denmark , Building 349, DK-2800 Kgs Lyngby , Denmark
| | - Ville-Veikko Telkki
- NMR Research Unit, Faculty of Science , University of Oulu , P.O. Box 3000, 90014 Oulu , Finland
| | - Christian Hilty
- Department of Chemistry , Texas A&M University , 3255 TAMU, College Station , Texas 77843 , United States
| |
Collapse
|