1
|
Joest EF, Tampé R. Design principles for engineering light-controlled antibodies. Trends Biotechnol 2023; 41:1501-1517. [PMID: 37507295 DOI: 10.1016/j.tibtech.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023]
Abstract
Engineered antibodies are essential tools for research and advanced pharmacy. In the development of therapeutics, antibodies are excellent candidates as they offer both target recognition and modulation. Thanks to the latest advances in biotechnology, light-activated antibody fragments can be constructed to control spontaneous antigen interaction with high spatiotemporal precision. To implement conditional antigen binding, several optogenetic and optochemical engineering concepts have recently been developed. Here, we highlight the various strategies and discuss the features of opto-conditional antibodies. Each concept offers intrinsic advantages beneficial to different applications. In summary, the novel design approaches constitute a complementary toolset to promote current and upcoming antibody technologies with ultimate precision.
Collapse
Affiliation(s)
- Eike F Joest
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany.
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany.
| |
Collapse
|
2
|
Yang W, Hou L, Luo C. When Super-Resolution Microscopy Meets Microfluidics: Enhanced Biological Imaging and Analysis with Unprecedented Resolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207341. [PMID: 36895074 DOI: 10.1002/smll.202207341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/31/2023] [Indexed: 06/08/2023]
Abstract
Super-resolution microscopy is rapidly developed in recent years, allowing biologists to extract more quantitative information on subcellular processes in live cells that is usually not accessible with conventional techniques. However, super-resolution imaging is not fully exploited because of the lack of an appropriate and multifunctional experimental platform. As an important tool in life sciences, microfluidics is capable of cell manipulation and the regulation of the cellular environment because of its superior flexibility and biocompatibility. The combination of microfluidics and super-resolution microscopy revolutionizes the study of complex cellular properties and dynamics, providing valuable insights into cellular structure and biological functions at the single-molecule level. In this perspective, an overview of the main advantages of microfluidic technology that are essential to the performance of super-resolution microscopy are offered. The main benefits of performing super-resolution imaging with microfluidic devices are highlighted and perspectives on the diverse applications that are facilitated by combining these two powerful techniques are provided.
Collapse
Affiliation(s)
- Wei Yang
- Wenzhou Institute University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou, Zhejiang, 325001, China
| | - Lei Hou
- UMR5298-LP2N, Institut d'Optique and CNRS, Rue François Mitterrand, Talence, 33400, France
| | - Chunxiong Luo
- Wenzhou Institute University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou, Zhejiang, 325001, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, 5 Summer Palace Road, Beijing, 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 5 Summer Palace Road, Beijing, 100871, China
| |
Collapse
|
3
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
4
|
Zhang Y, Lu Y, El Sayyed H, Bian J, Lin J, Li X. Transcription factor dynamics in plants: Insights and technologies for in vivo imaging. PLANT PHYSIOLOGY 2022; 189:23-36. [PMID: 35134239 PMCID: PMC9070795 DOI: 10.1093/plphys/kiac042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Biochemical and genetic approaches have been extensively used to study transcription factor (TF) functions, but their dynamic behaviors and the complex ways in which they regulate transcription in plant cells remain unexplored, particularly behaviors such as translocation and binding to DNA. Recent developments in labeling and imaging techniques provide the necessary sensitivity and resolution to study these behaviors in living cells. In this review, we present an up-to-date portrait of the dynamics and regulation of TFs under physiologically relevant conditions and then summarize recent advances in fluorescent labeling strategies and imaging techniques. We then discuss future prospects and challenges associated with the application of these techniques to examine TFs' intricate dance in living plants.
Collapse
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Yuqing Lu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Hafez El Sayyed
- Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Jiahui Bian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | | |
Collapse
|
5
|
Joest EF, Winter C, Wesalo JS, Deiters A, Tampé R. Efficient Amber Suppression via Ribosomal Skipping for In Situ Synthesis of Photoconditional Nanobodies. ACS Synth Biol 2022; 11:1466-1476. [PMID: 35060375 PMCID: PMC9157392 DOI: 10.1021/acssynbio.1c00471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetic code expansion is a versatile method for in situ synthesis of modified proteins. During mRNA translation, amber stop codons are suppressed to site-specifically incorporate non-canonical amino acids. Thus, nanobodies can be equipped with photocaged amino acids to control target binding on demand. The efficiency of amber suppression and protein synthesis can vary with unpredictable background expression, and the reasons are hardly understood. Here, we identified a substantial limitation that prevented synthesis of nanobodies with N-terminal modifications for light control. After systematic analyses, we hypothesized that nanobody synthesis was severely affected by ribosomal inaccuracy during the early phases of translation. To circumvent a background-causing read-through of a premature stop codon, we designed a new suppression concept based on ribosomal skipping. As an example, we generated intrabodies with photoactivated target binding in mammalian cells. The findings provide valuable insights into the genetic code expansion and describe a versatile synthesis route for the generation of modified nanobodies that opens up new perspectives for efficient site-specific integration of chemical tools. In the area of photopharmacology, our flexible intrabody concept builds an ideal platform to modulate target protein function and interaction.
Collapse
Affiliation(s)
- Eike F Joest
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M, Germany
| | - Christian Winter
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M, Germany
| | - Joshua S Wesalo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M, Germany
| |
Collapse
|
6
|
Barakat S, Berksöz M, Zahedimaram P, Piepoli S, Erman B. Nanobodies as molecular imaging probes. Free Radic Biol Med 2022; 182:260-275. [PMID: 35240292 DOI: 10.1016/j.freeradbiomed.2022.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Camelidae derived single-domain antibodies (sdAbs), commonly known as nanobodies (Nbs), are the smallest antibody fragments with full antigen-binding capacity. Owing to their desirable properties such as small size, high specificity, strong affinity, excellent stability, and modularity, nanobodies are on their way to overtake conventional antibodies in terms of popularity. To date, a broad range of nanobodies have been generated against different molecular targets with applications spanning basic research, diagnostics, and therapeutics. In the field of molecular imaging, nanobody-based probes have emerged as a powerful tool. Radioactive or fluorescently labeled nanobodies are now used to detect and track many targets in different biological systems using imaging techniques. In this review, we provide an overview of the use of nanobodies as molecular probes. Additionally, we discuss current techniques for the generation, conjugation, and intracellular delivery of nanobodies.
Collapse
Affiliation(s)
- Sarah Barakat
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Melike Berksöz
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Pegah Zahedimaram
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Sofia Piepoli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| | - Batu Erman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|
7
|
Dai Y, Sato Y, Zhu B, Kitaguchi T, Kimura H, Ghadessy FJ, Ueda H. Intra Q-body: an antibody-based fluorogenic probe for intracellular proteins that allows live cell imaging and sorting. Chem Sci 2022; 13:9739-9748. [PMID: 36091915 PMCID: PMC9400599 DOI: 10.1039/d2sc02355e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/30/2022] [Indexed: 11/21/2022] Open
Abstract
Although intracellular biomarkers can be imaged with fluorescent dye(s)-labeled antibodies, the use of such probes for precise imaging of intracellular biomarkers in living cells remains challenging due to background noise from unbound probes. Herein, we describe the development of a conditionally active Fab-type Quenchbody (Q-body) probe derived from a monoclonal antibody (DO-1) with the ability to both target and spatiotemporally visualize intracellular p53 in living cells with low background signal. p53 is a key tumor suppressor and validated biomarker for cancer diagnostics and therapeutics. The Q-body displayed up to 27-fold p53 level-dependent fluorescence enhancement in vitro with a limit of detection of 0.72 nM. In fixed and live cells, 8.3- and 8.4-fold enhancement was respectively observed. Furthermore, we demonstrate live-cell sorting based on p53 expression. This study provides the first evidence of the feasibility and applicability of Q-body probes for the live-cell imaging of intrinsically intracellular proteins and opens a novel avenue for research and diagnostic applications on intracellular target-based live-cell sorting. A fluorescent immunosensor that lights up tumor biomarker p53 in living cells was developed based on the Q-body technology. The technology was further applied to the live cell monitoring of p53 levels, and live cell sorting based on p53 expression.![]()
Collapse
Affiliation(s)
- Yancen Dai
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Farid J. Ghadessy
- Disease Intervention Technology Laboratory, Institute of Molecular and Cellular Biology, A*STAR, Singapore
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
8
|
Schneider AFL, Benz LS, Lehmann M, Hackenberger CPR. Zellpermeable Nanobodys ermöglichen Zwei‐Farben‐Superauflösungsmikroskopie in lebenden, nicht transfizierten Zellen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anselm F. L. Schneider
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Deutschland
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14189 Berlin Deutschland
| | - Laila S. Benz
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14189 Berlin Deutschland
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Deutschland
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Deutschland
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
9
|
Schneider AFL, Benz LS, Lehmann M, Hackenberger CPR. Cell-Permeable Nanobodies Allow Dual-Color Super-Resolution Microscopy in Untransfected Living Cells. Angew Chem Int Ed Engl 2021; 60:22075-22080. [PMID: 34288299 PMCID: PMC8518916 DOI: 10.1002/anie.202103068] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/28/2021] [Indexed: 11/06/2022]
Abstract
Super‐resolution microscopy in living cells can be restricted by the availability of small molecule probes, which only exist against few targets and genetically encoded tags. Here, we expand the applicability of live‐cell STED by engineering cell‐permeable and highly fluorescent nanobodies as intracellular targeting agents. To ensure bright fluorescent signals at low concentrations we used the concept of intramolecular photostabilization by ligating a fluorophore along with the photostabilizer trolox to the nanobody using expressed protein ligation (EPL). Furthermore, these semi‐synthetic nanobodies are equipped with a cleavable cell‐penetrating peptide for efficient cellular entry, which enables super‐resolution imaging of GFP and mCherry, as well as two endogenous targets, nuclear lamins and the DNA replication and repair protein PCNA. We monitored cell division and DNA replication via confocal and STED microscopy thus demonstrating the utility of these new intracellular tools for functional analysis.
Collapse
Affiliation(s)
- Anselm F L Schneider
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14189, Berlin, Germany
| | - Laila S Benz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14189, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
10
|
Uvizl A, Goswami R, Gandhi SD, Augsburg M, Buchholz F, Guck J, Mansfeld J, Girardo S. Efficient and gentle delivery of molecules into cells with different elasticity via Progressive Mechanoporation. LAB ON A CHIP 2021; 21:2437-2452. [PMID: 33977944 PMCID: PMC8204113 DOI: 10.1039/d0lc01224f] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/13/2021] [Indexed: 05/08/2023]
Abstract
Intracellular delivery of cargo molecules such as membrane-impermeable proteins or drugs is crucial for cell treatment in biological and medical applications. Recently, microfluidic mechanoporation techniques have enabled transfection of previously inaccessible cells. These techniques create transient pores in the cell membrane by shear-induced or constriction contact-based rapid cell deformation. However, cells deform and recover differently from a given extent of shear stress or compression and it is unclear how the underlying mechanical properties affect the delivery efficiency of molecules into cells. In this study, we identify cell elasticity as a key mechanical determinant of delivery efficiency leading to the development of "progressive mechanoporation" (PM), a novel mechanoporation method that improves delivery efficiency into cells of different elasticity. PM is based on a multistage cell deformation, through a combination of hydrodynamic forces that pre-deform cells followed by their contact-based compression inside a PDMS-based device controlled by a pressure-based microfluidic controller. PM allows processing of small sample volumes (about 20 μL) with high-throughput (>10 000 cells per s), while controlling both operating pressure and flow rate for a reliable and reproducible cell treatment. We find that uptake of molecules of different sizes is correlated with cell elasticity whereby delivery efficiency of small and big molecules is favoured in more compliant and stiffer cells, respectively. A possible explanation for this opposite trend is a different size, number and lifetime of opened pores. Our data demonstrates that PM reliably and reproducibly delivers impermeable cargo of the size of small molecule inhibitors such as 4 kDa FITC-dextran with >90% efficiency into cells of different mechanical properties without affecting their viability and proliferation rates. Importantly, also much larger cargos such as a >190 kDa Cas9 protein-sgRNA complex are efficiently delivered high-lighting the biological, biomedical and clinical applicability of our findings.
Collapse
Affiliation(s)
- Alena Uvizl
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ruchi Goswami
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany.
| | | | - Martina Augsburg
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany.
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany and The Institute of Cancer Research, London SW7 3RP, UK.
| | - Salvatore Girardo
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany.
| |
Collapse
|
11
|
Joest EF, Winter C, Wesalo JS, Deiters A, Tampé R. Light-guided intrabodies for on-demand in situ target recognition in human cells. Chem Sci 2021; 12:5787-5795. [PMID: 35342543 PMCID: PMC8872839 DOI: 10.1039/d1sc01331a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 01/18/2023] Open
Abstract
Due to their high stability and specificity in living cells, fluorescently labeled nanobodies are perfect probes for visualizing intracellular targets at an endogenous level. However, intrabodies bind unrestrainedly and hence may interfere with the target protein function. Here, we report a strategy to prevent premature binding through the development of photo-conditional intrabodies. Using genetic code expansion, we introduce photocaged amino acids within the nanobody-binding interface, which, after photo-activation, show instantaneous binding of target proteins with high spatiotemporal precision inside living cells. Due to the highly stable binding, light-guided intrabodies offer a versatile platform for downstream imaging and regulation of target proteins.
Collapse
Affiliation(s)
- Eike F Joest
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt Germany
| | - Christian Winter
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt Germany
| | - Joshua S Wesalo
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt Germany
| |
Collapse
|
12
|
Wagner TR, Rothbauer U. Nanobodies Right in the Middle: Intrabodies as Toolbox to Visualize and Modulate Antigens in the Living Cell. Biomolecules 2020; 10:biom10121701. [PMID: 33371447 PMCID: PMC7767433 DOI: 10.3390/biom10121701] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/01/2023] Open
Abstract
In biomedical research, there is an ongoing demand for new technologies to elucidate disease mechanisms and develop novel therapeutics. This requires comprehensive understanding of cellular processes and their pathophysiology based on reliable information on abundance, localization, post-translational modifications and dynamic interactions of cellular components. Traceable intracellular binding molecules provide new opportunities for real-time cellular diagnostics. Most prominently, intrabodies derived from antibody fragments of heavy-chain only antibodies of camelids (nanobodies) have emerged as highly versatile and attractive probes to study and manipulate antigens within the context of living cells. In this review, we provide an overview on the selection, delivery and usage of intrabodies to visualize and monitor cellular antigens in living cells and organisms. Additionally, we summarize recent advances in the development of intrabodies as cellular biosensors and their application to manipulate disease-related cellular processes. Finally, we highlight switchable intrabodies, which open entirely new possibilities for real-time cell-based diagnostics including live-cell imaging, target validation and generation of precisely controllable binding reagents for future therapeutic applications.
Collapse
Affiliation(s)
- Teresa R. Wagner
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
- Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
- Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany
- Correspondence: ; Tel.: +49-7121-5153-0415; Fax: +49-7121-5153-0816
| |
Collapse
|
13
|
Gettemans J, De Dobbelaer B. Transforming nanobodies into high-precision tools for protein function analysis. Am J Physiol Cell Physiol 2020; 320:C195-C215. [PMID: 33264078 DOI: 10.1152/ajpcell.00435.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Single-domain antibodies, derived from camelid heavy antibodies (nanobodies) or shark variable new antigen receptors, have attracted increasing attention in recent years due to their extremely versatile nature and the opportunities they offer for downstream modification. Discovered more than three decades ago, these 120-amino acid (∼15-kDa) antibody fragments are known to bind their target with high specificity and affinity. Key features of nanobodies that make them very attractive include their single-domain nature, small size, and affordable high-level expression in prokaryotes, and their cDNAs are routinely obtained in the process of their isolation. This facilitates and stimulates new experimental approaches. Hence, it allows researchers to formulate new answers to complex biomedical questions. Through elementary PCR-based technologies and chemical modification strategies, their primary structure can be altered almost at leisure while retaining their specificity and biological activity, transforming them into highly tailored tools that meet the increasing demands of current-day biomedical research. In this review, various aspects of camelid nanobodies are expounded, including intracellular delivery in recombinant format for manipulation of, i.e., cytoplasmic targets, their derivatization to improve nanobody orientation as a capturing device, approaches to reversibly bind their target, their potential as protein-silencing devices in cells, the development of strategies to transfer nanobodies through the blood-brain barrier and their application in CAR-T experimentation. We also discuss some of their disadvantages and conclude with future prospects.
Collapse
Affiliation(s)
- Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Brian De Dobbelaer
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Cheloha RW, Harmand TJ, Wijne C, Schwartz TU, Ploegh HL. Exploring cellular biochemistry with nanobodies. J Biol Chem 2020; 295:15307-15327. [PMID: 32868455 PMCID: PMC7650250 DOI: 10.1074/jbc.rev120.012960] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Reagents that bind tightly and specifically to biomolecules of interest remain essential in the exploration of biology and in their ultimate application to medicine. Besides ligands for receptors of known specificity, agents commonly used for this purpose are monoclonal antibodies derived from mice, rabbits, and other animals. However, such antibodies can be expensive to produce, challenging to engineer, and are not necessarily stable in the context of the cellular cytoplasm, a reducing environment. Heavy chain-only antibodies, discovered in camelids, have been truncated to yield single-domain antibody fragments (VHHs or nanobodies) that overcome many of these shortcomings. Whereas they are known as crystallization chaperones for membrane proteins or as simple alternatives to conventional antibodies, nanobodies have been applied in settings where the use of standard antibodies or their derivatives would be impractical or impossible. We review recent examples in which the unique properties of nanobodies have been combined with complementary methods, such as chemical functionalization, to provide tools with unique and useful properties.
Collapse
Affiliation(s)
- Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Charlotte Wijne
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
15
|
de Beer MA, Giepmans BNG. Nanobody-Based Probes for Subcellular Protein Identification and Visualization. Front Cell Neurosci 2020; 14:573278. [PMID: 33240044 PMCID: PMC7667270 DOI: 10.3389/fncel.2020.573278] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding how building blocks of life contribute to physiology is greatly aided by protein identification and cellular localization. The two main labeling approaches developed over the past decades are labeling with antibodies such as immunoglobulin G (IgGs) or use of genetically encoded tags such as fluorescent proteins. However, IgGs are large proteins (150 kDa), which limits penetration depth and uncertainty of target position caused by up to ∼25 nm distance of the label created by the chosen targeting approach. Additionally, IgGs cannot be easily recombinantly modulated and engineered as part of fusion proteins because they consist of multiple independent translated chains. In the last decade single domain antigen binding proteins are being explored in bioscience as a tool in revealing molecular identity and localization to overcome limitations by IgGs. These nanobodies have several potential benefits over routine applications. Because of their small size (15 kDa), nanobodies better penetrate during labeling procedures and improve resolution. Moreover, nanobodies cDNA can easily be fused with other cDNA. Multidomain proteins can thus be easily engineered consisting of domains for targeting (nanobodies) and visualization by fluorescence microscopy (fluorescent proteins) or electron microscopy (based on certain enzymes). Additional modules for e.g., purification are also easily added. These nanobody-based probes can be applied in cells for live-cell endogenous protein detection or may be purified prior to use on molecules, cells or tissues. Here, we present the current state of nanobody-based probes and their implementation in microscopy, including pitfalls and potential future opportunities.
Collapse
Affiliation(s)
- Marit A de Beer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Liu J, Fraire JC, De Smedt SC, Xiong R, Braeckmans K. Intracellular Labeling with Extrinsic Probes: Delivery Strategies and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000146. [PMID: 32351015 DOI: 10.1002/smll.202000146] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/29/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Extrinsic probes have outstanding properties for intracellular labeling to visualize dynamic processes in and of living cells, both in vitro and in vivo. Since extrinsic probes are in many cases cell-impermeable, different biochemical, and physical approaches have been used to break the cell membrane barrier for direct delivery into the cytoplasm. In this Review, these intracellular delivery strategies are discussed, briefly explaining the mechanisms and how they are used for live-cell labeling applications. Methods that are discussed include three biochemical agents that are used for this purpose-purpose-different nanocarriers, cell penetrating peptides and the pore-foraming bacterial toxin streptolysin O. Most successful intracellular label delivery methods are, however, based on physical principles to permeabilize the membrane and include electroporation, laser-induced photoporation, micro- and nanoinjection, nanoneedles or nanostraws, microfluidics, and nanomachines. The strengths and weaknesses of each strategy are discussed with a systematic comparison provided. Finally, the extrinsic probes that are reported for intracellular labeling so-far are summarized, together with the delivery strategies that are used and their performance. This combined information should provide for a useful guide for choosing the most suitable delivery method for the desired probes.
Collapse
Affiliation(s)
- Jing Liu
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ghent, B-9000, Belgium
- Joint Laboratory of Advanced Biomedical Technology (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, P. R. China
| | - Ranhua Xiong
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ghent, B-9000, Belgium
| |
Collapse
|
17
|
Recent advances in micro/nanoscale intracellular delivery. NANOTECHNOLOGY AND PRECISION ENGINEERING 2020. [DOI: 10.1016/j.npe.2019.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Galazzo L, Meier G, Timachi MH, Hutter CAJ, Seeger MA, Bordignon E. Spin-labeled nanobodies as protein conformational reporters for electron paramagnetic resonance in cellular membranes. Proc Natl Acad Sci U S A 2020; 117:2441-2448. [PMID: 31964841 PMCID: PMC7007536 DOI: 10.1073/pnas.1913737117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nanobodies are emerging tools in a variety of fields such as structural biology, cell imaging, and drug discovery. Here we pioneer the use of their spin-labeled variants as reporters of conformational dynamics of membrane proteins using DEER spectroscopy. At the example of the bacterial ABC transporter TM287/288, we show that two gadolinium-labeled nanobodies allow us to quantify, via analysis of the modulation depth of DEER traces, the fraction of transporters adopting the outward-facing state under different experimental conditions. Additionally, we quantitatively follow the interconversion from the outward- to the inward-facing state in the conformational ensemble under ATP turnover conditions. We finally show that the specificity of the nanobodies for the target protein allows the direct attainment of structural information on the wild-type TM287/288 expressed in cellular membranes without the need to purify or label the investigated membrane protein.
Collapse
Affiliation(s)
- Laura Galazzo
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Gianmarco Meier
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - M Hadi Timachi
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany;
| |
Collapse
|
19
|
Liu J, Hebbrecht T, Brans T, Parthoens E, Lippens S, Li C, De Keersmaecker H, De Vos WH, De Smedt SC, Boukherroub R, Gettemans J, Xiong R, Braeckmans K. Long-term live-cell microscopy with labeled nanobodies delivered by laser-induced photoporation. NANO RESEARCH 2020; 13:485-495. [PMID: 33154805 PMCID: PMC7116313 DOI: 10.1007/s12274-020-2633-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fluorescence microscopy is the method of choice for studying intracellular dynamics. However, its success depends on the availability of specific and stable markers. A prominent example of markers that are rapidly gaining interest are nanobodies (Nbs, ~ 15 kDa), which can be functionalized with bright and photostable organic fluorophores. Due to their relatively small size and high specificity, Nbs offer great potential for high-quality long-term subcellular imaging, but suffer from the fact that they cannot spontaneously cross the plasma membrane of live cells. We have recently discovered that laser-induced photoporation is well suited to deliver extrinsic labels to living cells without compromising their viability. Being a laser-based technology, it is readily compatible with light microscopy and the typical cell recipients used for that. Spurred by these promising initial results, we demonstrate here for the first time successful long-term imaging of specific subcellular structures with labeled nanobodies in living cells. We illustrate this using Nbs that target GFP/YFP-protein constructs accessible in the cytoplasm, actin-bundling protein Fascin, and the histone H2A/H2B heterodimers. With an efficiency of more than 80% labeled cells and minimal toxicity (~ 2%), photoporation proved to be an excellent intracellular delivery method for Nbs. Time-lapse microscopy revealed that cell division rate and migration remained unaffected, confirming excellent cell viability and functionality. We conclude that laser-induced photoporation labeled Nbs can be easily delivered into living cells, laying the foundation for further development of a broad range of Nbs with intracellular targets as a toolbox for long-term live-cell microscopy.
Collapse
Affiliation(s)
- Jing Liu
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent B-9000, Belgium
| | - Tim Hebbrecht
- Department of Biomolecular medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent B-9000, Belgium
| | - Toon Brans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent B-9000, Belgium
| | - Eef Parthoens
- VIB-UGent Center for Inflammation Research, VIB, Ghent B-9000, Belgium
- VIB Bioimaging Core Ghent, VIB, Ghent B-9000, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent B-9000, Belgium
| | - Saskia Lippens
- VIB-UGent Center for Inflammation Research, VIB, Ghent B-9000, Belgium
- VIB Bioimaging Core Ghent, VIB, Ghent B-9000, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent B-9000, Belgium
| | - Chengnan Li
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, Lille F-59000, France
| | - Herlinde De Keersmaecker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent B-9000, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ghent B-9000, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2020 Antwerp, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent B-9000, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ghent B-9000, Belgium
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, Lille F-59000, France
| | - Jan Gettemans
- Department of Biomolecular medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent B-9000, Belgium
| | - Ranhua Xiong
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent B-9000, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent B-9000, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ghent B-9000, Belgium
| |
Collapse
|
20
|
Morgan E, Doh J, Beatty K, Reich N. VIPER nano: Improved Live Cell Intracellular Protein Tracking. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36383-36390. [PMID: 31545582 PMCID: PMC7351371 DOI: 10.1021/acsami.9b12679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tracking intracellular proteins in live cells has many challenges. The most widely used method, fluorescent protein fusions, can track proteins in their native cellular environment and has led to significant discoveries in cell biology. Fusion proteins add steric bulk to the target protein and can negatively affect native protein function. The use of exogenous probes such as antibodies or protein labels is problematic because these cannot cross the plasma membrane on their own and thus cannot label intracellular targets in cells. We developed a labeling platform, VIPERnano, for live cell imaging of intracellular proteins using a peptide fusion tag (CoilE) to the protein of interest and delivery of a fluorescently labeled probe peptide (CoilR). CoilR and CoilE form an α-helical heterodimer with the protein of interest, rendering a labeled protein. Delivery of CoilR into the cell uses hollow gold nanoshells (HGNs) as the primary delivery vehicle. The technology relies on the conjugation and light-activated release of the CoilR peptide on the surface of the HGNs. We demonstrate light-activated VIPERnano delivery and labeling with two intracellular proteins, localized either in the mitochondria or the nucleus. This technology has the ability to study intracellular protein dynamics and spatial tracking while lessening the steric bulk of tags associated with the protein of interest.
Collapse
Affiliation(s)
- Erin Morgan
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93117, United States
| | - Julia Doh
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Kimberly Beatty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, United States
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Norbert Reich
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93117, United States
| |
Collapse
|
21
|
Cheloha RW, Li Z, Bousbaine D, Woodham AW, Perrin P, Volarić J, Ploegh HL. Internalization of Influenza Virus and Cell Surface Proteins Monitored by Site-Specific Conjugation of Protease-Sensitive Probes. ACS Chem Biol 2019; 14:1836-1844. [PMID: 31348637 DOI: 10.1021/acschembio.9b00493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Commonly used methods to monitor internalization of cell surface structures involve application of fluorescently or otherwise labeled antibodies against the target of interest. Genetic modification of the protein of interest, for example through creation of fusions with fluorescent or enzymatically active protein domains, is another approach to follow trafficking behavior. The former approach requires indirect methods, such as multiple rounds of cell staining, to distinguish between a target that remains surface-disposed and an internalized and/or recycled species. The latter approach necessitates the creation of fusions whose behavior may not accurately reflect that of their unmodified counterparts. Here, we report a method for the characterization of protein internalization in real time through sortase-mediated, site-specific labeling of single-domain antibodies or viral proteins with a newly developed, cathepsin-sensitive quenched-fluorophore probe. Quenched probes of this type have been used to measure enzyme activity in complex environments and for different cell types, but not as a sensor of protein movement into living cells. This approach allows a quantitative assessment of the movement of proteins into protease-containing endosomes in real time in living cells. We demonstrate considerable variation in the rate of endosomal delivery for different cell surface receptors. We were also able to characterize the kinetics of influenza virus delivery to cathepsin-positive compartments, showing highly coordinated arrival in endosomal compartments. This approach should be useful for identifying proteins expressed on cells of interest for targeted endosomal delivery of payloads, such as antibody-drug conjugates or antigens that require processing.
Collapse
Affiliation(s)
- Ross W. Cheloha
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Zeyang Li
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
- Massachusetts Institute of Technology, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Djenet Bousbaine
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
- Massachusetts Institute of Technology, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Andrew W. Woodham
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Priscillia Perrin
- Massachusetts Institute of Technology, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Jana Volarić
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Hidde L. Ploegh
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| |
Collapse
|
22
|
Baldering TN, Dietz MS, Gatterdam K, Karathanasis C, Wieneke R, Tampé R, Heilemann M. Synthetic and genetic dimers as quantification ruler for single-molecule counting with PALM. Mol Biol Cell 2019; 30:1369-1376. [PMID: 30969885 PMCID: PMC6724688 DOI: 10.1091/mbc.e18-10-0661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
How membrane proteins oligomerize determines their function. Superresolution microscopy can report on protein clustering and extract quantitative molecular information. Here, we evaluate the blinking kinetics of four photoactivatable fluorescent proteins for quantitative single-molecule microscopy. We identified mEos3.2 and mMaple3 to be suitable for molecular quantification through blinking histogram analysis. We designed synthetic and genetic dimers of mEos3.2 as well as fusion proteins of monomeric and dimeric membrane proteins as reference structures, and we demonstrate their versatile use for quantitative superresolution imaging in vitro and in situ. We further found that the blinking behavior of mEos3.2 and mMaple3 is modified by a reducing agent, offering the possibility to adjust blinking parameters according to experimental needs.
Collapse
Affiliation(s)
- Tim N Baldering
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Marina S Dietz
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Karl Gatterdam
- Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Christos Karathanasis
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Ralph Wieneke
- Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Mike Heilemann
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|