1
|
Meng X, Zou S, Li J, Chen C, Zhang J, Wu M. A Noncovalent π-Stacked Dual-Pore Molecular Crystal for Ethanol/Water and Benzene/Methanol Azeotrope Separation. Angew Chem Int Ed Engl 2025; 64:e202415346. [PMID: 39543080 DOI: 10.1002/anie.202415346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Separation of ethanol/water or benzene/methanol azeotrope mixtures presents significant challenges, not only due to the limitations of conventional distillation techniques but also because of the constraints in developing and utilizing of new generation adsorbents. Porous organic molecular frameworks constructed via noncovalent π-interactions are emerging as novel adsorbents with vast potential in gas adsorption and molecular separation. Herein, we report a permanent two-dimensional porous structure, namely TDTBA-1, which consists of two different kinds of pores through π-stacking of a single organic molecule with highly Td symmetry. Activated TDTBA-1 exhibits excellent hydrophobicity, thermal stability, recoverability and high selectivity for ethanol over water, and benzene over methanol. Therefore, activated TDTBA-1 can be used as an efficient stationary phase for the separation of ethanol/water and benzene/methanol azeotropes by high-resolution gas chromatography.
Collapse
Affiliation(s)
- Xiang Meng
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002
| | - Shuixiang Zou
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002
| | - Jiawei Li
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002
| | - Cheng Chen
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108
| | - Jie Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Mingyan Wu
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108
| |
Collapse
|
2
|
Rhodes BJ, Schaaf LL, Zick ME, Pugh SM, Hilliard JS, Sharma S, Wade CR, Milner PJ, Csányi G, Forse AC. 17O NMR Spectroscopy Reveals CO 2 Speciation and Dynamics in Hydroxide-based Carbon Capture Materials. Chemphyschem 2024:e202400941. [PMID: 39565330 DOI: 10.1002/cphc.202400941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
Carbon dioxide capture technologies are set to play a vital role in mitigating the current climate crisis. Solid-state 17O NMR spectroscopy can provide key mechanistic insights that are crucial to effective sorbent development. In this work, we present the fundamental aspects and complexities for the study of hydroxide-based CO2 capture systems by 17O NMR. We perform static density functional theory (DFT) NMR calculations to assign peaks for general hydroxide CO2 capture products, finding that 17O NMR can readily distinguish bicarbonate, carbonate and water species. However, in application to CO2 binding in two test case hydroxide-functionalised metal-organic frameworks (MOFs) - MFU-4l and KHCO3-cyclodextrin-MOF, we find that a dynamic treatment is necessary to obtain agreement between computational and experimental spectra. We therefore introduce a workflow that leverages machine-learning force fields to capture dynamics across multiple chemical exchange regimes, providing a significant improvement on static DFT predictions. In MFU-4l, we parameterise a two-component dynamic motion of the bicarbonate motif involving a rapid carbonyl seesaw motion and intermediate hydroxyl proton hopping. For KHCO3-CD-MOF, we combined experimental and modelling approaches to propose a new mixed carbonate-bicarbonate binding mechanism and thus, we open new avenues for the study and modelling of hydroxide-based CO2 capture materials by 17O NMR.
Collapse
Affiliation(s)
- Benjamin J Rhodes
- University of Cambridge, Yusuf Hamied Department of Chemistry, Cambridge, CB2 1EW, UK
| | - Lars L Schaaf
- University of Cambridge, Engineering Laboratory, Cambridge, CB2 1PZ, UK
| | - Mary E Zick
- Cornell University, Chemistry and Chemical Biology, Ithaca, NY 14850, USA
| | - Suzi M Pugh
- University of Cambridge, Yusuf Hamied Department of Chemistry, Cambridge, CB2 1EW, UK
| | - Jordon S Hilliard
- The Ohio State University, Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
| | - Shivani Sharma
- University of Cambridge, Yusuf Hamied Department of Chemistry, Cambridge, CB2 1EW, UK
- University of California Berkeley, Department of Chemical and Biomolecular Engineering and Department of Chemistry, Berkeley, CA 94720, USA
| | - Casey R Wade
- The Ohio State University, Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
| | - Phillip J Milner
- Cornell University, Chemistry and Chemical Biology, Ithaca, NY 14850, USA
| | - Gábor Csányi
- University of Cambridge, Engineering Laboratory, Cambridge, CB2 1PZ, UK
| | - Alexander C Forse
- University of Cambridge, Yusuf Hamied Department of Chemistry, Cambridge, CB2 1EW, UK
| |
Collapse
|
3
|
Xu L, Dang M, Yang F, Lang F, Li B, Liang L, Pang J, Bu XH. Rational Tuning the Proton Conductivity and Stability of Hydrogen-Bonded Organic Frameworks. Inorg Chem 2024. [PMID: 39207922 DOI: 10.1021/acs.inorgchem.4c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In the development of proton conductors, it is crucial to regulate proton conduction pathways and enhance structural stability. In this study, we designed and constructed three hydrogen-bonded organic frameworks (HOFs), namely, NKM-HOF-9, NKM-HOF-10, and NKM-HOF-11, with different dimensional hydrogen-bonding pathways using 4,4'-sulfonyldibenzoic acid and various bases. They are cost-effective and easy to synthesize, allowing for their large-scale production at room temperature. By purposefully altering the ammonium ions, we achieved enhancements in the conductivity and stability of these HOFs. Proton conductivity studies at different humidities and temperatures revealed that at 85 °C and 98% relative humidity, the proton conductivity of NKM-HOF-10 reached 1.7 × 10-3 S cm-1, surpassing that of NKM-HOF-9 by 1 order of magnitude. This improvement was accomplished by increasing the number of proton donors from the base, which resulted in a transition of the hydrogen bond network from discontinuous to continuous, thereby enhancing the proton conduction performance. Moreover, stability tests showed that raising the base's pKa could improve the stability of these frameworks. NKM-HOF-11, which features the highest pKa, demonstrated superior stability by maintaining its structural integrity even at 450 °C.
Collapse
Affiliation(s)
- Lin Xu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China
| | - Mengyu Dang
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| | - Fengfan Yang
- Institute of Crystalline Materials, Shanxi University, Taiyuan 030006, China
| | - Feifan Lang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China
| | - Beibei Li
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| | - Linfeng Liang
- Institute of Crystalline Materials, Shanxi University, Taiyuan 030006, China
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Liu X, Liu G, Fu T, Ding K, Guo J, Wang Z, Xia W, Shangguan H. Structural Design and Energy and Environmental Applications of Hydrogen-Bonded Organic Frameworks: A Systematic Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400101. [PMID: 38647267 PMCID: PMC11165539 DOI: 10.1002/advs.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Indexed: 04/25/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are emerging porous materials that show high structural flexibility, mild synthetic conditions, good solution processability, easy healing and regeneration, and good recyclability. Although these properties give them many potential multifunctional applications, their frameworks are unstable due to the presence of only weak and reversible hydrogen bonds. In this work, the development history and synthesis methods of HOFs are reviewed, and categorize their structural design concepts and strategies to improve their stability. More importantly, due to the significant potential of the latest HOF-related research for addressing energy and environmental issues, this work discusses the latest advances in the methods of energy storage and conversion, energy substance generation and isolation, environmental detection and isolation, degradation and transformation, and biological applications. Furthermore, a discussion of the coupling orientation of HOF in the cross-cutting fields of energy and environment is presented for the first time. Finally, current challenges, opportunities, and strategies for the development of HOFs to advance their energy and environmental applications are discussed.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Resources and EnvironmentMoutai InstituteRenhuai564507China
| | - Guangli Liu
- College of Environmental Sciences and EngineeringPeking UniversityBeijing100871China
| | - Tao Fu
- College of Environmental Sciences and EngineeringPeking UniversityBeijing100871China
| | - Keren Ding
- AgResearchRuakura Research CentreHamilton3240New Zealand
| | - Jinrui Guo
- College of Environmental Science and EngineeringTongji UniversityShanghai200092China
| | - Zhenran Wang
- School of Environmental Science and EngineeringSouthwest Jiaotong UniversityChengdu611756China
| | - Wei Xia
- Department of Resources and EnvironmentMoutai InstituteRenhuai564507China
| | - Huayuan Shangguan
- Key Laboratory of Urban Environment and HealthInstitute of Urban EnvironmentChinese Academy of SciencesXiamen361021China
| |
Collapse
|
5
|
O'Shaughnessy M, Glover J, Hafizi R, Barhi M, Clowes R, Chong SY, Argent SP, Day GM, Cooper AI. Porous isoreticular non-metal organic frameworks. Nature 2024; 630:102-108. [PMID: 38778105 PMCID: PMC11153147 DOI: 10.1038/s41586-024-07353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 05/25/2024]
Abstract
Metal-organic frameworks (MOFs) are useful synthetic materials that are built by the programmed assembly of metal nodes and organic linkers1. The success of MOFs results from the isoreticular principle2, which allows families of structurally analogous frameworks to be built in a predictable way. This relies on directional coordinate covalent bonding to define the framework geometry. However, isoreticular strategies do not translate to other common crystalline solids, such as organic salts3-5, in which the intermolecular ionic bonding is less directional. Here we show that chemical knowledge can be combined with computational crystal-structure prediction6 (CSP) to design porous organic ammonium halide salts that contain no metals. The nodes in these salt frameworks are tightly packed ionic clusters that direct the materials to crystallize in specific ways, as demonstrated by the presence of well-defined spikes of low-energy, low-density isoreticular structures on the predicted lattice energy landscapes7,8. These energy landscapes allow us to select combinations of cations and anions that will form thermodynamically stable, porous salt frameworks with channel sizes, functionalities and geometries that can be predicted a priori. Some of these porous salts adsorb molecular guests such as iodine in quantities that exceed those of most MOFs, and this could be useful for applications such as radio-iodine capture9-12. More generally, the synthesis of these salts is scalable, involving simple acid-base neutralization, and the strategy makes it possible to create a family of non-metal organic frameworks that combine high ionic charge density with permanent porosity.
Collapse
Affiliation(s)
- Megan O'Shaughnessy
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Joseph Glover
- Computational System Chemistry, School of Chemistry, University of Southampton, Southampton, UK
| | - Roohollah Hafizi
- Computational System Chemistry, School of Chemistry, University of Southampton, Southampton, UK
| | - Mounib Barhi
- Albert Crewe Centre for Electron Microscopy, University of Liverpool, Liverpool, UK
| | - Rob Clowes
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Samantha Y Chong
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, UK
| | | | - Graeme M Day
- Computational System Chemistry, School of Chemistry, University of Southampton, Southampton, UK.
| | - Andrew I Cooper
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK.
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, UK.
| |
Collapse
|
6
|
Okubo K, Oka K, Tsuchiya K, Tomimoto A, Tohnai N. Spirobifluorene-Based Porous Organic Salts: Their Porous Network Diversification and Construction of Chiral Helical Luminescent Structures. Angew Chem Int Ed Engl 2024; 63:e202400475. [PMID: 38279903 DOI: 10.1002/anie.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/29/2024]
Abstract
Porous organic salts (POSs) are organic porous materials assembled via charge-assisted hydrogen bonds between strong acids and bases such as sulfonic acids and amines. To diversify the network topology of POSs and extend its functions, this study focused on using 4,4',4'',4'''-(9,9'-spirobi[fluorene]-2,2',7,7'-tetrayl)tetrabenzenesulfonic acid (spiroBPS), which is a tetrasulfonic acid comprising a square planar skeleton. The POS consisting of spiroBPS and triphenylmethylamine (TPMA) (spiroBPS/TPMA) was constructed from the two-fold interpenetration of an orthogonal network with pts topology, which has not been reported in conventional POSs, owing to the shape of the spirobifluorene backbone. Furthermore, combining tris(4-chlorophenyl)methylamine (TPMA-Cl) and tris(4-bromophenyl)methylamine (TPMA-Br), which are bulkier than TPMA owing to the introduction of halogens at the p-position of the phenyl groups with spiroBPS allows us to construct novel POSs (spiroBPS/TPMA-Cl and spiroBPS/TPMA-Br). These POSs were constructed from a chiral helical network with pth topology, which was induced by the steric hindrance between the halogens and the curved fluorene skeleton. Moreover, spiroBPS/TPMA-Cl with pth topology exhibited circularly polarized luminescence (CPL) in the solid state, which has not been reported in hydrogen-bonded organic frameworks (HOFs).
Collapse
Affiliation(s)
- Kohei Okubo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kouki Oka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Future Innovation (CFi), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Keiho Tsuchiya
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsunori Tomimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Ding X, Chen J, Ye G. Supramolecular polynuclear clusters sustained cubic hydrogen bonded frameworks with octahedral cages for reversible photochromism. Nat Commun 2024; 15:2782. [PMID: 38555300 PMCID: PMC10981757 DOI: 10.1038/s41467-024-47058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Developing supramolecular porous crystalline frameworks with tailor-made architectures from advanced secondary building units (SBUs) remains a pivotal challenge in reticular chemistry. Particularly for hydrogen-bonded organic frameworks (HOFs), construction of geometrical cavities through secondary units has been rarely achieved. Herein, a body-centered cubic HOF (TCA_NH4) with octahedral cages was constructed by a C3-symmetric building block and NH4+ node-assembled cluster (NH4)4(COOH)8(H2O)2 that served as supramolecular secondary building units (SSBUs), akin to the polynuclear SBUs in reticular chemistry. Specifically, the octahedral cages could encapsulate four homogenous haloforms including CHCl3, CHBr3, and CHI3 with truncated octahedron configuration. Crystallographic evidence revealed the cages served as spatially-confined nanoreactors, enabling fast, broadband photochromic effect associated with the reversible photo/thermal transformation between encapsulated CHI3 and I2. Overall, this work provides a strategy by shaping SSBUs to expand the framework topology of HOFs and a prototype of hydrogen-bonded nanoreactors to accommodate reversible photochromic reactions.
Collapse
Affiliation(s)
- Xiaojun Ding
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China.
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Chen XY, Cao LH, Bai XT, Cao XJ. Charge-Assisted Ionic Hydrogen-Bonded Organic Frameworks: Designable and Stabilized Multifunctional Materials. Chemistry 2024; 30:e202303580. [PMID: 38179818 DOI: 10.1002/chem.202303580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π-π stacking, highly interpenetrated networks, charge-assisted, ligand-bond-assisted, molecular weaving, and covalent cross-linking. Charge-assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge-assisted ionic HOFs, and introduces the different building block construction modes of charge-assisted ionic HOFs. Highlight the applications of charge-assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge-assisted ionic HOFs structures and multifunctional applications.
Collapse
Affiliation(s)
- Xu-Yong Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Li-Hui Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xiang-Tian Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xiao-Jie Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
9
|
Xing G, Peng D, Ben T. Crystalline porous organic salts. Chem Soc Rev 2024; 53:1495-1513. [PMID: 38165686 DOI: 10.1039/d3cs00855j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Crystalline porous organic salts (CPOSs), formed by the self-assembly of organic acids and organic bases through ionic bonding, possess definite structures and permanent porosity and have rapidly emerged as an important class of porous organic materials in recent years. By rationally designing and controlling tectons, acidity/basicity (pKa), and topology, stable CPOSs with permanent porosity can be efficiently constructed. The characteristics of ionic bonds, charge-separated highly polar nano-confined channels, and permanent porosity endow CPOSs with unique physicochemical properties, offering extensive research opportunities for exploring their functionalities and application scenarios. In this review, we systematically summarize the latest progress in CPOS research, describe the synthetic strategies for synthesizing CPOSs, delineate their structural characteristics, and highlight the differences between CPOSs and hydrogen-bonded organic frameworks (HOFs). Furthermore, we provide an overview of the potential applications of CPOSs in areas such as negative linear compression (NLC), proton conduction, rapid transport of CO2, selective and rapid transport of K+ ions, atmospheric water harvesting (AWH), gas sorption, molecular rotors, fluorescence modulation, room-temperature phosphorescence (RTP) and catalysis. Finally, the challenges and future perspectives of CPOSs are presented.
Collapse
Affiliation(s)
- Guolong Xing
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China.
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310000, P. R. China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Daoling Peng
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310000, P. R. China
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Teng Ben
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China.
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310000, P. R. China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| |
Collapse
|
10
|
Xie Y, Ding X, Wang J, Ye G. Hydrogen-Bonding Assembly Meets Anion Coordination Chemistry: Framework Shaping and Polarity Tuning for Xenon/Krypton Separation. Angew Chem Int Ed Engl 2023; 62:e202313951. [PMID: 37877955 DOI: 10.1002/anie.202313951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 10/26/2023]
Abstract
Hybrid hydrogen-bonded (H-bonded) frameworks built from charged components or metallotectons offer diverse guest-framework interactions for target-specific separations. We present here a study to systematically explore the coordination chemistry of monovalent halide anions, i.e., F- , Cl- , Br- , and I- , with the aim to develop hybrid H-bond synthons that enable the controllable construction of microporous H-bonded frameworks exhibiting fine-tunable surface polarity within the adaptive cavities for realistic xenon/krypton (Xe/Kr) separation. The spherical halide anions, especially Cl- , Br- , and I- , are found to readily participate in the charge-assisted H-bonding assembly with well-defined coordination behaviors, resulting in robust frameworks bearing open halide anions within the distinctive 1D pore channels. The activated frameworks show preferential binding towards Xe (IAST Xe/Kr selectivity ca. 10.5) because of the enhanced polarizability and the pore confinement effect. Specifically, dynamic column Xe/Kr separation with a record-high separation factor (SF=7.0) among H-bonded frameworks was achieved, facilitating an efficient Xe/Kr separation in dilute, CO2 -containing gas streams exactly mimicking the off-gas of spent nuclear fuel (SNF) reprocessing.
Collapse
Affiliation(s)
- Yi Xie
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China
| | - Xiaojun Ding
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China
| | - Jianchen Wang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
11
|
O'Shaughnessy M, Padgham AC, Clowes R, Little MA, Brand MC, Qu H, Slater AG, Cooper AI. Controlling the Crystallisation and Hydration State of Crystalline Porous Organic Salts. Chemistry 2023; 29:e202302420. [PMID: 37615406 PMCID: PMC10946969 DOI: 10.1002/chem.202302420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Crystalline porous organic salts (CPOS) are a subclass of molecular crystals. The low solubility of CPOS and their building blocks limits the choice of crystallisation solvents to water or polar alcohols, hindering the isolation, scale-up, and scope of the porous material. In this work, high throughput screening was used to expand the solvent scope, resulting in the identification of a new porous salt, CPOS-7, formed from tetrakis(4-sulfophenyl)methane (TSPM) and tetrakis(4-aminophenyl)methane (TAPM). CPOS-7 does not form with standard solvents for CPOS, rather a hydrated phase (Hydrate2920) previously reported is isolated. Initial attempts to translate the crystallisation to batch led to challenges with loss of crystallinity and Hydrate2920 forming favorably in the presence of excess water. Using acetic acid as a dehydrating agent hindered formation of Hydrate2920 and furthermore allowed for direct conversion to CPOS-7. To allow for direct formation of CPOS-7 in high crystallinity flow chemistry was used for the first time to circumvent the issues found in batch. CPOS-7 and Hydrate2920 were shown to have promise for water and CO2 capture, with CPOS-7 having a CO2 uptake of 4.3 mmol/g at 195 K, making it one of the most porous CPOS reported to date.
Collapse
Affiliation(s)
- Megan O'Shaughnessy
- Materials Innovation Factory and Department of ChemistryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
- Leverhulme Research Centre for Functional Materials DesignUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
| | - Alex C. Padgham
- Materials Innovation Factory and Department of ChemistryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
| | - Rob Clowes
- Materials Innovation Factory and Department of ChemistryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
| | - Marc A. Little
- Materials Innovation Factory and Department of ChemistryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
| | - Michael C. Brand
- Materials Innovation Factory and Department of ChemistryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
- Leverhulme Research Centre for Functional Materials DesignUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
| | - Hang Qu
- Materials Innovation Factory and Department of ChemistryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
| | - Anna G. Slater
- Materials Innovation Factory and Department of ChemistryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
| | - Andrew I. Cooper
- Materials Innovation Factory and Department of ChemistryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
- Leverhulme Research Centre for Functional Materials DesignUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
| |
Collapse
|
12
|
Yan K, Lu X, Zhang R, Xiong J, Qiao Y, Li X, Yu Z. Molecular Diffusion in Nanoreactors' Pore Channel System: Measurement Techniques, Structural Regulation, and Catalytic Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304008. [PMID: 37632316 DOI: 10.1002/smll.202304008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/28/2023] [Indexed: 08/27/2023]
Abstract
Nanoreactors, as a new class of materials with highly enriched and ordered pore channel structures, can achieve special catalytic effects by precisely identifying and controlling the molecular diffusion behavior within the ordered pore channel system. Nanoreactors-driven molecular diffusion within the ordered pore channels can be highly dependent on the local microenvironment in the nanoreactors' pore channel system. Although the diffusion process of molecules within the ordered pore channels of nanoreactors is crucial for the regulation of catalytic behaviors, it has not yet been as clearly elucidated as it deserves to be in this study. In this review, fundamental theory and measurement techniques for molecular diffusion in the pore channel system of nanoreactors are presented, structural regulation strategies of pore channel parameters for controlling molecular diffusion are discussed, and the effects of molecular diffusion in the pore channel system on catalytic reactivity and selectivity are further analyzed. This article attempts to further develop the underlying theory of molecular diffusion within the theoretical framework of nanoreactor-driven catalysis, and the proposed perspectives may contribute to the rational design of advanced catalytic materials and the precise control of complex catalytic kinetics.
Collapse
Affiliation(s)
- Kai Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P. R. China
| | - Jian Xiong
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P. R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University, Guangdong, 510275, P. R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
13
|
Ding X, Luo Y, Wang W, Hu T, Chen J, Ye G. Charge-Assisted Hydrogen-Bonded Organic Frameworks with Inorganic Ammonium Regulated Switchable Open Polar Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207771. [PMID: 36799180 DOI: 10.1002/smll.202207771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Indexed: 05/18/2023]
Abstract
Surface open polar sites within the voids of porous molecular crystals define the localized physicochemical environment for critical functions such as gas separation and molecular recognition. This study presents a new charge-assisted hydrogen bonding (H-bonding) motif, by exploiting inorganic ammonium (NH4 + ) cations as H-bond donors, to regulate the assembly of C2 -symmetric carboxylic tectons for building robust H-bonded frameworks with permanent ultra-micropores and open oxygen sites. Diverse building blocks are bridged by tetrahedral NH4 + to expand distinctive H-bonded networks with varied pore architectures. Particularly, the open polar oxygen sites can be switched by altering NH4 + sources to tune the deprotonation of carboxyl-containing tectons. The activated porous PTBA·NH4 ·DMF preserves the pore architecture and open polar oxygen sites, exhibiting remarkably selective sorption of CO2 (107.8 cm3 g-1 ,195 K) over N2 (11.2 cm3 g-1 , 77 K) and H2 (1.4 cm3 g-1 , 77 K).
Collapse
Affiliation(s)
- Xiaojun Ding
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yilin Luo
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Tongyang Hu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
14
|
Cavallo M, Atzori C, Signorile M, Costantino F, Venturi DM, Koutsianos A, Lomachenko KA, Calucci L, Martini F, Giovanelli A, Geppi M, Crocellà V, Taddei M. Cooperative CO 2 adsorption mechanism in a perfluorinated Ce IV-based metal organic framework. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:5568-5583. [PMID: 36936468 PMCID: PMC10012411 DOI: 10.1039/d2ta09746j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Adsorbents able to uptake large amounts of gases within a narrow range of pressure, i.e., phase-change adsorbents, are emerging as highly interesting systems to achieve excellent gas separation performances with little energy input for regeneration. A recently discovered phase-change metal-organic framework (MOF) adsorbent is F4_MIL-140A(Ce), based on CeIV and tetrafluoroterephthalate. This MOF displays a non-hysteretic step-shaped CO2 adsorption isotherm, reaching saturation in conditions of temperature and pressure compatible with real life application in post-combustion carbon capture, biogas upgrading and acetylene purification. Such peculiar behaviour is responsible for the exceptional CO2/N2 selectivity and reverse CO2/C2H2 selectivity of F4_MIL-140A(Ce). Here, we combine data obtained from a wide pool of characterisation techniques - namely gas sorption analysis, in situ infrared spectroscopy, in situ powder X-ray diffraction, in situ X-ray absorption spectroscopy, multinuclear solid state nuclear magnetic resonance spectroscopy and adsorption microcalorimetry - with periodic density functional theory simulations to provide evidence for the existence of a unique cooperative CO2 adsorption mechanism in F4_MIL-140A(Ce). Such mechanism involves the concerted rotation of perfluorinated aromatic rings when a threshold partial pressure of CO2 is reached, opening the gate towards an adsorption site where CO2 interacts with both open metal sites and the fluorine atoms of the linker.
Collapse
Affiliation(s)
- Margherita Cavallo
- Dipartimento di Chimica, Centro di Riferimento NIS e INSTM, Università di Torino Via G. Quarello 15, I-10135 and Via P. Giuria 7 I-10125 Torino Italy
| | - Cesare Atzori
- Dipartimento di Chimica, Centro di Riferimento NIS e INSTM, Università di Torino Via G. Quarello 15, I-10135 and Via P. Giuria 7 I-10125 Torino Italy
- European Synchrotron Radiation Facility 71 Avenue des Martyrs, CS 40220 38043 Grenoble Cedex 9 France
| | - Matteo Signorile
- Dipartimento di Chimica, Centro di Riferimento NIS e INSTM, Università di Torino Via G. Quarello 15, I-10135 and Via P. Giuria 7 I-10125 Torino Italy
| | - Ferdinando Costantino
- Dipartimento di Chimica, Biologia e Biotecnologie, Unità di Ricerca INSTM, Università di Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Diletta Morelli Venturi
- Dipartimento di Chimica, Biologia e Biotecnologie, Unità di Ricerca INSTM, Università di Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Athanasios Koutsianos
- Centre for Research & Technology Hellas/Chemical Process and Energy Resources Institute 6th km. Charilaou-Thermis 57001 Greece
| | - Kirill A Lomachenko
- European Synchrotron Radiation Facility 71 Avenue des Martyrs, CS 40220 38043 Grenoble Cedex 9 France
| | - Lucia Calucci
- Istituto di Chimica dei Composti Organo Metallici, Unità di Ricerca INSTM, Consiglio Nazionale delle Ricerche Via Giuseppe Moruzzi 1 56124 Pisa Italy
- Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa (CISUP) 56126 Pisa Italy
| | - Francesca Martini
- Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa (CISUP) 56126 Pisa Italy
- Dipartimento di Chimica e Chimica Industriale, Unità di Ricerca INSTM, Università di Pisa Via Giuseppe Moruzzi 13 56124 Pisa Italy
| | - Andrea Giovanelli
- Dipartimento di Chimica e Chimica Industriale, Unità di Ricerca INSTM, Università di Pisa Via Giuseppe Moruzzi 13 56124 Pisa Italy
| | - Marco Geppi
- Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa (CISUP) 56126 Pisa Italy
- Dipartimento di Chimica e Chimica Industriale, Unità di Ricerca INSTM, Università di Pisa Via Giuseppe Moruzzi 13 56124 Pisa Italy
| | - Valentina Crocellà
- Dipartimento di Chimica, Centro di Riferimento NIS e INSTM, Università di Torino Via G. Quarello 15, I-10135 and Via P. Giuria 7 I-10125 Torino Italy
| | - Marco Taddei
- Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa (CISUP) 56126 Pisa Italy
- Dipartimento di Chimica e Chimica Industriale, Unità di Ricerca INSTM, Università di Pisa Via Giuseppe Moruzzi 13 56124 Pisa Italy
- Energy Safety Research Institute, Swansea University Fabian Way Swansea SA1 8EN UK
| |
Collapse
|
15
|
Application of Hydrogen-Bonded Organic Frameworks in Environmental Remediation: Recent Advances and Future Trends. SEPARATIONS 2023. [DOI: 10.3390/separations10030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The hydrogen-bonded organic frameworks (HOFs) are a class of porous materials with crystalline frame structures, which are self-assembled from organic structures by hydrogen bonding in non-covalent bonds π-π packing and van der Waals force interaction. HOFs are widely used in environmental remediation due to their high specific surface area, ordered pore structure, pore modifiability, and post-synthesis adjustability of various physical and chemical forms. This work summarizes some rules for constructing stable HOFs and the synthesis of HOF-based materials (synthesis of HOFs, metallized HOFs, and HOF-derived materials). In addition, the applications of HOF-based materials in the field of environmental remediation are introduced, including adsorption and separation (NH3, CO2/CH4 and CO2/N2, C2H2/C2He and CeH6, C2H2/CO2, Xe/Kr, etc.), heavy metal and radioactive metal adsorption, organic dye and pesticide adsorption, energy conversion (producing H2 and CO2 reduced to CO), organic dye degradation and pollutant sensing (metal ion, aniline, antibiotic, explosive steam, etc.). Finally, the current challenges and further studies of HOFs (such as functional modification, molecular simulation, application extension as remediation of contaminated soil, and cost assessment) are discussed. It is hoped that this work will help develop widespread applications for HOFs in removing a variety of pollutants from the environment.
Collapse
|
16
|
Liu Y, Chang G, Zheng F, Chen L, Yang Q, Ren Q, Bao Z. Hybrid Hydrogen-Bonded Organic Frameworks: Structures and Functional Applications. Chemistry 2023; 29:e202202655. [PMID: 36414543 DOI: 10.1002/chem.202202655] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
As a new class of porous crystalline materials, hydrogen-bonded organic frameworks (HOFs) assembled from building blocks by hydrogen bonds have gained increasing attention. HOFs benefit from advantages including mild synthesis, easy purification, and good recyclability. However, some HOFs transform into unstable frameworks after desolvation, which hinders their further applications. Nowadays, the main challenges of developing HOFs lie in stability improvement, porosity establishment, and functionalization. Recently, more and more stable and permanently porous HOFs have been reported. Of all these design strategies, stronger charge-assisted hydrogen bonds and coordination bonds have been proven to be effective for developing stable, porous, and functional solids called hybrid HOFs, including ionic and metallized HOFs. This Review discusses the rational design synthesis principles of hybrid HOFs and their cutting-edge applications in selective inclusion, proton conduction, gas separation, catalysis and so forth.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China
| | - Ganggang Chang
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei Province, 430070, P.R. China
| | - Fang Zheng
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Lihang Chen
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| |
Collapse
|
17
|
Qiu J, Xu C, Xu X, Zhao Y, Zhao Y, Zhao Y, Wang J. Porous Covalent Organic Framework Based Hydrogen-Bond Nanotrap for the Precise Recognition and Separation of Gold. Angew Chem Int Ed Engl 2023; 62:e202300459. [PMID: 36849710 DOI: 10.1002/anie.202300459] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Utilizing weak interactions to effectively recover and separate precious metals in solution is of great importance but the practice remains a challenge. Herein, we report a novel strategy to achieve precise recognition and separation of gold by regulating the hydrogen-bond (H-bond) nanotrap within the pore of covalent organic frameworks (COFs). It is found that both COF-HNU25 and COF-HNU26 can efficiently capture AuIII with fast kinetics, high selectivity, and uptake capacity. In particular, the COF-HNU25 with the high density of H-bond nanotraps exhibits an excellent gold uptake capacity of 1725 mg g-1 , which is significantly higher than that (219 mg g-1 ) of its isostructural COF (COF-42) without H-bond nanostrap in the pores. Importantly, the uptake capacity is strongly correlated to the number of H-bonds between phenolic OH in the COF and [AuCl4 ]- in water, and multiple H-bond interactions are the key driving force for the excellent gold recovery and reusability of the adsorbent.
Collapse
Affiliation(s)
- Jikuan Qiu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Chang Xu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Xianhui Xu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Yingjie Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Yang Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Yuling Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
18
|
Xing G, Zhang S, Zhu W, Ben T. Reply to the Correspondence on "Crystalline Porous Organic Salt for Ultrarapid Adsorption/Desorption-Based Atmospheric Water Harvesting by Dual Hydrogen Bond System". Angew Chem Int Ed Engl 2023; 62:e202215074. [PMID: 36658744 DOI: 10.1002/anie.202215074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 01/21/2023]
Abstract
White et al., in a recent Correspondence, provided additional structural data to illustrate that CPOS-6 undergoes a single-crystal-to-single-crystal transformation during water adsorption/desorption. This finding gave a better understanding of the relevant experimental phenomena from the perspective of structural transformation and is a good complement to our previous results. However, we wish to emphasize that our research focuses on the kinetic behavior of water during ultrafast adsorption/desorption in nano-confined channels. Herein, we further interpret the rapid transport of water molecules in the nano-confined channels from the perspective of superfluidity.
Collapse
Affiliation(s)
- Guolong Xing
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China.,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Shuai Zhang
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China.,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Weidong Zhu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China.,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Teng Ben
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China.,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
19
|
Zhang L, Jia Y, Lu J, Huang Y, Chen X, An Q, Shi Z, Sun L, Jiang R, Song X. Constructing imine and amine-based hydrogen-bonded organic frameworks in aqueous media and selective CO2 adsorption. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
20
|
Perego J, Bezuidenhout CX, Bracco S, Piva S, Prando G, Aloisi C, Carretta P, Kaleta J, Le TP, Sozzani P, Daolio A, Comotti A. Benchmark Dynamics of Dipolar Molecular Rotors in Fluorinated Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202215893. [PMID: 36469012 DOI: 10.1002/anie.202215893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Fluorinated Metal-Organic Frameworks (MOFs), comprising a wheel-shaped ligand with geminal rotating fluorine atoms, produced benchmark mobility of correlated dipolar rotors at 2 K, with practically null activation energy (Ea =17 cal mol-1 ). 1 H T1 NMR revealed multiple relaxation phenomena due to the exchange among correlated dipole-rotor configurations. Synchrotron radiation X-ray diffraction at 4 K, Density Functional Theory, Molecular Dynamics and phonon calculations showed the fluid landscape and pointed out a cascade mechanism converting dipole configurations into each other. Gas accessibility, shown by hyperpolarized-Xe NMR, allowed for chemical stimuli intervention: CO2 triggered dipole reorientation, reducing their collective dynamics and stimulating a dipole configuration change in the crystal. Dynamic materials under limited thermal noise and high responsiveness enable the fabrication of molecular machines with low energy dissipation and controllable dynamics.
Collapse
Affiliation(s)
- Jacopo Perego
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Charl X Bezuidenhout
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Silvia Bracco
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Sergio Piva
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Giacomo Prando
- Department of Physics, University of Pavia, Via Bassi 6, 27100, Pavia, Italy
| | - Cristian Aloisi
- Department of Physics, University of Pavia, Via Bassi 6, 27100, Pavia, Italy
| | - Pietro Carretta
- Department of Physics, University of Pavia, Via Bassi 6, 27100, Pavia, Italy
| | - Jiří Kaleta
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 16000, Prague, Czech Republic
| | - Thi Phuong Le
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 16000, Prague, Czech Republic
| | - Piero Sozzani
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Andrea Daolio
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Angiolina Comotti
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| |
Collapse
|
21
|
Reply to the Correspondence on “Crystalline Porous Organic Salt for Ultrarapid Adsorption/Desorption‐Based Atmospheric Water Harvesting by Dual Hydrogen Bond System”. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202215074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Lin ZJ, Mahammed SAR, Liu TF, Cao R. Multifunctional Porous Hydrogen-Bonded Organic Frameworks: Current Status and Future Perspectives. ACS CENTRAL SCIENCE 2022; 8:1589-1608. [PMID: 36589879 PMCID: PMC9801510 DOI: 10.1021/acscentsci.2c01196] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Indexed: 05/20/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs), self-assembled from organic or metalated organic building blocks (also termed as tectons) by hydrogen bonding, π-π stacking, and other intermolecular interactions, have become an emerging class of multifunctional porous materials. So far, a library of HOFs with high porosity has been synthesized based on versatile tectons and supramolecular synthons. Benefiting from the flexibility and reversibility of H-bonds, HOFs feature high structural flexibility, mild synthetic reaction, excellent solution processability, facile healing, easy regeneration, and good recyclability. However, the flexible and reversible nature of H-bonds makes most HOFs suffer from poor structural designability and low framework stability. In this Outlook, we first describe the development and structural features of HOFs and summarize the design principles of HOFs and strategies to enhance their stability. Second, we highlight the state-of-the-art development of HOFs for diverse applications, including gas storage and separation, heterogeneous catalysis, biological applications, sensing, proton conduction, and other applications. Finally, current challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Zu-Jin Lin
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
- College
of Life Science, Fujian Agriculture and
Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Shaheer A. R. Mahammed
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
| | - Tian-Fu Liu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Rong Cao
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
23
|
Zhang Z, Ye Y, Xiang S, Chen B. Exploring Multifunctional Hydrogen-Bonded Organic Framework Materials. Acc Chem Res 2022; 55:3752-3766. [PMID: 36454588 DOI: 10.1021/acs.accounts.2c00686] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Hydrogen-bonded organic framework (HOF) materials have provided a new dimension and bright promise as a new platform for developing multifunctional materials. They can be readily self-assembled from their corresponding organic molecules with diverse functional sites such as carboxylic acid and amine groups for their hydrogen bonding and aromatic ones for their weak π···π interactions to stabilize the frameworks. Compared with those established porous materials such as zeolites, metal-organic frameworks (MOFs), and covalent-organic frameworks (COFs), it is much more difficult to stabilize HOFs and thus establish their permanent porosities given the fact that hydrogen bonds are typically weaker than ionic, coordination, and covalent bonds. But it provides the uniqueness of HOF materials in which they can be easily recovered and regenerated through simple recrystallization. HOF materials can also be easily and straightforwardly processed and very compatible with the biomolecules, making them potentially very useful materials for industrial and biomedical applications. The reversible and weak bonding nature of the hydrogen bonds can be readily utilized to construct flexible porous HOF materials in which we can tune the temperature and pressure to control their porosities and, thus, their diverse applications, for example, on gas separations, gas storage, drug delivery, and sensing. Some specific organic functional groups are quite directional for the hydrogen bond formations; for example, carboxylic acid prefers to form a directional dimer, which has enabled us to readily construct reticular porous HOF materials whose pores can be systematically tuned. In this Account, we outline our journey of exploring this new type of porous material by establishing one of the first porous HOFs in 2011 and thus developing its diverse applications. We have been able to use organic molecules with different functional sites, including 2,4-diaminotriazine (DAT), carboxylic acid (COOH), aldehyde (CHO), and cyano (CN), to construct porous HOFs. Through tuning the pore sizes, introducing specific binding sites, and making use of the framework flexibility, we have realized a series of HOF materials for the gas separations of C2H2/C2H4, C2H4/C2H6, C3H6/C3H8, C2H2/CO2, CO2/N2, and Xe/Kr and enantioselective separation of alcohols. To make use of optically active organic molecules, we have developed HOF materials for their luminescent sensing and optical lasing. Our research endeavors on multifunctional HOF materials have initiated extensive research in this emerging research topic among chemistry and materials sciences communities. We foresee that not only many more HOF materials will be developed but novel functions will be fulfilled beyond our imaginations soon.
Collapse
Affiliation(s)
- Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China
| | - Yingxiang Ye
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, United States
| |
Collapse
|
24
|
Chen L, Yuan Z, Zhang H, Ye Y, Yang Y, Xiang F, Cai K, Xiang S, Chen B, Zhang Z. A Flexible Hydrogen-Bonded Organic Framework Constructed from a Tetrabenzaldehyde with a Carbazole N-H Binding Site for the Highly Selective Recognition and Separation of Acetone. Angew Chem Int Ed Engl 2022; 61:e202213959. [PMID: 36259375 DOI: 10.1002/anie.202213959] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/24/2022]
Abstract
Rational design of hydrogen-bonded organic frameworks (HOFs) with multiple functionalities is highly sought after but challenging. Herein, we report a multifunctional HOF (HOF-FJU-2) built from 4,4',4'',4'''-(9H-carbazole-1,3,6,8-tetrayl)tetrabenzaldehyde molecule with tetrabenzaldeyde for their H bonding interactions and carbazole N-H site for its specific recognition of small molecules. The Lewis acid N-H sites allow HOF-FJU-2 facilely separate acetone from its mixture with another solvent like methanol with smaller pKa value. The donor (D)-π-acceptor (A) aromatic nature of the organic building molecule endows this HOF with solvent dependent luminescent/chromic properties, so the column acetone/methanol separation on HOF-FJU-2 can be readily visualized.
Collapse
Affiliation(s)
- Liangji Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yingxiang Ye
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Fahui Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Kaicong Cai
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
25
|
Yang X, Li C, Giorgi M, Siri D, Bugaut X, Chatelet B, Gigmes D, Yemloul M, Hornebecq V, Kermagoret A, Brasselet S, Martinez A, Bardelang D. Energy-Efficient Iodine Uptake by a Molecular Host⋅Guest Crystal. Angew Chem Int Ed Engl 2022; 61:e202214039. [PMID: 36198650 PMCID: PMC10092189 DOI: 10.1002/anie.202214039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 11/07/2022]
Abstract
Recently, porous organic crystals (POC) based on macrocycles have shown exceptional sorption and separation properties. Yet, the impact of guest presence inside a macrocycle prior to adsorption has not been studied. Here we show that the inclusion of trimethoxybenzyl-azaphosphatrane in the macrocycle cucurbit[8]uril (CB[8]) affords molecular porous host⋅guest crystals (PHGC-1) with radically new properties. Unactivated hydrated PHGC-1 adsorbed iodine spontaneously and selectively at room temperature and atmospheric pressure. The absence of (i) heat for material synthesis, (ii) moisture sensitivity, and (iii) energy-intensive steps for pore activation are attractive attributes for decreasing the energy costs. 1 H NMR and DOSY were instrumental for monitoring the H2 O/I2 exchange. PHGC-1 crystals are non-centrosymmetric and I2 -doped crystals showed markedly different second harmonic generation (SHG), which suggests that iodine doping could be used to modulate the non-linear optical properties of porous organic crystals.
Collapse
Affiliation(s)
- Xue Yang
- Aix Marseille UnivCNRSICRAMUTechMarseilleFrance
| | - Chunyang Li
- School of Materials Science and Engineering& Material Corrosion and Protection Key Laboratory of Sichuan ProvinceSichuan University of Science & EngineeringZigong643000P. R. China
- Aix Marseille UnivCNRSCentrale MarseilleiSm2AMUTechMarseilleFrance
| | - Michel Giorgi
- Aix Marseille UnivCNRS, CentraleMarseille, FSCMSpectropoleMarseilleFrance
| | - Didier Siri
- Aix Marseille UnivCNRSICRAMUTechMarseilleFrance
| | - Xavier Bugaut
- Université de StrasbourgUniversité de Haute-AlsaceCNRSLIMAUMR 704267000StrasbourgFrance
| | - Bastien Chatelet
- Aix Marseille UnivCNRSCentrale MarseilleiSm2AMUTechMarseilleFrance
| | | | - Mehdi Yemloul
- Aix Marseille UnivCNRSCentrale MarseilleiSm2AMUTechMarseilleFrance
| | | | | | | | | | | |
Collapse
|
26
|
Zhang S, Fu J, Das S, Ye K, Zhu W, Ben T. Crystalline Porous Organic Salt for Ultrarapid Adsorption/Desorption‐Based Atmospheric Water Harvesting by Dual Hydrogen Bond System. Angew Chem Int Ed Engl 2022; 61:e202208660. [DOI: 10.1002/anie.202208660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Shuai Zhang
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals Institute of Advanced Fluorine-Containing Materials Zhejiang Normal University 321004 Jinhua China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University 321004 Jinhua China
- Department of Chemistry Jilin University 130012 Changchun China
| | - Jingru Fu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals Institute of Advanced Fluorine-Containing Materials Zhejiang Normal University 321004 Jinhua China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University 321004 Jinhua China
- Department of Chemistry Jilin University 130012 Changchun China
| | - Saikat Das
- Department of Applied Chemistry, Faculty of Science Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials Jilin University 130012 Changchun China
| | - Weidong Zhu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals Institute of Advanced Fluorine-Containing Materials Zhejiang Normal University 321004 Jinhua China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University 321004 Jinhua China
- Department of Chemistry Jilin University 130012 Changchun China
| | - Teng Ben
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals Institute of Advanced Fluorine-Containing Materials Zhejiang Normal University 321004 Jinhua China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University 321004 Jinhua China
- Department of Chemistry Jilin University 130012 Changchun China
| |
Collapse
|
27
|
Zhang S, Fu J, Das S, Ye K, Zhu W, Ben T. Crystalline Porous Organic Salt for Ultrarapid Adsorption/Desorption‐Based Atmospheric Water Harvesting by Dual Hydrogen Bond System. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shuai Zhang
- Zhejiang Normal University Institute of Advanced Fluorine-Containing Materials Yingbin Street 688 321004 Jinhua CHINA
| | - Jingru Fu
- Zhejiang Normal University Institute of Advanced Fluorine-Containing Materials CHINA
| | - Saikat Das
- Tokyo University of Science - Kagurazakakudan Campus: Tokyo Rika Daigaku Department of Applied Chemistry JAPAN
| | - Kaiqi Ye
- Jilin University State Key Laboratory of Supramolecular Structure and Materials CHINA
| | - Weidong Zhu
- Zhejiang Normal University Institute of Advanced Fluorine-Containing Materials CHINA
| | - Teng Ben
- Zhejiang Normal University Institute of Advanced Fluorine-Containing Materials Yingbin Street 688 321004 Jinhua CHINA
| |
Collapse
|
28
|
Ami T, Oka K, Tsuchiya K, Tohnai N. Porous Organic Salts: Diversifying Void Structures and Environments. Angew Chem Int Ed Engl 2022; 61:e202202597. [DOI: 10.1002/anie.202202597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 12/28/2022]
Affiliation(s)
- Takahiro Ami
- Department of Applied Chemistry and Center for Future Innovation (CFi) Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
| | - Kouki Oka
- Department of Applied Chemistry and Center for Future Innovation (CFi) Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
| | - Keiho Tsuchiya
- Department of Applied Chemistry and Center for Future Innovation (CFi) Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry and Center for Future Innovation (CFi) Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
| |
Collapse
|
29
|
Song X, Wang Y, Wang C, Wang D, Zhuang G, Kirlikovali KO, Li P, Farha OK. Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. J Am Chem Soc 2022; 144:10663-10687. [PMID: 35675383 DOI: 10.1021/jacs.2c02598] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs), self-assembled from strategically pre-designed molecular tectons with complementary hydrogen-bonding patterns, are rapidly evolving into a novel and important class of porous materials. In addition to their common features shared with other functionalized porous materials constructed from modular building blocks, the intrinsically flexible and reversible H-bonding connections endow HOFs with straightforward purification procedures, high crystallinity, solution processability, and recyclability. These unique advantages of HOFs have attracted considerable attention across a broad range of fields, including gas adsorption and separation, catalysis, chemical sensing, and electrical and optical materials. However, the relatively weak H-bonding interactions within HOFs can potentially limit their stability and potential use in further applications. To that end, this Perspective highlights recent advances in the development of chemically and thermally robust HOF materials and systematically discusses relevant design rules and synthesis strategies to access highly stable HOFs.
Collapse
Affiliation(s)
- Xiyu Song
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yao Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Chen Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Dong Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Guowei Zhuang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Kent O Kirlikovali
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Omar K Farha
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
30
|
Li F, Kan JL, Yao BJ, Dong YB. Synthesis of Chiral Covalent Organic Frameworks via Asymmetric Organocatalysis for Heterogeneous Asymmetric Catalysis. Angew Chem Int Ed Engl 2022; 61:e202115044. [PMID: 35357070 DOI: 10.1002/anie.202115044] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 12/13/2022]
Abstract
A general and efficient organocatalytic asymmetric polymerization approach for the synthesis of chiral covalent organic frameworks (CCOFs) has been developed. With a chiral 2-methylpyrrolidine catalyst, a series of tris(N-salicylideneamine)-derived β-ketoenamine-CCOFs are directly constructed from prochiral aldehyde- and primary amine-monomers. The adopted aminocatalytic asymmetric Schiff-base condensation herein is performed under ambient conditions with clear green synthetic advantages over the conventional acid-catalysed solvothermal methods. The obtained β-ketoenamine-CCOFs can be further metalated by a solid-state coordination approach, and the resulting CuII @CCOFs can highly promote an asymmetric A3 -coupling reaction. Specifically, a CuII @CCOF@chitosan aerogel was fabricated as a highly efficient fixed-bed model reactor for scaled-up catalysis. The concept of aminocatalytic asymmetric polymerization might open a new way for constructing the CCOFs via asymmetric organocatalysis.
Collapse
Affiliation(s)
- Fei Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bing-Jian Yao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
31
|
Chen Q, Zhang T, Chen X, Liang M, Zhao H, Yuan P, Han Y, Li CP, Hao J, Xue P. Tunable Fluorescence in Two-Component Hydrogen-Bonded Organic Frameworks Based on Energy Transfer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24509-24517. [PMID: 35588507 DOI: 10.1021/acsami.2c05897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A dumbbell-shaped compound (TPAD) with four 2,4-diaminotriazine moieties as H-bond units and a benzene ring as a bridge group was found to form hydrogen-bonded organic frameworks (HOFs) with strong cyan fluorescence. An energy acceptor, 6,6',6″,6‴-(((benzo[c][1,2,5]thiadiazole-4,7-diylbis-(4,1-phenylene))bis(azanetriyl))tetrakis(benzene-4,1-diyl))tetrakis(1,3,5-triazine-2,4-diamine) (BTAD), with the same molecular skeleton as TPAD and a longer emission wavelength could homogeneously distribute within the framework of TPAD through occupying the locations of TPAD. As a result, two-component HOFs (TC-HOFs) were formed. The nonradiative energy transfer from TPAD as the donor to BTAD as the acceptor happens within frameworks owing to the efficient spectral overlap between the emission of TPAD and the absorption of BTAD. Moreover, the emission wavelengths and colors of TC-HOFs could be easily and continuously modulated by the content of the acceptor. The fluorescence color changed from cyan to orange when the content of BTAD gradually increased. This finding affirms that TC-HOFs with continuously adjustable composition can be constructed from two molecules with the same molecular skeleton, and highly efficient nonradiative energy transfer may happen in porous TC-HOFs. To the best of our knowledge, these TC-HOFs are the first example of TC-HOFs involved in energy transfer.
Collapse
Affiliation(s)
- Qiao Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Tong Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xinyu Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Meng Liang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - He Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Pengfei Yuan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yanning Han
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Cheng-Peng Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jingjun Hao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Pengchong Xue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
32
|
Ami T, Oka K, Tsuchiya K, Tohnai N. Porous Organic Salts: Diversifying Void Structures and Environments. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takahiro Ami
- Department of Applied Chemistry and Center for Future Innovation (CFi) Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
| | - Kouki Oka
- Department of Applied Chemistry and Center for Future Innovation (CFi) Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
| | - Keiho Tsuchiya
- Department of Applied Chemistry and Center for Future Innovation (CFi) Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry and Center for Future Innovation (CFi) Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
| |
Collapse
|
33
|
Ennis C, Appadoo DRT, Boer SA, White NG. Vibrational mode analysis of hydrogen-bonded organic frameworks (HOFs): synchrotron infrared studies. Phys Chem Chem Phys 2022; 24:10784-10797. [PMID: 35475452 DOI: 10.1039/d2cp00796g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a promising class of porous crystalline materials for gas sorption and gas separation technologies that can be constructed under mild synthetic conditions. In forming three-dimensional networks of flexible hydrogen bonds between donor/acceptor subunits, these materials have displayed high stability at elevated temperature and under vacuum. Although the structural properties of HOFs are commonly characterized by diffraction techniques, new complimentary methods to elucidate phase behaviour and host-guest interactions at the molecular level are sought, particularly those that can be applied under changing physical conditions or solvent environment. To this end, this study has applied synchrotron far-IR and mid-IR spectroscopy to probe the properties of two known and one new HOF system assembled from tetrahedral amidinium and carboxylate building blocks. All three frameworks produce feature-rich and resolved infrared profiles from 30 to 4000 cm-1 that provide information on hydrogen-bonded water solvent networks and the HOF channel topography via lattice and torsional bands. Comparison of experimental peaks to frequencies and atomic displacements (eigenvectors) predicted by high-level periodic DFT calculations have allowed for the assignment of vibrational modes associated with the aforementioned physicochemical properties. Now compiled, the specific vibrational modes identified as common to charge-assisted hydrogen-bonding motifs, as well as low frequency lattice and torsional bands attributed to HOF pore morphology and water-of-hydration networks, can act as diagnostic features in future spectroscopic investigations of HOF properties, such as those toward the design and tuning of host-guest properties for targeted applications.
Collapse
Affiliation(s)
- Courtney Ennis
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand. .,The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Dominique R T Appadoo
- ANSTO Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria, 3148, Australia
| | - Stephanie A Boer
- Research School of Chemistry, The Australian National University, Canberra ACT 2600, Australia
| | - Nicholas G White
- Research School of Chemistry, The Australian National University, Canberra ACT 2600, Australia
| |
Collapse
|
34
|
Gu Q, Zhao XL, Meng M, Shao Z, Zheng Q, Xuan W. Crystalline porous ionic salts assembled from polyoxometalates and cationic capsule for the selective photocatalytic aerobic oxidation of aromatic alcohols to aldehydes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Electron and proton conducting framework organic salt single crystals. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Li F, Kan J, Yao B, Dong Y. Synthesis of Chiral Covalent Organic Frameworks via Asymmetric Organocatalysis for Heterogeneous Asymmetric Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fei Li
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Jing‐Lan Kan
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Bing‐Jian Yao
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Yu‐Bin Dong
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
37
|
Biomimetic KcsA channels with ultra-selective K + transport for monovalent ion sieving. Nat Commun 2022; 13:1701. [PMID: 35361770 PMCID: PMC8971412 DOI: 10.1038/s41467-022-29382-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Ultra-selective and fast transport of K+ are of significance for water desalination, energy conversion, and separation processes, but current bottleneck of achieving high-efficiency and exquisite transport is attributed to the competition from ions of similar dimensions and same valence through nanochannel communities. Here, inspired by biological KcsA channels, we report biomimetic charged porous subnanometer cages that enable ultra-selective K+ transport. For nanometer to subnanometer scales, conically structured double-helix columns exhibit typical asymmetric transport behaviors and conduct rapid K+ with a transport rate of 94.4 mmol m−2 h−1, resulting in the K+/Li+ and K+/Na+ selectivity ratios of 363 and 31, respectively. Experiments and simulations indicate that these results stem from the synergistic effects of cation-π and electrostatic interactions, which impose a higher energy barrier for Li+ and Na+ and lead to selective K+ transport. Our findings provide an effective methodology for creating in vitro biomimetic devices with high-performance K+ ion sieving. Materials for the selective transport of K+ have application in a variety of fields including water desalination and separation processes. Here the authors report charged porous subnanometer cages that are inspired in biological KcsA channels; high K+ transport rates and high K+/Li+ and K+/Na+ selectivity ratios are obtained, showing great potential in advanced sieving processes and efficient water treatments.
Collapse
|
38
|
Yu X, Li C, Chang J, Wang Y, Xia W, Suo J, Guan X, Valtchev V, Yan Y, Qiu S, Fang Q. Gating Effects for Ion Transport in Three-Dimensional Functionalized Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022; 61:e202200820. [PMID: 35072979 DOI: 10.1002/anie.202200820] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 12/12/2022]
Abstract
The development of bioinspired nano/subnano-sized (<2 nm) ion channels is still considered a great challenge due to the difficulty in precisely controlling pore's internal structure and chemistry. Herein, for the first time, we report that three-dimensional functionalized covalent organic frameworks (COFs) can act as an effective nanofluidic platform for intelligent modulation of the ion transport. By strategic attachment of 12-crown-4 groups to the monomers as ion-driver door locks, we demonstrate that gating effects of functionalized COFs can be activated by lithium ions. The obtained materials exhibit an outstanding selective ion transmission performance with a high gating ratio (up to 23.6 for JUC-590), which is among the highest values in metal ion-activated solid-state nanochannels reported so far. Furthermore, JUC-590 offers high tunability, selectivity, and recyclability of ion transport proved by the experimental and simulated studies.
Collapse
Affiliation(s)
- Xiuqin Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Cuiyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Jianhong Chang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Weifeng Xia
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Jinquan Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Song Ling Rd, Qingdao, Shandong, 266101, China.,Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, 14050, Caen, France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, DE 19716, USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
39
|
Yu X, Li C, Chang J, Wang Y, Xia W, Suo J, Guan X, Valtchev V, Yan Y, Qiu S, Fang Q. Gating Effects for Ion Transport in Three‐Dimensional Functionalized Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiuqin Yu
- Jilin University College of Chemistry CHINA
| | - Cuiyan Li
- Jilin University College of Chemistry CHINA
| | | | - Yujie Wang
- Jilin University College of Chemistry CHINA
| | | | | | - Xinyu Guan
- Jilin University College of Chemistry CHINA
| | - Valentin Valtchev
- Normandie Université: Normandie Universite Laboratoire Catalyse et Spectrochimie FRANCE
| | - Yushan Yan
- University of Delaware Chemical and Biomolecular Engineering UNITED STATES
| | - Shilun Qiu
- Jilin University College of Chemistry 2699 Qianjin StreetChangchun 130118 Changchun CHINA
| | - Qianrong Fang
- Jilin University Department of Chemistry 2699 Qianjin Street 130012 Changchun CHINA
| |
Collapse
|
40
|
Samanta J, Dorn RW, Zhang W, Jiang X, Zhang M, Staples RJ, Rossini AJ, Ke C. An ultra-dynamic anion-cluster-based organic framework. Chem 2022. [DOI: 10.1016/j.chempr.2021.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Foyle ÉM, Tay HM, White NG. Towards hydrogen and halogen bonded frameworks based on 3,5-bis(triazolyl)pyridinium motifs. CrystEngComm 2022. [DOI: 10.1039/d2ce00273f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Construction of supramolecular assemblies using hydrogen and halogen bonding between anions and the 3,5-bis(triazolyl)pyridinium motif was investigated.
Collapse
Affiliation(s)
- Émer M. Foyle
- Research School of Chemistry, The Australian National University, Canberra, ACT, Australia
| | - Hui Min Tay
- Research School of Chemistry, The Australian National University, Canberra, ACT, Australia
| | - Nicholas G. White
- Research School of Chemistry, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
42
|
Muang-Non P, Toop HD, Doonan CJ, White NG. Use of modulators and light to control crystallisation of a hydrogen bonded framework. Chem Commun (Camb) 2021; 58:306-309. [PMID: 34889329 DOI: 10.1039/d1cc06164j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of concentration, organic co-solvent, and salt modulators on the crystallisation of a hydrogen bonded framework was studied. The framework contains ∼1.4 nm wide channels and contains a diazobenzene based dicarboxylate anion. Light-induced cis/trans switching of this anion was also used to control crystallisation.
Collapse
Affiliation(s)
- Phonlakrit Muang-Non
- Research School of chemistry, The Australian National University, Canberra, ACT, Australia.
| | - Hamish D Toop
- Department of Chemistry and Centre for Advanced Materials, The University of Adelaide, Adelaide, Australia
| | - Christian J Doonan
- Department of Chemistry and Centre for Advanced Materials, The University of Adelaide, Adelaide, Australia
| | - Nicholas G White
- Research School of chemistry, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
43
|
Liu Y, Dai J, Zhang Z, Yang Y, Yang Q, Ren Q, Bao Z. Crystal Structure Transformation in Hydrogen-bonded Organic Frameworks via Ion Exchange. Chem Asian J 2021; 16:3978-3984. [PMID: 34626150 DOI: 10.1002/asia.202101151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 01/03/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) have emerged as rapidly growing porous materials while established permanent porosities are very fragile and difficult to stabilize due to weak hydrogen-bonding interactions among building units. Herein, we report a stable hydrogen-bonded metallotecton framework (termed as HOF-ZJU-102) that was constructed through hydrogen-bonding networks between cationic metal-organic complexes [Cu2 (Hade)4 (H2 O)2 ]4+ (Hade=adenine) and GeF6 2- anions. The framework not only shows permanent porosity, but also exhibits efficient separation performance of C2 H2 /C2 H4 at room temperature. More interestingly, its crystal structure could be irreversibly transformed into isostructural counterpart HOF-ZJU-101 by ion exchange in the SiF6 2- containing solution, evidenced by multiple characterization techniques including gas sorption measurements, 19 F NMR spectra, FTIR and EDS. Utilizing such an ion exchange mechanism, the collapsed HOF-ZJU-102 could be restored into HOF-ZJU-101 by simply soaking in the salt solution.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Juanjuan Dai
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.,Institute of Zhejiang University-Quzhou, Quzhou, 324000, P. R. China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.,Institute of Zhejiang University-Quzhou, Quzhou, 324000, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.,Institute of Zhejiang University-Quzhou, Quzhou, 324000, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.,Institute of Zhejiang University-Quzhou, Quzhou, 324000, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.,Institute of Zhejiang University-Quzhou, Quzhou, 324000, P. R. China
| |
Collapse
|
44
|
White NG. Amidinium⋯carboxylate frameworks: predictable, robust, water-stable hydrogen bonded materials. Chem Commun (Camb) 2021; 57:10998-11008. [PMID: 34605517 DOI: 10.1039/d1cc04782e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the last few years, the amidinium⋯carboxylate interaction has emerged as a powerful tool for the relatively predictable construction of families of three dimensional hydrogen bonded organic frameworks. These frameworks can be prepared in water and are surprisingly stable, including to heating in polar organic solvents and water. This feature article describes the design and synthesis of these materials, discusses their structures and stability, and highlights their recent applications for enzyme encapsulation and as precursors for the synthesis of molecularly thin hydrogen bonded 2D nanosheets.
Collapse
Affiliation(s)
- Nicholas G White
- Research School of Chemistry, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
45
|
Yu LJ, Cullen DA, Morshedi M, Coote ML, White NG. Room Temperature Hydrolysis of Benzamidines and Benzamidiniums in Weakly Basic Water. J Org Chem 2021; 86:13762-13767. [PMID: 34549965 DOI: 10.1021/acs.joc.1c01955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Benzamidinium compounds have found widespread use in both medicinal and supramolecular chemistry. In this work, we show that benzamidiniums hydrolyze at room temperature in aqueous base to give the corresponding primary amide. This reaction has a half-life of 300 days for unsubstituted benzamidinium at pH 9, but is relatively rapid at higher pH's (e.g., t1/2 = 6 days at pH 11 and 15 h at pH 13). Quantum chemistry combined with first-principles kinetic modeling can reproduce these trends and explain them in terms of the dominant pathway being initiated by attack of HO- on benzamidine. Incorporation of the amidinium motif into a hydrogen bonded framework offers a substantial protective effect against hydrolysis.
Collapse
Affiliation(s)
- Li-Juan Yu
- Research School of Chemistry, Australian National University, Canberra, ACT 2600, Australia
| | - Duncan A Cullen
- Research School of Chemistry, Australian National University, Canberra, ACT 2600, Australia
| | - Mahbod Morshedi
- Research School of Chemistry, Australian National University, Canberra, ACT 2600, Australia
| | - Michelle L Coote
- Research School of Chemistry, Australian National University, Canberra, ACT 2600, Australia
| | - Nicholas G White
- Research School of Chemistry, Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
46
|
Ivanova S, Köster E, Holstein JJ, Keller N, Clever GH, Bein T, Beuerle F. Isoreticular Crystallization of Highly Porous Cubic Covalent Organic Cage Compounds*. Angew Chem Int Ed Engl 2021; 60:17455-17463. [PMID: 33905140 PMCID: PMC8362030 DOI: 10.1002/anie.202102982] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/23/2021] [Indexed: 12/13/2022]
Abstract
Modular frameworks featuring well-defined pore structures in microscale domains establish tailor-made porous materials. For open molecular solids however, maintaining long-range order after desolvation is inherently challenging, since packing is usually governed by only a few supramolecular interactions. Here we report on two series of nanocubes obtained by co-condensation of two different hexahydroxy tribenzotriquinacenes (TBTQs) and benzene-1,4-diboronic acids (BDBAs) with varying linear alkyl chains in 2,5-position. n-Butyl groups at the apical position of the TBTQ vertices yielded soluble model compounds, which were analyzed by mass spectrometry and NMR spectroscopy. In contrast, methyl-substituted cages spontaneously crystallized as isostructural and highly porous solids with BET surface areas and pore volumes of up to 3426 m2 g-1 and 1.84 cm3 g-1 . Single crystal X-ray diffraction and sorption measurements revealed an intricate cubic arrangement of alternating micro- and mesopores in the range of 0.97-2.2 nm that are fine-tuned by the alkyl substituents at the BDBA linker.
Collapse
Affiliation(s)
- Svetlana Ivanova
- Julius-Maximilians-Universität WürzburgInstitut für Organische ChemieAm Hubland97074WürzburgGermany
- Julius-Maximilians-Universität WürzburgCenter for Nanosystems Chemistry (CNC)Theodor-Boveri-Weg97074WürzburgGermany
| | - Eva Köster
- Julius-Maximilians-Universität WürzburgInstitut für Organische ChemieAm Hubland97074WürzburgGermany
- Julius-Maximilians-Universität WürzburgCenter for Nanosystems Chemistry (CNC)Theodor-Boveri-Weg97074WürzburgGermany
| | - Julian J. Holstein
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieOtto-Hahn-Strasse 644227DortmundGermany
| | - Niklas Keller
- Ludwig-Maximilians-Universität MünchenDepartment of Chemistry & Center for NanoScience (CeNS)Butenandtstrasse 5–1381377MünchenGermany
| | - Guido H. Clever
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieOtto-Hahn-Strasse 644227DortmundGermany
| | - Thomas Bein
- Ludwig-Maximilians-Universität MünchenDepartment of Chemistry & Center for NanoScience (CeNS)Butenandtstrasse 5–1381377MünchenGermany
| | - Florian Beuerle
- Julius-Maximilians-Universität WürzburgInstitut für Organische ChemieAm Hubland97074WürzburgGermany
- Julius-Maximilians-Universität WürzburgCenter for Nanosystems Chemistry (CNC)Theodor-Boveri-Weg97074WürzburgGermany
| |
Collapse
|
47
|
Ivanova S, Köster E, Holstein JJ, Keller N, Clever GH, Bein T, Beuerle F. Isoretikuläre Kristallisation von hochporösen kubischen kovalentorganischen Käfigverbindungen**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Svetlana Ivanova
- Julius-Maximilians-Universität Würzburg Institut für Organische Chemie Am Hubland 97074 Würzburg Deutschland
- Julius-Maximilians-Universität Würzburg Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Deutschland
| | - Eva Köster
- Julius-Maximilians-Universität Würzburg Institut für Organische Chemie Am Hubland 97074 Würzburg Deutschland
- Julius-Maximilians-Universität Würzburg Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Deutschland
| | - Julian J. Holstein
- Technische Universität Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Niklas Keller
- Ludwig-Maximilians-Universität München Department of Chemistry & Center for NanoScience (CeNS) Butenandtstraße 5–13 81377 München Deutschland
| | - Guido H. Clever
- Technische Universität Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Thomas Bein
- Ludwig-Maximilians-Universität München Department of Chemistry & Center for NanoScience (CeNS) Butenandtstraße 5–13 81377 München Deutschland
| | - Florian Beuerle
- Julius-Maximilians-Universität Würzburg Institut für Organische Chemie Am Hubland 97074 Würzburg Deutschland
- Julius-Maximilians-Universität Würzburg Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Deutschland
| |
Collapse
|
48
|
Suzuki Y, Gutiérrez M, Tanaka S, Gomez E, Tohnai N, Yasuda N, Matubayasi N, Douhal A, Hisaki I. Construction of isostructural hydrogen-bonded organic frameworks: limitations and possibilities of pore expansion. Chem Sci 2021; 12:9607-9618. [PMID: 34349933 PMCID: PMC8293819 DOI: 10.1039/d1sc02690a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
The library of isostructural porous frameworks enables a systematic survey to optimize the structure and functionality of porous materials. In contrary to metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), a handful of isostructural frameworks have been reported for hydrogen-bonded organic frameworks (HOFs) due to the weakness of the bonds. Herein, we provide a rule-of-thumb to develop isostructural HOFs, where we demonstrate the construction of the third and fourth generation of isostructural HAT-based HOFs (TolHAT-1 and ThiaHAT-1) by considering three important structural factors, that are (1) directional H-bonding, (2) shape-fitted docking of the HAT core, and (3) modulation of peripheral moieties. Their structural and photo-physical properties including HCl vapor detection are presented. Moreover, TolHAT-1, ThiaHAT-1, and other isostructural HOFs (CPHAT-1 and CBPHAT-1) were thoroughly compared from the viewpoints of structures and properties. Importantly, molecular dynamics (MD) simulation proves to be rationally capable of evaluating the stability of isostructural HOFs. These results can accelerate the development of various isostructural molecular porous materials.
Collapse
Affiliation(s)
- Yuto Suzuki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Mario Gutiérrez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha Avenida Carlos III, S/N 45071 Toledo Spain
| | - Senri Tanaka
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Eduardo Gomez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha Avenida Carlos III, S/N 45071 Toledo Spain
| | - Norimitsu Tohnai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita Osaka 565-7891 Japan
| | | | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha Avenida Carlos III, S/N 45071 Toledo Spain
| | - Ichiro Hisaki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
49
|
Single-crystal structure of two-dimensional organic framework based on donor-acceptor interactions with charge-transfer effect. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1030-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Kodama K, Takase F, Hirose T. Direct enantioseparation of axially chiral 1,1'-biaryl-2,2'-diols using amidine-based resolving agents. RSC Adv 2021; 11:18162-18170. [PMID: 35480945 PMCID: PMC9033420 DOI: 10.1039/d1ra03546k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 11/30/2022] Open
Abstract
Amidine-based optically active resolving agents for enantiomer separation of axially chiral 1,1'-biaryl-2,2'-diols have been developed. A strongly basic amidine bearing no substituents on its nitrogen atoms enables the formation of their diastereomeric salts upon being mixed with weakly acidic phenol derivatives. Enantiopure 1,1'-biaryl-2,2'-diols can be obtained in high yields after only one crystallization of their salts with the chiral amidine derived from dehydroabietic acid. X-ray crystallography revealed that the amidine moiety forms a salt with the phenol group and additional intermolecular NH/π interactions contribute to the efficient chiral recognition process.
Collapse
Affiliation(s)
- Koichi Kodama
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University Japan
| | - Fusato Takase
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University Japan
| | - Takuji Hirose
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University Japan
| |
Collapse
|