1
|
Manjarres AM, Albers A, Fernández G. Photoregulated Supramolecular Polymerization through Halogen Bonding. Angew Chem Int Ed Engl 2024:e202419720. [PMID: 39485369 DOI: 10.1002/anie.202419720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/03/2024]
Abstract
Supramolecular polymers are able to change their structure, morphology and function in response to external stimuli. However, controlling the independence of stimuli-responses in these systems is challenging. Herein, we exploit halogen bonding (XB) as a reversible network element to regulate the photoresponsive and adaptive behavior of supramolecular polymers. To this end, we have designed a two-component system comprising an amphiphilic XB acceptor with the ability to self-assemble in aqueous media (OPE-Py) and a molecule with a dual photoresponsive and XB donor function [(E)-Azo-I]. OPE-Py self-assembles in aqueous media into supramolecular polymers, which transform into nanoparticle assemblies upon co-assembly with (E)-Azo-I. Interestingly, a third type of assembly (2D sheets) is obtained if OPE-Py is treated with (E)-Azo-I and exposed to photoirradiation. At ambient conditions, both nanoparticles and 2D sheets remain invariant over time. However, heating dissociates the XB interactions present in both assemblies, resulting in their transformation to the original fiber-like morphology of OPE-Py. Thus, breaking the communication between self-assembly and the stimuli-responses upon heating restores the original state of the system, drawing parallels to feedback loops in programming language. This work broadens the still limited scope of XB in solution assemblies and paves the way for multifunctional adaptive supramolecular systems.
Collapse
Affiliation(s)
| | - Antonia Albers
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Gustavo Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
2
|
Dünnebacke T, Niemeyer N, Baumert S, Hochstädt S, Borsdorf L, Hansen MR, Neugebauer J, Fernández G. Molecular and supramolecular adaptation by coupled stimuli. Nat Commun 2024; 15:5695. [PMID: 38972878 PMCID: PMC11228013 DOI: 10.1038/s41467-024-50029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/26/2024] [Indexed: 07/09/2024] Open
Abstract
Adaptation transcends scale in both natural and artificial systems, but delineating the causative factors of this phenomenon requires urgent clarification. Herein, we unravel the molecular requirements for adaptation and establish a link to rationalize adaptive behavior on a self-assembled level. These concepts are established by analyzing a model compound exhibiting both light- and pH-responsive units, which enable the combined or independent application of different stimuli. On a molecular level, adaptation arises from coupled stimuli, as the final outcome of the system depends on their sequence of application. However, in a self-assembled state, a single stimulus suffices to induce adaptation as a result of collective molecular behavior and the reversibility of non-covalent interactions. Our findings go beyond state-of-the-art (multi)stimuli-responsive systems and allow us to draw up design guidelines for adaptive behavior both at the molecular and supramolecular levels, which are fundamental criteria for the realization of intelligent matter.
Collapse
Affiliation(s)
- Torsten Dünnebacke
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Niklas Niemeyer
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
- Universität Münster, Center for Multiscale Theory and Computation, Corrensstraße 36, 48149, Münster, Germany
| | - Sebastian Baumert
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Sebastian Hochstädt
- Universität Münster, Institut für Physikalische Chemie, Corrensstraße 28/30, 48149, Münster, Germany
| | - Lorenz Borsdorf
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Michael Ryan Hansen
- Universität Münster, Institut für Physikalische Chemie, Corrensstraße 28/30, 48149, Münster, Germany.
| | - Johannes Neugebauer
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany.
- Universität Münster, Center for Multiscale Theory and Computation, Corrensstraße 36, 48149, Münster, Germany.
| | - Gustavo Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany.
| |
Collapse
|
3
|
Manha Veedu R, Niemeyer N, Bäumer N, Kartha Kalathil K, Neugebauer J, Fernández G. Sterically Allowed H-type Supramolecular Polymerizations. Angew Chem Int Ed Engl 2023; 62:e202314211. [PMID: 37797248 DOI: 10.1002/anie.202314211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
The functionalization of π-conjugated scaffolds with sterically demanding substituents is a widely used tactic to suppress cofacial (H-type) stacking interactions, which may even inhibit self-assembly. Contrary to expectations, we demonstrate herein that increasing steric effects can result in an enhanced thermodynamic stability of H-type supramolecular polymers. In our approach, we have investigated two boron dipyrromethene (BODIPY) dyes with bulky phenyl (2) and mesityl (3) meso-substituents and compared their self-assembly in nonpolar media with that of a parent meso-methyl BODIPY 1 lacking bulky groups. While the enhanced steric demand induces pathway complexity, the superior thermodynamic stability of the H-type pathways can be rationalized in terms of additional enthalpic gain arising from intermolecular C-H⋅⋅⋅F-B interactions of the orthogonally arranged aromatic substituents, which overrule their inherent steric demand. Our findings underline the importance of balancing competing non-covalent interactions in self-assembly.
Collapse
Affiliation(s)
- Rasitha Manha Veedu
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Niklas Niemeyer
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
- Universität Münster, Center for Multiscale Theory and Computation, Corrensstraße 36, 48149, Münster, Germany
| | - Nils Bäumer
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Krishnan Kartha Kalathil
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills, Kottayam, Kerala-686560, India
| | - Johannes Neugebauer
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
- Universität Münster, Center for Multiscale Theory and Computation, Corrensstraße 36, 48149, Münster, Germany
| | - Gustavo Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
4
|
Wei W, Wang J, Kang X, Li H, He Q, Chang G, Bu W. Synthesis, supramolecular aggregation, and NIR-II phosphorescence of isocyanorhodium(i) zwitterions. Chem Sci 2023; 14:11490-11498. [PMID: 37886099 PMCID: PMC10599467 DOI: 10.1039/d3sc03508e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Development of new second near-infrared (NIR-II, 1000-1700 nm) luminophores is highly desirable, and d8 square-planar metal complexes with NIR-II phosphorescence have been rarely reported. Herein, we explore an asymmetric coordination paradigm to achieve the first creation of NIR-II phosphorescent isocyanorhodium(i) zwitterions. They show a strong tendency for aggregation in solution, arising from close Rh(i)⋯Rh(i) contacts that are further intensified by π-π stacking interactions and the hydrophilic-hydrophobic effect. Based on such supramolecular aggregation, zwitterions 2 and 5 are found to yield NIR-II phosphorescence emissions centered at 1005 and 1120 (1210, shoulder) nm in methanol-water mixed solvents, respectively. These two bands show red shifts to 1070 and 1130 (1230, shoulder) nm in the corresponding polymer nanoparticles in water. The resulting polymer nanoparticles can brighten in vivo tumor issues in the NIR-II region with a long-circulating time. In view of the synthetic diversity established by the asymmetric coordination paradigm, this work provides an extraordinary opportunity to explore NIR-II luminophores.
Collapse
Affiliation(s)
- Wenxuan Wei
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Jun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China Hengyang 421001 China
| | - Xiaomei Kang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Haoquan Li
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Qun He
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Guanjun Chang
- State Key Laboratory of Environment-Friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology Mianyang 621010 China
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
5
|
New Self-Healing Metallosupramolecular Copolymers with a Complex of Cobalt Acrylate and 4′-Phenyl-2,2′:6′,2″-terpyridine. Polymers (Basel) 2023; 15:polym15061472. [PMID: 36987252 PMCID: PMC10053782 DOI: 10.3390/polym15061472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Currently, the chemistry of self-healing polymers is aimed not only at obtaining materials with high self-healing efficiency, but also at improving their mechanical performance. This paper reports on a successful attempt to obtain self-healing copolymers films of acrylic acid, acrylamide and a new metal-containing complex of cobalt acrylate with a 4′-phenyl-2,2′:6′,2″-terpyridine ligand. Samples of the formed copolymer films were characterized by ATR/FT-IR and UV-vis spectroscopy, elemental analysis, DSC and TGA, SAXS, WAXS and XRD studies. The incorporation of the metal-containing complex directly into the polymer chain results in an excellent tensile strength (122 MPa) and modulus of elasticity (4.3 GPa) of the obtained films. The resulting copolymers demonstrated self-healing properties both at acidic pH (assisted by HCl healing) with effective preservation of mechanical properties, and autonomously in a humid atmosphere at room temperature without the use of initiators. At the same time, with a decrease in the content of acrylamide, a decrease in the reducing properties was observed, possibly due to an insufficient amount of amide groups to form hydrogen bonds through the interface with terminal carboxyl groups, as well as a decrease in the stability of complexes in samples with a high content of acrylic acid.
Collapse
|
6
|
Xu F, Feringa BL. Photoresponsive Supramolecular Polymers: From Light-Controlled Small Molecules to Smart Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204413. [PMID: 36239270 DOI: 10.1002/adma.202204413] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Photoresponsive supramolecular polymers are well-organized assemblies based on highly oriented and reversible noncovalent interactions containing photosensitive molecules as (co-)monomers. They have attracted increasing interest in smart materials and dynamic systems with precisely controllable functions, such as light-driven soft actuators, photoresponsive fluorescent anticounterfeiting and light-triggered electronic devices. The present review discusses light-activated molecules used in photoresponsive supramolecular polymers with their main photo-induced changes, e.g., geometry, dipole moment, and chirality. Based on these distinct changes, supramolecular polymers formed by light-activated molecules exhibit photoresponsive disassembly and reassembly. As a consequence, photo-induced supramolecular polymerization, "depolymerization," and regulation of the lengths and topologies are observed. Moreover, the light-controlled functions of supramolecular polymers, such as actuation, emission, and chirality transfer along length scales, are highlighted. Furthermore, a perspective on challenges and future opportunities is presented. Besides the challenge of moving from harmful UV light to visible/near IR light avoiding fatigue, and enabling biomedical applications, future opportunities include light-controlled supramolecular actuators with helical motion, light-modulated information transmission, optically recyclable materials, and multi-stimuli-responsive supramolecular systems.
Collapse
Affiliation(s)
- Fan Xu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
7
|
Fabrication of Multilayered Two-Dimensional Micelles and Fibers by Controlled Self-Assembly of Rod-Coil Block Copolymers. Polymers (Basel) 2022; 14:polym14194125. [PMID: 36236073 PMCID: PMC9571386 DOI: 10.3390/polym14194125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/09/2022] Open
Abstract
Fabricating hierarchical nanomaterials by self-assembly of rod-coil block copolymers attracts great interest. However, the key factors that affect the formation of the hierarchical nanomaterials have not been thoroughly researched. Herein, we have synthesized two diblock copolymers composed of poly(3-hexylthiophene) (P3HT) and polyethylene glycol (PEG). Through a heating, cooling, and aging process, a series of multilayered hierarchical micelles and fibers were prepared in alcoholic solutions. The transition from fibers to hierarchical micelles are strictly influenced by the strength of the π-π stacking interaction, the PEG chain length, and solvent. In isopropanol, the P3HT22-b-PEG43 could self-assemble into hierarchical micelles composed of several two-dimensional (2D) laminar layers, driven by the π-π stacking interaction and van der Waals force. The P3HT22-b-PEG43 could not self-assemble into well-defined nanostructures in methanol and ethanol, but could self-assemble into fibers in isobutanol. However, the P3HT22-b-PEG113 with a longer corona block only self-assembled into fibers in four alcoholic solutions, due to the increase in dissolving capacity and steric hindrance. The sizes and the size distributions of the nanostructures both increased with the increase in polymer concentration and the decrease in solvent polarity. This study shows a method to fabricate the hierarchical micelles.
Collapse
|
8
|
Matern J, Maisuls I, Strassert CA, Fernández G. Luminescence and Length Control in Nonchelated d 8 -Metallosupramolecular Polymers through Metal-Metal Interactions. Angew Chem Int Ed Engl 2022; 61:e202208436. [PMID: 35749048 PMCID: PMC9545304 DOI: 10.1002/anie.202208436] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/15/2022]
Abstract
Supramolecular polymers (SPs) of d8 transition metal complexes have received considerable attention by virtue of their rich photophysical properties arising from metal-metal interactions. However, thus far, the molecular design is restricted to complexes with chelating ligands due to their advantageous preorganization and strong ligand fields. Herein, we demonstrate unique pathway-controllable metal-metal-interactions and remarkable 3 MMLCT luminescence in SPs of a non-chelated PtII complex. Under kinetic control, self-complementary bisamide H-bonding motifs induce a rapid self-assembly into non-emissive H-type aggregates (1A). However, under thermodynamic conditions, a more efficient ligand coplanarization leads to superiorly stabilized SP 1B with extended Pt⋅⋅⋅Pt interactions and remarkably long 3 MMLCT luminescence (τ77 K =0.26 ms). The metal-metal interactions could be subsequently exploited to control the length of the emissive SPs using the seeded-growth approach.
Collapse
Affiliation(s)
- Jonas Matern
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Iván Maisuls
- CiMICSoNInstitut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 28/3048149MünsterGermany
- CeNTechWestfälische Wilhelms-Universität MünsterHeisenbergstraße 1148149MünsterGermany
| | - Cristian A. Strassert
- CiMICSoNInstitut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 28/3048149MünsterGermany
- CeNTechWestfälische Wilhelms-Universität MünsterHeisenbergstraße 1148149MünsterGermany
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
9
|
Matern J, Maisuls I, Strassert CA, Fernandez G. Luminescence and Length Control in Nonchelated d8‐Metallosupramolecular Polymers through Metal‐Metal Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jonas Matern
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Ivan Maisuls
- WWU Münster: Westfalische Wilhelms-Universitat Munster CeNTech GERMANY
| | | | - Gustavo Fernandez
- WWU Münster Organisch-Chemisches Institut Correnstraße, 4ß 48149 Münster GERMANY
| |
Collapse
|
10
|
Valera JS, Arima H, Naranjo C, Saito T, Suda N, Gómez R, Yagai S, Sánchez L. Biasing the Hierarchy Motifs of Nanotoroids: from 1D Nanotubes to 2D Porous Networks. Angew Chem Int Ed Engl 2022; 61:e202114290. [PMID: 34822210 PMCID: PMC9299728 DOI: 10.1002/anie.202114290] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 11/12/2022]
Abstract
Hierarchical organization of self-assembled structures into superstructures is omnipresent in Nature but has been rarely achieved in synthetic molecular assembly due to the absence of clear structural rules. We herein report on the self-assembly of scissor-shaped azobenzene dyads which form discrete nanotoroids that further organize into 2D porous networks. The steric demand of the peripheral aliphatic units diminishes the trend of the azobenzene dyad to constitute stackable nanotoroids in solution, thus affording isolated (unstackable) nanotoroids upon cooling. Upon drying, these nanotoroids organize at graphite surface to form well-defined 2D porous networks. The photoirradiation with UV and visible light enabled reversible dissociation and reconstruction of nanotoroids through the efficient trans↔cis isomerization of azobenzene moieties in solution.
Collapse
Affiliation(s)
- Jorge S. Valera
- Dpto. Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de MadridCiudad Universitaria, s/n28040MadridSpain
| | - Hironari Arima
- Division of Advanced Science and EngineeringGraduate School of Science and EngineeringChiba University1–33, Yayoi-cho, Inage-kuChiba263-8522Japan
| | - Cristina Naranjo
- Dpto. Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de MadridCiudad Universitaria, s/n28040MadridSpain
| | - Takuho Saito
- Division of Advanced Science and EngineeringGraduate School of Science and EngineeringChiba University1–33, Yayoi-cho, Inage-kuChiba263-8522Japan
| | - Natsuki Suda
- Division of Advanced Science and EngineeringGraduate School of Science and EngineeringChiba University1–33, Yayoi-cho, Inage-kuChiba263-8522Japan
| | - Rafael Gómez
- Dpto. Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de MadridCiudad Universitaria, s/n28040MadridSpain
| | - Shiki Yagai
- Department of Applied Chemistry and BiotechnologyGraduate School of EngineeringChiba University1–33, Yayoi-cho, Inage-kuChiba263-8522Japan
- Institute for Global Prominent Research (IGPR)Chiba University1–33, Yayoi-cho, Inage-kuChiba263-8522Japan
| | - Luis Sánchez
- Dpto. Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de MadridCiudad Universitaria, s/n28040MadridSpain
| |
Collapse
|
11
|
Valera JS, Arima H, Naranjo C, Saito T, Suda N, Gómez R, Yagai S, Sánchez L. Biasing the Hierarchy Motifs of Nanotoroids: from 1D Nanotubes to 2D Porous Networks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jorge S. Valera
- Dpto. Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid Ciudad Universitaria, s/n 28040 Madrid Spain
| | - Hironari Arima
- Division of Advanced Science and Engineering Graduate School of Science and Engineering Chiba University 1–33, Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Cristina Naranjo
- Dpto. Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid Ciudad Universitaria, s/n 28040 Madrid Spain
| | - Takuho Saito
- Division of Advanced Science and Engineering Graduate School of Science and Engineering Chiba University 1–33, Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Natsuki Suda
- Division of Advanced Science and Engineering Graduate School of Science and Engineering Chiba University 1–33, Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Rafael Gómez
- Dpto. Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid Ciudad Universitaria, s/n 28040 Madrid Spain
| | - Shiki Yagai
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University 1–33, Yayoi-cho, Inage-ku Chiba 263-8522 Japan
- Institute for Global Prominent Research (IGPR) Chiba University 1–33, Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Luis Sánchez
- Dpto. Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid Ciudad Universitaria, s/n 28040 Madrid Spain
| |
Collapse
|
12
|
Li C, Ok M, Choi H, Jung JH. Metallosupramolecular polymers formed with silver(i) ions in aqueous solution. NEW J CHEM 2022. [DOI: 10.1039/d1nj05146f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular polymers of a terpyridine-based ligand (L) at three different concentrations of AgNO3 (0, 0.5, and 1.0 equiv.).
Collapse
Affiliation(s)
- Chenxing Li
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Mirae Ok
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Heekyoung Choi
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
13
|
AlShetwi YA, Bessif B, Sommer M, Reiter G. Illumination of Conjugated Polymers Reduces the Nucleation Probability and Slows Down the Crystal Growth Rate. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaser A. AlShetwi
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany
- National Centre for Nanotechnology and Semiconductors, Materials Science Research Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Brahim Bessif
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany
| | - Michael Sommer
- Institute for Chemistry, Chemnitz University of Technology, Str. der Nationen 62, Chemnitz 09111, Germany
| | - Günter Reiter
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, Stefan-Meier-Str. 21, Freiburg 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| |
Collapse
|
14
|
Sun J, Xiao L, Li B, Zhao K, Wang Z, Zhou Y, Ma C, Li J, Zhang H, Herrmann A, Liu K. Genetically Engineered Polypeptide Adhesive Coacervates for Surgical Applications. Angew Chem Int Ed Engl 2021; 60:23687-23694. [PMID: 33886148 PMCID: PMC8596419 DOI: 10.1002/anie.202100064] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/01/2021] [Indexed: 11/20/2022]
Abstract
Adhesive hydrogels have been developed for wound healing applications. However, their adhesive performance is impaired dramatically due to their high swelling on wet tissues. To tackle this challenge, we fabricated a new type of non-swelling protein adhesive for underwater and in vivo applications. In this soft material, the electrostatic complexation between supercharged polypeptides with oppositely charged surfactants containing 3,4-dihydroxylphenylalanine or azobenzene moieties plays an important role for the formation of ultra-strong adhesive coacervates. Remarkably, the adhesion capability is superior to commercial cyanoacrylate when tested in ambient conditions. Moreover, the adhesion is stronger than other reported protein-based adhesives in underwater environment. The ex vivo and in vivo experiments demonstrate the persistent adhesive performance and outstanding behaviors for wound sealing and healing.
Collapse
Affiliation(s)
- Jing Sun
- Department of ChemistryTsinghua UniversityBeijing100084China
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Lingling Xiao
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Kelu Zhao
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Zili Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Yu Zhou
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Chao Ma
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Hongjie Zhang
- Department of ChemistryTsinghua UniversityBeijing100084China
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Andreas Herrmann
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Kai Liu
- Department of ChemistryTsinghua UniversityBeijing100084China
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| |
Collapse
|
15
|
Genetically Engineered Polypeptide Adhesive Coacervates for Surgical Applications. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Bäumer N, Matern J, Fernández G. Recent progress and future challenges in the supramolecular polymerization of metal-containing monomers. Chem Sci 2021; 12:12248-12265. [PMID: 34603655 PMCID: PMC8480320 DOI: 10.1039/d1sc03388c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of discrete molecular entities into functional nanomaterials has become a major research area in the past decades. The library of investigated compounds has diversified significantly, while the field as a whole has matured. The incorporation of metal ions in the molecular design of the (supra-)molecular building blocks greatly expands the potential applications, while also offering a promising approach to control molecular recognition and attractive and/or repulsive intermolecular binding events. Hence, supramolecular polymerization of metal-containing monomers has emerged as a major research focus in the field. In this perspective article, we highlight recent significant advances in supramolecular polymerization of metal-containing monomers and discuss their implications for future research. Additionally, we also outline some major challenges that metallosupramolecular chemists (will) have to face to produce metallosupramolecular polymers (MSPs) with advanced applications and functionalities.
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Jonas Matern
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
17
|
Basuyaux G, Amar A, Troufflard C, Boucekkine A, Métivier R, Raynal M, Moussa J, Bouteiller L, Amouri H. Cyclometallated Pt(II) Complexes Containing a Functionalized Bis‐Urea Alkynyl Ligand: Probing Aggregation Mediated by Hydrogen Bonds
versus
Pt⋅⋅⋅Pt and π−π Interactions. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gaëtan Basuyaux
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Anissa Amar
- Laboratoire de Chimie et de Physique Quantiques Faculté des Sciences, U.M.M.T.O 15000 Tizi-Ouzou Algeria
| | - Claire Troufflard
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Abdou Boucekkine
- Univ. Rennes ISCR UMR 6226 CNRS Campus de Beaulieu 35042 Rennes Cedex France
| | - Rémi Métivier
- PPSM, ENS Paris-Saclay, CNRS Université Paris-Saclay 91190 Gif-sur-Yvette France
| | - Matthieu Raynal
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Jamal Moussa
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Laurent Bouteiller
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Hani Amouri
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| |
Collapse
|
18
|
Sarkar S, Sarkar A, Som A, Agasti SS, George SJ. Stereoselective Primary and Secondary Nucleation Events in Multicomponent Seeded Supramolecular Polymerization. J Am Chem Soc 2021; 143:11777-11787. [PMID: 34308651 DOI: 10.1021/jacs.1c05642] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bioinspired, kinetically controlled seeded growth has been recently shown to provide length, dispersity, and sequence control on the primary structure of dynamic supramolecular polymers. However, command over the molecular organization at all hierarchical levels for the modulation of higher order structures of supramolecular polymers remains a formidable task. In this context, a surface-catalyzed secondary nucleation process, which plays an important role in the autocatalytic generation of amyloid fibrils and also during the chiral crystallization of small monomers, offers exciting possibilities for topology control in synthetic macromolecular systems by introducing secondary growth pathways compared to the usual primary nucleation-elongation process. However, mechanistic insights into the molecular determinants and driving forces for the secondary nucleation event in synthetic systems are not yet realized. Herein, we attempt to fill this dearth by showing an unprecedented molecular chirality control on the primary and secondary nucleation events in seed-induced supramolecular polymerization. Comprehensive kinetic experiments using in situ spectroscopic probing of the temporal changes of the monomer organization during the growth process provide a unique study to characterize the primary and secondary nucleation events in a supramolecular polymerization process. Kinetic analyses along with various microscopic studies further reveal the remarkable effect of stereoselective nucleation and seeding events on the (micro)structural aspects of the resulting multicomponent supramolecular polymers.
Collapse
Affiliation(s)
- Souvik Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Aritra Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Arka Som
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Sarit S Agasti
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
19
|
Politi AT, Politis A, Seton L. Molecular Structure Effects on the Aggregation Motif of Porphyrins: Computational Insights. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Antiope T. Politi
- School of Pharmacy and Biomolecular Sciences Liverpool John Moores University James Parsons Building, Byrom Street Liverpool L3 3AF Liverpool L3 3AF UK
| | - Achilleas Politis
- School of Pharmacy and Biomolecular Sciences Liverpool John Moores University James Parsons Building, Byrom Street Liverpool L3 3AF Liverpool L3 3AF UK
| | - Linda Seton
- School of Pharmacy and Biomolecular Sciences Liverpool John Moores University James Parsons Building, Byrom Street Liverpool L3 3AF Liverpool L3 3AF UK
| |
Collapse
|
20
|
Matern J, Bäumer N, Fernández G. Unraveling Halogen Effects in Supramolecular Polymerization. J Am Chem Soc 2021; 143:7164-7175. [PMID: 33913728 DOI: 10.1021/jacs.1c02384] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Halogens play a crucial role in numerous natural processes and synthetic materials due to their unique physicochemical properties and the diverse interactions they can engage in. In the field of supramolecular polymerization, however, halogen effects remain poorly understood, and investigations have been restricted to halogen bonding or the inclusion of polyfluorinated side groups. Recent contributions from our group have revealed that chlorine ligands greatly influence molecular packing and pathway complexity phenomena of various metal complexes. These results prompted us to explore the role of the halogen nature on supramolecular polymerization, a phenomenon that has remained unexplored to date. To address this issue, we have designed a series of archetypal bispyridyldihalogen PtII complexes bearing chlorine (1), bromine (2), or iodine (3) and systematically compared their supramolecular polymerization in nonpolar media using various experimental methods and theory. Our studies reveal a remarkably different supramolecular polymerization for the three compounds, which can undergo two competing pathways with either slipped (kinetic) or parallel (thermodynamic) molecular packing. The halogen exerts an inverse effect on the energetic levels of the two self-assembled states, resulting in a single thermodynamic pathway for 3, a transient kinetic species for 2, and a hidden thermodynamic state for 1. This seesaw-like bias of the energy landscape can be traced back to the involvement of the halogens in weak N-H···X hydrogen-bonding interactions in the kinetic pathway, whereas in the thermodynamic pathway the halogens are not engaged in the stabilizing interaction motif but rather amplify solvophobic effects.
Collapse
Affiliation(s)
- Jonas Matern
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Nils Bäumer
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
21
|
Fukushima T, Tamaki K, Isobe A, Hirose T, Shimizu N, Takagi H, Haruki R, Adachi SI, Hollamby MJ, Yagai S. Diarylethene-Powered Light-Induced Folding of Supramolecular Polymers. J Am Chem Soc 2021; 143:5845-5854. [PMID: 33755463 DOI: 10.1021/jacs.1c00592] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Helical folding of randomly coiled linear polymers is an essential organization process not only for biological polypeptides but also for synthetic functional polymers. Realization of this dynamic process in supramolecular polymers (SPs) is, however, a formidable challenge because of their inherent lability of main chains upon changing an external environment that can drive the folding process (e.g., solvent, concentration, and temperature). We herein report a photoinduced reversible folding/unfolding of rosette-based SPs driven by photoisomerization of a diarylethene (DAE). Temperature-controlled supramolecular polymerization of a barbiturate-functionalized DAE (open isomer) in nonpolar solvent results in the formation of intrinsically curved, but randomly coiled, SPs due to the presence of defects. Irradiation of the randomly coiled SPs with UV light causes efficient ring-closure reaction of the DAE moieties, which induces helical folding of the randomly coiled structures into helicoidal ones, as evidenced by atomic force microscopy and small-angle X-ray scattering. The helical folding is driven by internal structure ordering of the SP fiber that repairs the defects and interloop interaction occurring only for the resulting helicoidal structure. In contrast, direct supramolecular polymerization of the ring-closed DAE monomers by temperature control affords linearly extended ribbon-like SPs lacking intrinsic curvature that are thermodynamically less stable compared to the helicoidal SPs. The finding represents an important concept applicable to other SP systems; that is, postpolymerization (photo)reaction of preorganized kinetic structures can lead to more thermodynamically stable structures that are inaccessible directly through temperature-controlled protocols.
Collapse
Affiliation(s)
- Takuya Fukushima
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Kenta Tamaki
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Atsushi Isobe
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Hideaki Takagi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Rie Haruki
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Shin-Ichi Adachi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Martin J Hollamby
- School of Chemical and Physical Sciences, Keele University, Keele, U.K
| | - Shiki Yagai
- Institute for Global Prominent Research (IGPR), Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.,Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
22
|
Bäumer N, Kartha KK, Buss S, Maisuls I, Palakkal JP, Strassert CA, Fernández G. Tuning energy landscapes and metal-metal interactions in supramolecular polymers regulated by coordination geometry. Chem Sci 2021; 12:5236-5245. [PMID: 34168776 PMCID: PMC8179630 DOI: 10.1039/d1sc00416f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Herein, we exploit coordination geometry as a new tool to regulate the non-covalent interactions, photophysical properties and energy landscape of supramolecular polymers. To this end, we have designed two self-assembled Pt(ii) complexes 1 and 2 that feature an identical aromatic surface, but differ in the coordination and molecular geometry (linear vs. V-shaped) as a result of judicious ligand choice (monodentate pyridine vs. bidentate bipyridine). Even though both complexes form cooperative supramolecular polymers in methylcyclohexane, their supramolecular and photophysical behaviour differ significantly: while the high preorganization of the bipyridine-based complex 1 enables an H-type 1D stacking with short Pt⋯Pt contacts via a two-step consecutive process, the existence of increased steric effects for the pyridyl-based derivative 2 hinders the formation of metal–metal contacts and induces a single aggregation process into large bundles of fibers. Ultimately, this fine control of Pt⋯Pt distances leads to tuneable luminescence—red for 1vs. blue for 2, which highlights the relevance of coordination geometry for the development of functional supramolecular materials. In this article, we exploit coordination geometry as a new tool to control the energy landscape and photophysical properties (red vs. blue luminescence) of supramolecular polymers.![]()
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Kalathil K Kartha
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Stefan Buss
- CeNTech, CiMIC, SoN, Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Germany
| | - Iván Maisuls
- CeNTech, CiMIC, SoN, Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Germany
| | - Jasnamol P Palakkal
- Technische Universität Darmstadt, Department of Materials and Earth Sciences Alarich-Weiss-Straße 2 64287 Darmstadt Germany
| | - Cristian A Strassert
- CeNTech, CiMIC, SoN, Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
23
|
Sun J, Ma C, Maity S, Wang F, Zhou Y, Portale G, Göstl R, Roos WH, Zhang H, Liu K, Herrmann A. Reversibly Photo-Modulating Mechanical Stiffness and Toughness of Bioengineered Protein Fibers. Angew Chem Int Ed Engl 2021; 60:3222-3228. [PMID: 33125796 PMCID: PMC7898284 DOI: 10.1002/anie.202012848] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Light-responsive materials have been extensively studied due to the attractive possibility of manipulating their properties with high spatiotemporal control in a non-invasive fashion. This stimulated the development of a series of photo-deformable smart devices. However, it remained a challenge to reversibly modulate the stiffness and toughness of bulk materials. Here, we present bioengineered protein fibers and their optomechanical manipulation by employing electrostatic interactions between supercharged polypeptides (SUPs) and an azobenzene (Azo)-based surfactant. Photo-isomerization of the Azo moiety from the E- to Z-form reversibly triggered the modulation of tensile strength, stiffness, and toughness of the bulk protein fiber. Specifically, the photo-induced rearrangement into the Z-form of Azo possibly strengthened cation-π interactions within the fiber material, resulting in an around twofold increase in the fiber's mechanical performance. The outstanding mechanical and responsive properties open a path towards the development of SUP-Azo fibers as smart stimuli-responsive mechano-biomaterials.
Collapse
Affiliation(s)
- Jing Sun
- Department of ChemistryTsinghua UniversityBeijing100084China
- Zernike Institute for Advanced MaterialsNijenborgh 49747AGGroningenThe Netherlands
| | - Chao Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- Zernike Institute for Advanced MaterialsNijenborgh 49747AGGroningenThe Netherlands
| | - Sourav Maity
- Zernike Institute for Advanced MaterialsNijenborgh 49747AGGroningenThe Netherlands
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Yu Zhou
- Zernike Institute for Advanced MaterialsNijenborgh 49747AGGroningenThe Netherlands
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Giuseppe Portale
- Zernike Institute for Advanced MaterialsNijenborgh 49747AGGroningenThe Netherlands
| | - Robert Göstl
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Wouter H. Roos
- Zernike Institute for Advanced MaterialsNijenborgh 49747AGGroningenThe Netherlands
| | - Hongjie Zhang
- Department of ChemistryTsinghua UniversityBeijing100084China
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Kai Liu
- Department of ChemistryTsinghua UniversityBeijing100084China
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Andreas Herrmann
- Zernike Institute for Advanced MaterialsNijenborgh 49747AGGroningenThe Netherlands
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| |
Collapse
|
24
|
Homocianu M. Optical properties of solute molecules: Environmental effects, challenges, and their practical implications. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Gerth M, Berrocal JA, Bochicchio D, Pavan GM, Voets IK. Discordant Supramolecular Fibres Reversibly Depolymerised by Temperature and Light. Chemistry 2021; 27:1829-1838. [PMID: 33176038 PMCID: PMC7898537 DOI: 10.1002/chem.202004115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/09/2020] [Indexed: 11/24/2022]
Abstract
Synthetic stimuli responsive supramolecular polymers attract increasing interest for their ability to mimic the unique properties of natural assemblies. Here we focus on the well-studied benzene-1,3,5-tricarboxamide (BTA) motif, and substitute it with two (S)-3,7-dimethyloctyl groups and an azobenzene photoswitch. We demonstrate the UV (λ=365 nm) induced depolymerisation of the helical hydrogen-bonded polymers in methylcyclohexane (MCH) through circular dichroism and UV-vis spectroscopy in dilute solution (15 μm), and NMR and iPAINT super-resolution microscopy in concentrated solution (300 μm). The superstructure can be regenerated after thermal depolymerization, whilst repeated depolymerisation can be reversed without degradation by irradiating at λ=455 nm. Molecular dynamics simulations show that the most energetically favourable configuration for these polymers in MCH is a left-handed helical network of hydrogen-bonds between the BTA cores surrounded by two right-handed helices of azobenzenes. The responsiveness to two orthogonal triggers across a broad concentration range holds promise for use in, for example, photo-responsive gelation.
Collapse
Affiliation(s)
- Marieke Gerth
- Self-Organizing Soft Matter groupFaculty of Chemical Engineering and ChemistryEindhoven University of TechnologyGroene Loper 35612AEEindhovenThe Netherlands
- Laboratory of Physical ChemistryFaculty of Chemical Engineering and ChemistryEindhoven University of TechnologyGroene Loper 35612AEEindhovenThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyGroene Loper 35612AEEindhovenThe Netherlands
- Van't Hoff Laboratory for Physical and Colloid ChemistryDebye Institute for Nanomaterials ScienceUtrecht UniversityPadualaan 83584CHUtrechtThe Netherlands
| | - José Augusto Berrocal
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Davide Bochicchio
- Department of Innovative TechnologiesUniversity of Applied Sciences and Arts of Southern SwitzerlandGalleria 2, Via Cantonale 2c6928MannoSwitzerland
| | - Giovanni M. Pavan
- Department of Innovative TechnologiesUniversity of Applied Sciences and Arts of Southern SwitzerlandGalleria 2, Via Cantonale 2c6928MannoSwitzerland
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi 2410129TorinoItaly
| | - Ilja K. Voets
- Self-Organizing Soft Matter groupFaculty of Chemical Engineering and ChemistryEindhoven University of TechnologyGroene Loper 35612AEEindhovenThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyGroene Loper 35612AEEindhovenThe Netherlands
| |
Collapse
|
26
|
Sun J, Ma C, Maity S, Wang F, Zhou Y, Portale G, Göstl R, Roos WH, Zhang H, Liu K, Herrmann A. Reversibly Photo‐Modulating Mechanical Stiffness and Toughness of Bioengineered Protein Fibers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jing Sun
- Department of Chemistry Tsinghua University Beijing 100084 China
- Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Chao Ma
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Sourav Maity
- Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Yu Zhou
- Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen The Netherlands
- DWI— Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Giuseppe Portale
- Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Robert Göstl
- DWI— Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Wouter H. Roos
- Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Hongjie Zhang
- Department of Chemistry Tsinghua University Beijing 100084 China
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Kai Liu
- Department of Chemistry Tsinghua University Beijing 100084 China
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen The Netherlands
- DWI— Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| |
Collapse
|
27
|
Seo J, Joung JF, Park S, Son YJ, Noh J, Kim JM. Light-directed trapping of metastable intermediates in a self-assembly process. Nat Commun 2020; 11:6260. [PMID: 33288757 PMCID: PMC7721704 DOI: 10.1038/s41467-020-20172-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
Self-assembly is a dynamic process that often takes place through a stepwise pathway involving formation of kinetically favored metastable intermediates prior to generation of a thermodynamically preferred supramolecular framework. Although trapping intermediates in these pathways can provide significant information about both their nature and the overall self-assembly process, it is a challenging venture without altering temperature, concentrations, chemical compositions and morphologies. Herein, we report a highly efficient and potentially general method for "trapping" metastable intermediates in self-assembly processes that is based on a photopolymerization strategy. By employing a chiral perylene-diimide possessing a diacetylene containing an alkyl chain, we demonstrated that the metastable intermediates, including nanoribbons, nanocoils and nanohelices, can be effectively trapped by using UV promoted polymerization before they form thermodynamic tubular structures. The strategy developed in this study should be applicable to naturally and synthetically abundant alkyl chain containing self-assembling systems.
Collapse
Affiliation(s)
- Joonsik Seo
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Korea
| | - Joonyoung F Joung
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul, 02841, Korea
| | - Sungnam Park
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul, 02841, Korea.
| | - Young Ji Son
- Department of Chemistry, Hanyang University, Seoul, 04763, Korea
| | - Jaegeun Noh
- Department of Chemistry, Hanyang University, Seoul, 04763, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
28
|
From cyclohexanone to photosensitive polyesters: Synthetic pathway, basic characterization, and photo-/halochromic properties. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Türel T, Valiyaveettil S. Fine-Tuning the Electronic Properties of Azo Chromophore-Incorporated Perylene Bisimide Dyads. J Org Chem 2020; 85:10593-10602. [PMID: 32700536 DOI: 10.1021/acs.joc.0c01166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Perylene bisimide (PBI) and azo-compounds are fascinating molecules with interesting optical properties. Here, we combine the two chromophores to prepare nonconjugated and conjugated stable azo-PBI dyes. The detailed structural characterization, comparison of properties, and solid-state self-assembly of the compounds are discussed. The incorporation of azo groups at the bay side of PBI led to significant changes in optical properties as compared to the model PBIs (M1 and M2). All new azo-PBIs showed photoinduced isomerization, which caused disaggregation and enhancement in fluorescence. The amine-incorporated azo-PBIs (3 and 6) reduced chloroauric acid into gold nanoparticles. The current study offers a simple synthetic strategy and comparison of the properties of conjugated and nonconjugated azo-PBIs, which could be useful in photoelectronic devices.
Collapse
Affiliation(s)
- Tankut Türel
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| |
Collapse
|
30
|
Bäumer N, Kartha KK, Palakkal JP, Fernández G. Morphology control in metallosupramolecular assemblies through solvent-induced steric demand. SOFT MATTER 2020; 16:6834-6840. [PMID: 32633744 DOI: 10.1039/d0sm00537a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling the supramolecular self-assembly of π-conjugated systems into defined morphologies is a prerequisite for the preparation of functional materials. In recent years, the development of sophisticated sample preparation protocols and modulation of various experimental conditions (solvent, concentration, temperature, etc.) have enabled precise control over aggregation pathways of different types of monomer units. A common method to achieve pathway control consists in the combination of two miscible solvents in defined proportions - a "poor" and "good" solvent. However, the role of solvents of opposed polarity in the self-assembly of a given building block still remains an open question. Herein, we unravel the effect of aggregation-inducing solvent systems of opposed polarity (aqueous vs. non-polar media) on the supramolecular assembly of a new bolaamphiphilic Pt(ii) complex. A number of experimental methods show a comparable molecular packing in both media driven by a synergy of solvophobic, aromatic and weak hydrogen-bonding interactions. However, morphological analysis of the respective aggregates in aqueous and non-polar media reveals a restricted aggregate growth in aqueous media into spherical nanoparticles and a non-restricted 2D-nanosheet formation in non-polar media. These findings are attributed to a considerably more efficient solvation and, in turn, increased steric demand of the hydrophilic chains in aqueous media than in nonpolar media, which can be explained by the entrapment of water molecules in the hydrophilic aggregate shell via hydrogen bonds. Our findings reveal that the different solvation of peripheral solubilizing groups in solvents of opposed polarity is an efficient method for morphology control in self-assembly.
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany.
| | | | | | | |
Collapse
|
31
|
Matern J, Kartha KK, Sánchez L, Fernández G. Consequences of hidden kinetic pathways on supramolecular polymerization. Chem Sci 2020; 11:6780-6788. [PMID: 32874522 PMCID: PMC7450716 DOI: 10.1039/d0sc02115f] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, the development of sophisticated analytical tools, kinetic models and sample preparation methods has significantly advanced the field of supramolecular polymerization, where the competition of kinetic vs. thermodynamic processes has become commonplace for a wide range of building blocks. Typically, the kinetic pathways are identified in thermally controlled assembly experiments before they ultimately evolve to the thermodynamic minimum. However, there might be cases where the identification and thus the assessment of the influence of kinetic aggregates is not trivial, making the analysis of the self-assembly processes a hard task. Herein, we demonstrate that "hidden" kinetic pathways can have drastic consequences on supramolecular polymerization processes, to the point that they can even overrule thermodynamic implications. To this end, we analyzed in detail the supramolecular polymerization of a chiral PdII complex 1 that forms two competing aggregates (Agg I and Agg II) of which kinetic Agg II is formed through a "hidden" pathway, i.e. this pathway is not accessible by common thermal polymerization protocols. The hidden pathway exhibits two consecutive steps: first, Agg II is formed in a cooperative process, which subsequently evolves to clustered superstructures driven by rapid kinetics. At standard conditions, Agg II displays an extraordinary kinetic stability (>6 months), which could be correlated to its cooperative mechanism suppressing nucleation of thermodynamic Agg I. Furthermore, the fast kinetics of cluster formation sequester monomers from the equilibria in solution and prevents the system from relaxing into the thermodynamic minimum, thus highlighting the key implications of hidden pathways in governing supramolecular polymerization processes.
Collapse
Affiliation(s)
- Jonas Matern
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität Münster , Corrensstraße 36 , 48149 Münster , Germany .
| | - Kalathil K Kartha
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität Münster , Corrensstraße 36 , 48149 Münster , Germany .
| | - Luis Sánchez
- Departamento de Química Orgánica , Facultad de Ciencias Químicas, Universidad Complutense de Madrid , Ciudad Universitaria s/n , 28040 Madrid , Spain
| | - Gustavo Fernández
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität Münster , Corrensstraße 36 , 48149 Münster , Germany .
| |
Collapse
|
32
|
Saito T, Yagai S. Effect of Oligoethylene Chains on the Formation of Photoresponsive Nanotubes by Azobenzene Dyad. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Takuho Saito
- Division of Advanced Science and Engineering; Graduate school of Science and Engineering; Chiba University; 1-33 Yayoi-cho, Inage-ku 263-8522 Chiba Japan
| | - Shiki Yagai
- Division of Advanced Science and Engineering; Graduate school of Science and Engineering; Chiba University; 1-33 Yayoi-cho, Inage-ku 263-8522 Chiba Japan
- Institute for Global Prominent Research (IGPR); Chiba University; 1-33 Yayoi-cho, Inage-ku 263-8522 Chiba Japan
| |
Collapse
|
33
|
Ghosh G, Dey P, Ghosh S. Controlled supramolecular polymerization of π-systems. Chem Commun (Camb) 2020; 56:6757-6769. [DOI: 10.1039/d0cc02787a] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Externally-initiated controlled supramolecular polymerization of the kinetically trapped aggregated state in a chain growth mechanism can produce well-defined living supramolecular polymers and copolymers.
Collapse
Affiliation(s)
- Goutam Ghosh
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation Science
- Kolkata
- India
| | - Pradip Dey
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation Science
- Kolkata
- India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation Science
- Kolkata
- India
| |
Collapse
|
34
|
Sallee A, Ghebreyessus K. Photoresponsive Zn2+-specific metallohydrogels coassembled from imidazole containing phenylalanine and arylazopyrazole derivatives. Dalton Trans 2020; 49:10441-10451. [DOI: 10.1039/d0dt01809k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stimuli-responsive supramolecular gels and metallogels have been widely explored in the past decade, but the fabrication of metallogels with reversible photoresponsive properties remains largely unexplored.
Collapse
Affiliation(s)
- Ashanti Sallee
- Department of Chemistry and Biochemistry
- Hampton University
- Hampton
- USA
| | | |
Collapse
|
35
|
Choi H, Heo S, Lee S, Kim KY, Lim JH, Jung SH, Lee SS, Miyake H, Lee JY, Jung JH. Kinetically controlled Ag +-coordinated chiral supramolecular polymerization accompanying a helical inversion. Chem Sci 2019; 11:721-730. [PMID: 34123045 PMCID: PMC8146097 DOI: 10.1039/c9sc04958d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/11/2019] [Indexed: 11/21/2022] Open
Abstract
We report kinetically controlled chiral supramolecular polymerization based on ligand-metal complex with a 3 : 2 (L : Ag+) stoichiometry accompanying a helical inversion in water. A new family of bipyridine-based ligands (d-L1, l-L1, d-L2, and d-L3) possessing hydrazine and d- or l-alanine moieties at the alkyl chain groups has been designed and synthesized. Interestingly, upon addition of AgNO3 (0.5-1.3 equiv.) to the d-L1 solution, it generated the aggregate I composed of the d-L1AgNO3 complex (d-L1 : Ag+ = 1 : 1) as the kinetic product with a spherical structure. Then, aggregate I (nanoparticle) was transformed into the aggregate II (supramolecular polymer) based on the (d-L1)3Ag2(NO3)2 complex as the thermodynamic product with a fiber structure, which led to the helical inversion from the left-handed (M-type) to the right-handed (P-type) helicity accompanying CD amplification. In contrast, the spherical aggregate I (nanoparticle) composed of the d-L1AgNO3 complex with the left-handed (M-type) helicity formed in the presence of 2.0 equiv. of AgNO3 and was not additionally changed, which indicated that it was the thermodynamic product. The chiral supramolecular polymer based on (d-L1)3Ag2(NO3)2 was produced via a nucleation-elongation mechanism with a cooperative pathway. In thermodynamic study, the standard ΔG° and ΔH e values for the aggregates I and II were calculated using the van't Hoff plot. The enhanced ΔG° value of the aggregate II compared to that of the formation of aggregate I confirms that aggregate II was thermodynamically more stable. In the kinetic study, the influence of concentration of AgNO3 confirmed the initial formation of the aggregate I (nanoparticle), which then evolved to the aggregate II (supramolecular polymer). Thus, the concentration of the (d-L1)3Ag2(NO3)2 complex in the initial state plays a critical role in generating aggregate II (supramolecular polymer). In particular, NO3 - acts as a critical linker and accelerator in the transformation from the aggregate I to the aggregate II. This is the first example of a system for a kinetically controlled chiral supramolecular polymer that is formed via multiple steps with coordination structural change.
Collapse
Affiliation(s)
- Heekyoung Choi
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 660-701 Republic of Korea
| | - Sojeong Heo
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 660-701 Republic of Korea
| | - Seonae Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 660-701 Republic of Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 660-701 Republic of Korea
| | - Jong Hyeon Lim
- Department of Chemistry, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Sung Ho Jung
- Department of Liberal Arts, Gyeongnam National University of Science and Technology (GNTECH) Jinju 52725 Republic of Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 660-701 Republic of Korea
| | - Hiroyuki Miyake
- Department of Chemistry, Graduate School of Science, Osaka City University Osaka 558-8585 Japan
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 660-701 Republic of Korea
| |
Collapse
|
36
|
Bäumer N, Kartha KK, Allampally NK, Yagai S, Albuquerque RQ, Fernández G. Exploiting Coordination Isomerism for Controlled Self-Assembly. Angew Chem Int Ed Engl 2019; 58:15626-15630. [PMID: 31351026 PMCID: PMC6856968 DOI: 10.1002/anie.201908002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Indexed: 01/01/2023]
Abstract
We exploited the inherent geometrical isomerism of a PtII complex as a new tool to control supramolecular assembly processes. UV irradiation and careful selection of solvent, temperature, and concentration leads to tunable coordination isomerism, which in turn allows fully reversible switching between two distinct aggregate species (1D fibers↔2D lamellae) with different photoresponsive behavior. Our findings not only broaden the scope of coordination isomerism, but also open up exciting possibilities for the development of novel stimuli-responsive nanomaterials.
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Kalathil K. Kartha
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | | | - Shiki Yagai
- Department of Applied Chemistry and BiotechnologyGraduate School of EngineeringChiba University1–33-Yayoi-choInage-KuChiba263-8522Japan
| | - Rodrigo Q. Albuquerque
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| |
Collapse
|
37
|
Bäumer N, Kartha KK, Allampally NK, Yagai S, Albuquerque RQ, Fernández G. Kontrolle über Selbstassemblierung durch Ausnutzung von Koordinationsisomerie. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Kalathil K. Kartha
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | | | - Shiki Yagai
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University 1–33-Yayoi-cho, Inage-Ku Chiba 263-8522 Japan
| | - Rodrigo Q. Albuquerque
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Gustavo Fernández
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
38
|
Herkert L, Droste J, Kartha KK, Korevaar PA, de Greef TFA, Hansen MR, Fernández G. Pathway Control in Cooperative vs. Anti-Cooperative Supramolecular Polymers. Angew Chem Int Ed Engl 2019; 58:11344-11349. [PMID: 31119831 DOI: 10.1002/anie.201905064] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Indexed: 11/07/2022]
Abstract
Controlling the nanoscale morphology in assemblies of π-conjugated molecules is key to developing supramolecular functional materials. Here, we report an unsymmetrically substituted amphiphilic PtII complex 1 that shows unique self-assembly behavior in nonpolar media, providing two competing anti-cooperative and cooperative pathways with distinct molecular arrangement (long- vs. medium-slipped, respectively) and nanoscale morphology (discs vs. fibers, respectively). With a thermodynamic model, we unravel the competition between the anti-cooperative and cooperative pathways: buffering of monomers into small-sized, anti-cooperative species affects the formation of elongated assemblies, which might open up new strategies for pathway control in self-assembly. Our findings reveal that side-chain immiscibility is an efficient method to control anti-cooperative assemblies and pathway complexity in general.
Collapse
Affiliation(s)
- Lorena Herkert
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Jörn Droste
- Institut für Physikalische Chemie, Westfälische-Wilhelms Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Kalathil K Kartha
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Peter A Korevaar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Tom F A de Greef
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands.,Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - Michael Ryan Hansen
- Institut für Physikalische Chemie, Westfälische-Wilhelms Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
39
|
Herkert L, Droste J, Kartha KK, Korevaar PA, de Greef TFA, Hansen MR, Fernández G. Pathway Control in Cooperative vs. Anti‐Cooperative Supramolecular Polymers. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lorena Herkert
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Jörn Droste
- Institut für Physikalische ChemieWestfälische-Wilhelms Universität Münster Corrensstraße 28/30 48149 Münster Germany
| | - Kalathil K. Kartha
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Peter A. Korevaar
- Institute for Molecules and MaterialsRadboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Tom F. A. de Greef
- Institute for Molecules and MaterialsRadboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
- Institute for Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of Technology The Netherlands
| | - Michael Ryan Hansen
- Institut für Physikalische ChemieWestfälische-Wilhelms Universität Münster Corrensstraße 28/30 48149 Münster Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
40
|
Li M, Chen LJ, Zhang Z, Luo Q, Yang HB, Tian H, Zhu WH. Conformer-dependent self-assembled metallacycles with photo-reversible response. Chem Sci 2019; 10:4896-4904. [PMID: 31160961 PMCID: PMC6510319 DOI: 10.1039/c9sc00757a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 11/29/2022] Open
Abstract
Discrete, well-defined metallacycles and metallacages with stimuli-responsive behaviors have been largely predominated by the organic donor/metal acceptor paradigm with spontaneous formation of coordination bonds. However, light-driven self-assembly systems usually show relatively low utilization yield of photons and low fatigue resistance. Given that almost no example illustrates the different self-assembly behaviors of antiparallel and parallel conformers in the traditional photochromic diarylethene (DAE) system, here we have for the first time constructed a unique series of photoactive conformer-dependent metallacycles, focusing on the characterization and comparison of self-assembly behavior in different ligand conformers with different di-platinum(ii) acceptors. Their photoswitchable scaffold sizes and shapes are precisely controlled by photochromically separable parallel or anti-parallel conformers via coordination-driven self-assembly. The ap-conformer and closed form provide larger bending angles upon coordination with di-Pt(ii) acceptors into hexagon [6 + 6] or [3 + 3] while the p-conformer only can form smaller polygon cycles. Notably, in contrast with the non-photoactive parallel conformer, the reversible interconversion of anti-parallel ring-open and ring-closed conformer metallacycles can be achieved by alternate irradiation with UV and visible light, respectively, along with a relatively high conversion ratio and good fatigue resistance. This work provides a potential way to construct smart materials for use in sensing, catalysis and drug delivery systems.
Collapse
Affiliation(s)
- Mengqi Li
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China .
| | - Li-Jun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes , Chang-Kung Chuang Institute , School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China .
| | - Zhipeng Zhang
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China .
| | - Qianfu Luo
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China .
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes , Chang-Kung Chuang Institute , School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China .
| | - He Tian
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China .
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China .
| |
Collapse
|
41
|
Kartha KK, Allampally NK, Yagai S, Albuquerque RQ, Fernández G. Mechanistic Insights into the Self-Assembly of an Acid-Sensitive Photoresponsive Supramolecular Polymer. Chemistry 2019; 25:9230-9236. [PMID: 30937962 PMCID: PMC7187368 DOI: 10.1002/chem.201900775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 12/19/2022]
Abstract
The supramolecular polymerization of an acid‐sensitive pyridyl‐based ligand (L1) bearing a photoresponsive azobenzene moiety was elucidated by mechanistic studies. Addition of trifluoroacetic acid (TFA) led to the transformation of the antiparallel H‐bonded fibers of L1 in methylcyclohexane into superhelical braid‐like fibers stabilized by H‐bonding of parallel‐stacked monomer units. Interestingly, L1 dimers held together by unconventional pyridine–TFA N⋅⋅⋅H⋅⋅⋅O bridges represent the main structural elements of the assembly. UV‐light irradiation caused a strain‐driven disassembly and subsequent aggregate reconstruction, which ultimately led to short fibers. The results allowed to understand the mechanism of mutual influence of acid and light stimuli on supramolecular polymerization processes, thus opening up new possibilities to design advanced stimuli‐triggered supramolecular systems.
Collapse
Affiliation(s)
- Kalathil K Kartha
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | | | - Shiki Yagai
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33-Yayoi-cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Rodrigo Q Albuquerque
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|