1
|
Leksin I, Shelyakin M, Zakhozhiy I, Kozlova O, Beckett R, Minibayeva F. Ultraviolet-induced melanisation in lichens: physiological traits and transcriptome profile. PHYSIOLOGIA PLANTARUM 2024; 176:e14512. [PMID: 39221518 DOI: 10.1111/ppl.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Lichens are important components of high-latitude boreal and Arctic habitats. While stress tolerant, they are among the most sensitive ecosystem components to climate change, in particular, an increase in ultraviolet light (UV) arising from polar ozone depletion and deforestation. This study is the first to explore the effects of UV-B on gene expression in lichens to predict metabolic pathways involved in tolerance. Using transcriptome profiling and bioinformatic analyses, here we studied the effects of UV-B on gene expression in lichens using Lobaria pulmonaria (L.) Hoff. as a model species. UV-B exposure causes significant browning of the upper cortex of the thallus, which correlates to an increased expression of biosynthetic gene clusters involved in the synthesis of eu- and allomelanins and melanin precursors. Based on transcriptome analyses, we suggest that the biosynthesis of melanins and other secondary metabolites, such as naphthalene derivates, tropolones, anthraquinones, and xanthones, is a trade-off that lichens pay to protect essential metabolic processes such as photosynthesis and respiration. Expression profiles of general stress-associated genes, in particular, related to reactive oxygen species scavenging, protection of proteins, and DNA repair, clearly indicate that the mycobiont is the more UV-B-responsive and susceptible partner in lichen symbiosis. Our findings demonstrate that UV-B stress activates an intricate gene network involved in tolerance mechanisms of lichen symbionts. Knowledge obtained here may enable the prediction of likely effects on lichen biodiversity caused by climate change and pollution.
Collapse
Affiliation(s)
- Ilya Leksin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Mikhail Shelyakin
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
| | - Ilya Zakhozhiy
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
| | - Olga Kozlova
- Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Richard Beckett
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
- University of KwaZulu-Natal, Scottsville, South Africa
| | - Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| |
Collapse
|
2
|
Xu H, Yuan Z, Yang S, Su Z, Hou XD, Deng Z, Zhang Y, Rao Y. Discovery of a Fungal P450 with an Unusual Two-Step Mechanism for Constructing a Bicyclo[3.2.2]nonane Skeleton. J Am Chem Soc 2024; 146:8716-8726. [PMID: 38484171 DOI: 10.1021/jacs.4c01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The successful biomimetic or chemoenzymatic synthesis of target natural products (NPs) and their derivatives relies on enzyme discovery. Herein, we discover a fungal P450 BTG5 that can catalyze the formation of a bicyclo[3.2.2]nonane structure through an unusual two-step mechanism of dimerization and cyclization in the biosynthesis of beticolin 1, whose bicyclo[3.2.2]nonane skeleton connects an anthraquinone moiety and a xanthone moiety. Further investigation reveals that BTG5-T318 not only determines the substrate selectivity but also alters the catalytic reactions, which allows the separation of the reaction to two individual steps, thereby understanding its catalytic mechanism. It reveals that the first heterodimerization undergoes the common oxidation process for P450s, while the second uncommon formal redox-neutral cyclization step is proved as a redox-mediated reaction, which has never been reported. Therefore, this work advances our understanding of P450-catalyzed reactions and paves the way for expansion of the diversity of this class of NPs through synthetic biology.
Collapse
Affiliation(s)
- Huibin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Sai Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zengping Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiao-Dong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
3
|
Demir Ö, Zeng H, Schulz B, Schrey H, Steinert M, Stadler M, Surup F. Bioactive Compounds from an Endophytic Pezicula sp. Showing Antagonistic Effects against the Ash Dieback Pathogen. Biomolecules 2023; 13:1632. [PMID: 38002314 PMCID: PMC10669340 DOI: 10.3390/biom13111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
A fungal endophyte originating from the Canary Islands was identified as a potent antagonist against the fungal phytopathogen Hymenoscyphus fraxineus, which causes the devastating ash dieback disease. This endophyte was tentatively identified as Pezicula cf. ericae, using molecular barcoding. Isolation of secondary metabolites by preparative high-performance liquid chromatography (HPLC) yielded the known compounds CJ-17,572 (1), mycorrhizin A (3) and cryptosporioptides A-C (4-6), besides a new N-acetylated dihydroxyphenylalanin derivative 2, named peziculastatin. Planar structures were elucidated by NMR and HRMS data, while the relative stereochemistry of 2 was assigned by H,H and C,H coupling constants. The assignment of the unknown stereochemistry of CJ-17,572 (1) was hampered by the broadening of NMR signals. Nevertheless, after semisynthetic conversion of 1 into its methyl derivatives 7 and 8, presumably preventing tautomeric effects, the relative configuration could be assigned, whereas comparison of ECD data to those of related compounds determined the absolute configuration. Metabolites 1 and 3 showed significant antifungal effects in vitro against H. fraxineus. Furthermore, 4-6 exhibited significant dispersive effects on preformed biofilms of S. aureus at concentrations up to 2 µg/mL, while the biofilm formation of C. albicans was also inhibited. Thus, cryptosporioptides might constitute a potential source for the development of novel antibiofilm agents.
Collapse
Affiliation(s)
- Özge Demir
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (Ö.D.); (H.Z.); (H.S.); (M.S.)
| | - Haoxuan Zeng
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (Ö.D.); (H.Z.); (H.S.); (M.S.)
| | - Barbara Schulz
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; (B.S.); (M.S.)
| | - Hedda Schrey
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (Ö.D.); (H.Z.); (H.S.); (M.S.)
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; (B.S.); (M.S.)
| | - Michael Steinert
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; (B.S.); (M.S.)
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (Ö.D.); (H.Z.); (H.S.); (M.S.)
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; (B.S.); (M.S.)
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (Ö.D.); (H.Z.); (H.S.); (M.S.)
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; (B.S.); (M.S.)
| |
Collapse
|
4
|
Mund NK, Čellárová E. Recent advances in the identification of biosynthetic genes and gene clusters of the polyketide-derived pathways for anthraquinone biosynthesis and biotechnological applications. Biotechnol Adv 2023; 63:108104. [PMID: 36716800 DOI: 10.1016/j.biotechadv.2023.108104] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
Natural anthraquinones are represented by a large group of compounds. Some of them are widespread across the kingdoms, especially in bacteria, fungi and plants, while the others are restricted to certain groups of organisms. Despite the significant pharmacological potential of several anthraquinones (hypericin, skyrin and emodin), their biosynthetic pathways and candidate genes coding for key enzymes have not been experimentally validated. Understanding the genetic and epigenetic regulation of the anthraquinone biosynthetic gene clusters in fungal endophytes would help not only understand their pathways in plants, which ensure their commercial availability, but also favor them as promising systems for prospective biotechnological production.
Collapse
Affiliation(s)
- Nitesh Kumar Mund
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Genetics, Mánesova 23, 041 54 Košice, Slovakia
| | - Eva Čellárová
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Genetics, Mánesova 23, 041 54 Košice, Slovakia.
| |
Collapse
|
5
|
Yuan Z, Xu H, Zhang Y, Rao Y. Biosynthetic Pathways of Dimeric Natural Products Containing Bisanthraquinone and Related Xanthones. Chembiochem 2023; 24:e202200586. [PMID: 36342352 DOI: 10.1002/cbic.202200586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Many dimeric natural products containing bisanthraquinone and related xanthones with diverse structures and versatile bioactivities have been isolated over the years. However, the complicated biosynthetic pathways of such natural products, which have remained elusive until recently, negatively impact their mass bioproduction and biosynthetic structural modification for drug discovery. In this concept, we summarize the recent progress in gene cluster mining and biosynthetic pathway elucidation of natural products containing bisanthraquinone and related xanthones. These pioneering works may pave the way for further biosynthetic pathway elucidation and structure modification of dimeric natural products through gene and protein engineering.
Collapse
Affiliation(s)
- Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Huibin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
6
|
de Mattos-Shipley KMJ, Simpson TJ. The 'emodin family' of fungal natural products-amalgamating a century of research with recent genomics-based advances. Nat Prod Rep 2023; 40:174-201. [PMID: 36222427 PMCID: PMC9890505 DOI: 10.1039/d2np00040g] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/06/2022]
Abstract
Covering: up to 2022A very large group of biosynthetically linked fungal secondary metabolites are formed via the key intermediate emodin and its corresponding anthrone. The group includes anthraquinones such as chrysophanol and cladofulvin, the grisandienes geodin and trypacidin, the diphenyl ether pestheic acid, benzophenones such as monodictyphenone and various xanthones including the prenylated shamixanthones, the agnestins and dimeric xanthones such as the ergochromes, cryptosporioptides and neosartorin. Such compounds exhibit a wide range of bioactivities and as such have been utilised in traditional medicine for centuries, as well as garnering more recent interest from the pharmaceutical sector. Additional interest comes from industries such as textiles and cosmetics due to their use as natural colourants. A variety of biosynthetic routes and mechanisms have been proposed for this family of compounds, being altered and updated as new biosynthetic methods develop and new results emerge. After nearly 100 years of such research, this review aims to provide a comprehensive overview of what is currently known about the biosynthesis of this important family, amalgamating the early chemical and biosynthetic studies with the more recent genetics-based advances and comparative bioinformatics.
Collapse
Affiliation(s)
| | - Thomas J Simpson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
7
|
Hou X, Xu H, Yuan Z, Deng Z, Fu K, Gao Y, Liu C, Zhang Y, Rao Y. Structural analysis of an anthrol reductase inspires enantioselective synthesis of enantiopure hydroxycycloketones and β-halohydrins. Nat Commun 2023; 14:353. [PMID: 36681664 PMCID: PMC9867772 DOI: 10.1038/s41467-023-36064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
Asymmetric reduction of prochiral ketones, particularly, reductive desymmetrization of 2,2-disubstituted prochiral 1,3-cyclodiketones to produce enantiopure chiral alcohols is challenging. Herein, an anthrol reductase CbAR with the ability to accommodate diverse bulky substrates, like emodin, for asymmetric reduction is identified. We firstly solve crystal structures of CbAR and CbAR-Emodin complex. It reveals that Tyr210 is critical for emodin recognition and binding, as it forms a hydrogen-bond interaction with His162 and π-π stacking interactions with emodin. This ensures the correct orientation for the stereoselectivity. Then, through structure-guided engineering, variant CbAR-H162F can convert various 2,2-disubstituted 1,3-cyclodiketones and α-haloacetophenones to optically pure (2S, 3S)-ketols and (R)-β-halohydrins, respectively. More importantly, their stereoselectivity mechanisms are also well explained by the respective crystal structures of CbAR-H162F-substrate complex. Therefore, this study demonstrates that an in-depth understanding of catalytic mechanism is valuable for exploiting the promiscuity of anthrol reductases to prepare diverse enantiopure chiral alcohols.
Collapse
Affiliation(s)
- Xiaodong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Huibin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Kai Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yue Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China.
| |
Collapse
|
8
|
Ushimaru R, Abe I. Unusual Dioxygen-Dependent Reactions Catalyzed by Nonheme Iron Enzymes in Natural Product Biosynthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Yang C, Zhang L, Zhang W, Huang C, Zhu Y, Jiang X, Liu W, Zhao M, De BC, Zhang C. Biochemical and structural insights of multifunctional flavin-dependent monooxygenase FlsO1-catalyzed unexpected xanthone formation. Nat Commun 2022; 13:5386. [PMID: 36104338 PMCID: PMC9474520 DOI: 10.1038/s41467-022-33131-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Xanthone-containing natural products display diverse pharmacological properties. The biosynthetic mechanisms of the xanthone formation have not been well documented. Here we show that the flavoprotein monooxygenase FlsO1 in the biosynthesis of fluostatins not only functionally compensates for the monooxygenase FlsO2 in converting prejadomycin to dehydrorabelomycin, but also unexpectedly converts prejadomycin to xanthone-containing products by catalyzing three successive oxidations including hydroxylation, epoxidation and Baeyer-Villiger oxidation. We also provide biochemical evidence to support the physiological role of FlsO1 as the benzo[b]-fluorene C5-hydrolase by using nenestatin C as a substrate mimic. Finally, we resolve the crystal structure of FlsO1 in complex with the cofactor flavin adenine dinucleotide close to the “in” conformation to enable the construction of reactive substrate-docking models to understand the basis of a single enzyme-catalyzed multiple oxidations. This study highlights a mechanistic perspective for the enzymatic xanthone formation in actinomycetes and sets an example for the versatile functions of flavoproteins. The biosynthesis of xanthones has not been well documented. Here, the authors report that monooxygenase FlsO1 catalyzes three successive oxidations – hydroxylation, epoxidation and Baeyer–Villiger oxidation—to form the xanthone scaffold in actinomycetes.
Collapse
|
10
|
Kong L, Deng Z, You D. Chemistry and biosynthesis of bacterial polycyclic xanthone natural products. Nat Prod Rep 2022; 39:2057-2095. [PMID: 36083257 DOI: 10.1039/d2np00046f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Covering: up to the end of 2021Bacterial polycyclic xanthone natural products (BPXNPs) are a growing family of natural xanthones featuring a pentangular architecture with various modifications to the tricyclic xanthone chromophore. Their structural diversities and various activities have fueled biosynthetic and chemical synthetic studies. Moreover, their more potent activities than the clinically used drugs make them potential candidates for the treatment of diseases. Future unraveling of structure activity relationships (SARs) will provide new options for the (bio)-synthesis of drug analogues with higher activities. This review summarizes the isolation, structural elucidation and biological activities and more importantly, the recent strategies for the microbial biosynthesis and chemical synthesis of BPXNPs. Regarding their biosynthesis, we discuss the recent progress in enzymes that synthesize tricyclic xanthone, the protein candidates for structural moieties (methylene dioxygen bridge and nitrogen heterocycle), tailoring enzymes for methylation and halogenation. The chemical synthesis part summarizes the recent methodology for the division synthesis and coupling construction of achiral molecular skeletons. Ultimately, perspectives on the biosynthetic study of BPXNPs are discussed.
Collapse
Affiliation(s)
- Lingxin Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Delin You
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
11
|
Sebak M, Molham F, Greco C, Tammam MA, Sobeh M, El-Demerdash A. Chemical diversity, medicinal potentialities, biosynthesis, and pharmacokinetics of anthraquinones and their congeners derived from marine fungi: a comprehensive update. RSC Adv 2022; 12:24887-24921. [PMID: 36199881 PMCID: PMC9434105 DOI: 10.1039/d2ra03610j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022] Open
Abstract
Marine fungi receive excessive attention as prolific producers of structurally unique secondary metabolites, offering promising potential as substitutes or conjugates for current therapeutics, whereas existing research has only scratched the surface in terms of secondary metabolite diversity and potential industrial applications as only a small share of bioactive natural products have been identified from marine-derived fungi thus far. Anthraquinones derived from filamentous fungi are a distinct large group of polyketides containing compounds which feature a common 9,10-dioxoanthracene core, while their derivatives are generated through enzymatic reactions such as methylation, oxidation, or dimerization to produce a large variety of anthraquinone derivatives. A considerable number of reported anthraquinones and their derivatives have shown significant biological activities as well as highly economical, commercial, and biomedical potentialities such as anticancer, antimicrobial, antioxidant, and anti-inflammatory activities. Accordingly, and in this context, this review comprehensively covers the state-of-art over 20 years of about 208 structurally diverse anthraquinones and their derivatives isolated from different species of marine-derived fungal genera along with their reported bioactivity wherever applicable. Also, in this manuscript, we will present in brief recent insights centred on their experimentally proved biosynthetic routes. Moreover, all reported compounds were extensively investigated for their in-silico drug-likeness and pharmacokinetics properties which intriguingly highlighted a list of 20 anthraquinone-containing compounds that could be considered as potential drug lead scaffolds.
Collapse
Affiliation(s)
- Mohamed Sebak
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt
| | - Fatma Molham
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt
| | - Claudio Greco
- Molecular Microbiology Department, The John Innes Center Norwich Research Park Norwich NR4 7UH UK
| | - Mohamed A Tammam
- Department of Biochemistry, Faculty of Agriculture, Fayoum University Fayoum 63514 Egypt
| | - Mansour Sobeh
- AgroBioSciences Department, Mohammed VI Polytechnic University (UM6P) Ben Guerir Morocco
| | - Amr El-Demerdash
- Organic Chemistry Division, Department of Chemistry, Faculty of Science, Mansoura University Mansoura 35516 Egypt +00447834240424
- Department of Metabolic Biology and Biological Chemistry, The John Innes Center Norwich Research Park Norwich NR4 7UH UK
| |
Collapse
|
12
|
Meng L, Liu H, Lin Z, Wang J. Synthetic and Computational Study of the Enantioselective [3+2]-Cycloaddition of Chromones with MBH Carbonates. Org Lett 2022; 24:5890-5895. [PMID: 35925800 DOI: 10.1021/acs.orglett.2c01922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly efficient and straightforward access to enantioenriched five-membered ring-fused chromanones is developed via [3+2]-cycloaddition of 3-cyanochromones with Morita-Baylis-Hillman carbonates. Densely functionalized chiral cyclopenta[b]chromanones with three continuous quaternary and tertiary stereogenic carbon centers were obtained in high yields with high ee and dr (≤97% yield, 97% ee, and >20:1 dr). Moreover, density functional theory calculations have been carried out to investigate the mechanism and regio- and diastereoselectivity of the reaction.
Collapse
Affiliation(s)
- Ling Meng
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.,Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518000, P. R. China
| | - Heyang Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Jun Wang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.,Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518000, P. R. China
| |
Collapse
|
13
|
Hao X, Li S, Wang G, Li J, Peng Z, Zhang Y, Yu L, Gan M. Zelkovamycins F and G, Cyclopeptides with Cα-Methyl-threonine Residues, from an Endophytic Kitasatospora sp. JOURNAL OF NATURAL PRODUCTS 2022; 85:1715-1722. [PMID: 35715218 DOI: 10.1021/acs.jnatprod.2c00174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Zelkovamycins F and G (1 and 2), two new natural cyclic octapeptides possessing the unprecedented nonproteinogenic amino acid residues l-α-methyl-threonine and l-α-methyl-allo-threonine, respectively, along with four new analogues, zelkovamycins H-K (3-6), were identified from the endophytic Kitasatospora sp. CPCC 204717. Their structures were elucidated by detailed analysis of NMR and HRESIMS/MS spectroscopic data. The configurations of amino acid residues were determined by Marfey's analysis combined with NMR calculations. Compounds 1, 2, and 4 showed potent antibacterial activity against methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. The structure-activity relationship study revealed that the 2-methyl-3-oxobutyrine and sarcosine residues played important roles in their antibacterial activities. Zelkovamycin (7) and zelkovamycin E (8) exhibited significant antiviral activity against the hepatitis C virus.
Collapse
Affiliation(s)
- Xiaomeng Hao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shasha Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Guiyang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jianrui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Zonggen Peng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yuqin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Maoluo Gan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
14
|
Valdomir G, Tietze LF. Chromanone Lactones: A Neglected Group of Natural Products – Isolation, Structure Elucidation, Bioactivity, and Synthesis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guillermo Valdomir
- Departamento de Química Orgánica Facultad de Química Universidad de la República (UdelaR) General Flores 2124 11800 Montevideo Uruguay
| | - Lutz F. Tietze
- Institut für Organische und Molekulare Chemie Georg-August-Universität Göttingen Tammanstrasse 2 37077 Göttingen Germany
| |
Collapse
|
15
|
Yuan SW, Chen SH, Guo H, Chen LT, Shen HJ, Liu L, Gao ZZ. Elucidation of the Complete Biosynthetic Pathway of Phomoxanthone A and Identification of a Para-Para Selective Phenol Coupling Dimerase. Org Lett 2022; 24:3069-3074. [PMID: 35442692 DOI: 10.1021/acs.orglett.2c01050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fungal cytochrome P450 enzymes have been shown to catalyze regio- and stereoselective oxidative intermolecular phenol coupling. However, an enzyme capable of catalyzing undirected para-para (C4-4') coupling has not been reported. Here, we revealed the biosynthetic gene cluster (BGC) of phomoxanthone A from the marine fungus Diaporthe sp. SYSU-MS4722. We heterologously expressed 14 biosynthetic genes in Aspergillus oryzae NSAR1 and found that PhoCDEFGHK is involved in the early stage of phomoxanthone A biosynthesis to give chrysophanol and that chrysophanol is then processed by PhoBJKLMNP to yield penexanthone B. A feeding experiment suggested that PhoO, a cytochrome P450 enzyme, catalyzed the regioselective oxidative para-para coupling of penexanthone B to give phomoxanthone A. The mechanism of PhoO represents a novel enzymatic 4,4'-linkage dimerization method for tetrahydroxanthone formations, which would facilitate biosynthetic engineering of structurally diverse 4,4'-linked dimeric tetrahydroxanthones.
Collapse
Affiliation(s)
- Si-Wen Yuan
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sen-Hua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Li-Tong Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong-Jie Shen
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Zhi-Zeng Gao
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| |
Collapse
|
16
|
Skellam E. Biosynthesis of fungal polyketides by collaborating and trans-acting enzymes. Nat Prod Rep 2022; 39:754-783. [PMID: 34842268 DOI: 10.1039/d1np00056j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: 1999 up to 2021Fungal polyketides encompass a range of structurally diverse molecules with a wide variety of biological activities. The giant multifunctional enzymes that synthesize polyketide backbones remain enigmatic, as do many of the tailoring enzymes involved in functional modifications. Recent advances in elucidating biosynthetic gene clusters (BGCs) have revealed numerous examples of fungal polyketide synthases that require the action of collaborating enzymes to synthesize the carbon backbone. This review will discuss collaborating and trans-acting enzymes involved in loading, extending, and releasing polyketide intermediates from fungal polyketide synthases, and additional modifications introduced by trans-acting enzymes demonstrating the complexity encountered when investigating natural product biosynthesis in fungi.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry, BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA.
| |
Collapse
|
17
|
Fukaya M, Ozaki T, Minami A, Oikawa H. Biosynthetic machineries of anthraquinones and bisanthraquinones in Talaromyces islandicus. Biosci Biotechnol Biochem 2022; 86:435-443. [PMID: 35108363 DOI: 10.1093/bbb/zbac009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022]
Abstract
Talaromyces islandicus is a unique fungus that produces more than 20 numbers of anthraquinones (AQs) and their dimeric natural products, bisanthraquinones (BQs). These compounds share a 9,10-anthracenedione core derived from emodin. The biosynthetic pathway of emodin has been firmly established, while that of other AQs and BQs is still unclear. In this study, we identified the biosynthetic gene clusters for chrysophanol and skyrin. The function of key modification enzymes was examined by performing biotransformation experiments and in vitro enzymatic reactions with emodin and its derivatives, allowing us to propose a mechanism for the modification reactions. The present study provides insight into the biosynthesis of AQs and BQs in T. islandicus.
Collapse
Affiliation(s)
- Mitsunori Fukaya
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Taro Ozaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Wei X, Wang WG, Matsuda Y. Branching and converging pathways in fungal natural product biosynthesis. Fungal Biol Biotechnol 2022; 9:6. [PMID: 35255990 PMCID: PMC8902786 DOI: 10.1186/s40694-022-00135-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/19/2022] [Indexed: 12/15/2022] Open
Abstract
AbstractIn nature, organic molecules with great structural diversity and complexity are synthesized by utilizing a relatively small number of starting materials. A synthetic strategy adopted by nature is pathway branching, in which a common biosynthetic intermediate is transformed into different end products. A natural product can also be synthesized by the fusion of two or more precursors generated from separate metabolic pathways. This review article summarizes several representative branching and converging pathways in fungal natural product biosynthesis to illuminate how fungi are capable of synthesizing a diverse array of natural products.
Collapse
|
19
|
Williams K, de Mattos-Shipley KMJ, Willis CL, Bailey AM. In silico analyses of maleidride biosynthetic gene clusters. Fungal Biol Biotechnol 2022; 9:2. [PMID: 35177129 PMCID: PMC8851701 DOI: 10.1186/s40694-022-00132-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/23/2022] [Indexed: 01/09/2023] Open
Abstract
Maleidrides are a family of structurally related fungal natural products, many of which possess diverse, potent bioactivities. Previous identification of several maleidride biosynthetic gene clusters, and subsequent experimental work, has determined the 'core' set of genes required to construct the characteristic medium-sized alicyclic ring with maleic anhydride moieties. Through genome mining, this work has used these core genes to discover ten entirely novel putative maleidride biosynthetic gene clusters, amongst both publicly available genomes, and encoded within the genome of the previously un-sequenced epiheveadride producer Wicklowia aquatica CBS 125634. We have undertaken phylogenetic analyses and comparative bioinformatics on all known and putative maleidride biosynthetic gene clusters to gain further insights regarding these unique biosynthetic pathways.
Collapse
Affiliation(s)
- Katherine Williams
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK.
| | - Kate M J de Mattos-Shipley
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Andrew M Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| |
Collapse
|
20
|
Cao HY, Yi C, Sun SF, Li Y, Liu YB. Anti-inflammatory Dimeric Tetrahydroxanthones from an Endophytic Muyocopron laterale. JOURNAL OF NATURAL PRODUCTS 2022; 85:148-161. [PMID: 35029398 DOI: 10.1021/acs.jnatprod.1c00878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Twelve new dimeric tetrahydroxanthones, muyocoxanthones A-L (1-12), were isolated from the endophytic fungus, Muyocopron laterale. Their structures were characterized on the basis of the interpretation of NMR and HRESIMS data. The absolute configurations of 1-10 and 12 were unambiguously determined by ECD spectrum data and single-crystal X-ray diffraction analysis. Compounds 2, 6, and 11 showed inhibitory activity against the LPS-induced production of nitric oxide (NO) in RAW 264.7 cells with IC50 values of 5.2, 1.3, and 5.1 μM, respectively.
Collapse
Affiliation(s)
- Hai-Yan Cao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Cheng Yi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Sen-Feng Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yun-Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
21
|
Qi F, Zhang W, Xue Y, Geng C, Huang X, Sun J, Lu X. Bienzyme-Catalytic and Dioxygenation-Mediated Anthraquinone Ring Opening. J Am Chem Soc 2021; 143:16326-16331. [PMID: 34586791 DOI: 10.1021/jacs.1c07182] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The C-10-C-4a bond cleavage of anthraquinone is believed to be a crucial step in fungal seco-anthraquinone biosynthesis and has long been proposed as a classic Baeyer-Villiger oxidation. Nonetheless, genetic, enzymatic, and chemical information on ring opening remains elusive. Here, a revised questin ring-opening mechanism was elucidated by in vivo gene disruption, in vitro enzymatic analysis, and 18O chasing experiments. It has been confirmed that the reductase GedF is responsible for the reduction of the keto group at C-10 in questin to a hydroxyl group with the aid of NADPH. The C-10-C-4a bond of the resultant questin hydroquinone is subsequently cleaved by the atypical cofactor-free dioxygenase GedK, giving rise to desmethylsulochrin. This proposed bienzyme-catalytic and dioxygenation-mediated anthraquinone ring-opening reaction shows universality.
Collapse
Affiliation(s)
- Feifei Qi
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
| | - Wei Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Xue
- International Centre for Bamboo and Rattan, State Forestry Administration Key Open Laboratory, Beijing 100102, China
| | - Ce Geng
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
| | - Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Sun
- International Centre for Bamboo and Rattan, State Forestry Administration Key Open Laboratory, Beijing 100102, China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266101, China
| |
Collapse
|
22
|
Peng X, Sun F, Li G, Wang C, Zhang Y, Wu C, Zhang C, Sun Y, Wu S, Zhang Y, Zong H, Guo R, Lou H. New Xanthones with Antiagricultural Fungal Pathogen Activities from the Endophytic Fungus Diaporthe goulteri L17. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11216-11224. [PMID: 34541846 DOI: 10.1021/acs.jafc.1c03513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Six new xanthone dimers, diaporxanthones A-F (1-6), and an unusual xanthone monomer diaporxanthone G (7), in addition to seven known analogues (8-14), were isolated and identified from endophytic Diaporthe goulteri L17 harbored in the fruits of the salt-tolerant plant Vitex trifolia. The chemical structures of these metabolites were elucidated on the basis of nuclear magnetic resonance, high-resolution electrospray ionization mass spectrometry, and reported data in the literature. Their absolute configurations were established by single-crystal X-ray diffraction analysis together with time-dependent density functional theory electronic circular dichroism calculations. Among these compounds, compounds 1 and 6 exhibited moderate antifungal activities against Nectria sp. and Colletotrichum musae and compound 4 showed significant cytotoxicity against all selected five cancer cell lines.
Collapse
Affiliation(s)
- Xiaoping Peng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, People's Republic of China
| | - Fusheng Sun
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao, Shandong 266071, People's Republic of China
| | - Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, People's Republic of China
| | - Cong Wang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, Guangxi 530006, People's Republic of China
| | - Yuhan Zhang
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, People's Republic of China
| | - Changzheng Wu
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, People's Republic of China
| | - Chunyang Zhang
- Key Laboratory of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Yong Sun
- Key Laboratory of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Siyi Wu
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, People's Republic of China
| | - Yuxiang Zhang
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, People's Republic of China
| | - Hui Zong
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, People's Republic of China
| | - Rui Guo
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, People's Republic of China
| | - Hongxiang Lou
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, People's Republic of China
- Key Laboratory of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| |
Collapse
|
23
|
Yang J, Mori T, Wei X, Matsuda Y, Abe I. Structural Basis for Isomerization Reactions in Fungal Tetrahydroxanthone Biosynthesis and Diversification. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jiali Yang
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- PRESTO Japan Science and Technology Agency Kawaguchi Saitama 332-0012 Japan
| | - Xingxing Wei
- Department of Chemistry City University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong SAR China
| | - Yudai Matsuda
- Department of Chemistry City University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong SAR China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
24
|
Abstract
The fungal kingdom has provided advances in our ability to identify biosynthetic gene clusters (BGCs) and to examine how gene composition of BGCs evolves across species and genera. However, little is known about the evolution of specific BGC regulators that mediate how BGCs produce secondary metabolites (SMs). A bioinformatics search for conservation of the Aspergillus fumigatus xanthocillin BGC revealed an evolutionary trail of xan-like BGCs across Eurotiales species. Although the critical regulatory and enzymatic genes were conserved in Penicillium expansum, overexpression (OE) of the conserved xan BGC transcription factor (TF) gene, PexanC, failed to activate the putative xan BGC transcription or xanthocillin production in P. expansum, in contrast to the role of AfXanC in A. fumigatus. Surprisingly, OE::PexanC was instead found to promote citrinin synthesis in P. expansum via trans induction of the cit pathway-specific TF, ctnA, as determined by cit BGC expression and chemical profiling of ctnA deletion and OE::PexanC single and double mutants. OE::AfxanC results in significant increases of xan gene expression and metabolite synthesis in A. fumigatus but had no effect on either xanthocillin or citrinin production in P. expansum. Bioinformatics and promoter mutation analysis led to the identification of an AfXanC binding site, 5'-AGTCAGCA-3', in promoter regions of the A. fumigatus xan BGC genes. This motif was not in the ctnA promoter, suggesting a different binding site of PeXanC. A compilation of a bioinformatics examination of XanC orthologs and the presence/absence of the 5'-AGTCAGCA-3' binding motif in xan BGCs in multiple Aspergillus and Penicillium spp. supports an evolutionary divergence of XanC regulatory targets that we speculate reflects an exaptation event in the Eurotiales. IMPORTANCE Fungal secondary metabolites (SMs) are an important source of pharmaceuticals on one hand and toxins on the other. Efforts to identify the biosynthetic gene clusters (BGCs) that synthesize SMs have yielded significant insights into how variation in the genes that compose BGCs may impact subsequent metabolite production within and between species. However, the role of regulatory genes in BGC activation is less well understood. Our finding that the bZIP transcription factor XanC, located in the xanthocillin BGC of both Aspergillus fumigatus and Penicillium expansum, has functionally diverged to regulate different BGCs in these two species emphasizes that the diversification of BGC regulatory elements may sometimes occur through exaptation, which is the co-option of a gene that evolved for one function to a novel function. Furthermore, this work suggests that the loss/gain of transcription factor binding site targets may be an important mediator in the evolution of secondary-metabolism regulatory elements.
Collapse
|
25
|
Yang J, Mori T, Wei X, Matsuda Y, Abe I. Structural Basis for Isomerization Reactions in Fungal Tetrahydroxanthone Biosynthesis and Diversification. Angew Chem Int Ed Engl 2021; 60:19458-19465. [PMID: 34180120 DOI: 10.1002/anie.202107884] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/08/2022]
Abstract
The novel isomerase NsrQ, from Aspergillus novofumigatus, is a key enzyme in the biosynthesis of fungal tetrahydroxanthones and is responsible for dearomatizing cyclization to provide a tetrahydroxanthone scaffold. NsrQ catalyzes a two-step isomerization reaction, involving the isomerization of allylic alcohol and subsequent inversion of configuration at the methyl group. We report on the biochemical and structural characterizations of NsrQ, and its homologue Dcr3, from Diaporthe longicolla. The crystal structures of NsrQ and Dcr3 revealed their similar overall structures, with a cone-shaped α+β barrel fold, to those of the nuclear transport factor 2-like superfamily enzymes. Furthermore, the structures of Dcr3 and NsrQ variants complexed with substrate analogues and the site-directed mutagenesis studies identified the catalytic residues and the important hydrophobic residues in shaping the active site pocket for substrate binding. These enzymes thus utilize Glu and His residues as acid-base catalysts. Based on these observations, we proposed a detailed reaction mechanism for NsrQ-catalyzed isomerization reactions.
Collapse
Affiliation(s)
- Jiali Yang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,PRESTO Japan, Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| | - Xingxing Wei
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
26
|
Wei X, Chen X, Chen L, Yan D, Wang WG, Matsuda Y. Heterologous Biosynthesis of Tetrahydroxanthone Dimers: Determination of Key Factors for Selective or Divergent Synthesis. JOURNAL OF NATURAL PRODUCTS 2021; 84:1544-1549. [PMID: 33891392 DOI: 10.1021/acs.jnatprod.1c00022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tetrahydroxanthone dimers are fungal products, among which secalonic acid D (1) is one of the most studied compounds because of its potent biological activity. Because the biosynthetic gene cluster of 1 has been previously identified, we sought to heterologously produce 1 in Aspergillus oryzae by expressing the relevant biosynthetic genes. However, our initial attempt of the total biosynthesis of 1 failed; instead, it produced four isomers of 1 due to the activity of an endogenous enzyme of A. oryzae. Subsequent overexpression of the Baeyer-Villiger monooxygenase, AacuH, which competes with the endogenous enzyme, altered the product profile and successfully generated 1. Characterization of the key biosynthetic enzymes revealed the surprising substrate promiscuity of the dimerizing enzyme, AacuE, and indicated that efficient synthesis of 1 requires highly selective preparation of the tetrahydroxanthone monomer, which is apparently controlled by AacuH. This study facilitates engineered biosynthesis of tetrahydroxanthone dimers both in a selective and divergent manner.
Collapse
Affiliation(s)
- Xingxing Wei
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, People's Republic of China
| | - Xiaoxuan Chen
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, People's Republic of China
| | - Lin Chen
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, People's Republic of China
| | - Dexiu Yan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, People's Republic of China
| | - Wei-Guang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, People's Republic of China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, People's Republic of China
| |
Collapse
|
27
|
Lv XJ, Ding F, Wei YJ, Tan RX. Antiosteoporotic Tetrahydroxanthone Dimers from
Aspergillus brunneoviolaceus
FB
‐2 Residing in Human Gut. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiao Jing Lv
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Fei Ding
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Ying Jie Wei
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
28
|
Liu J, Liu A, Hu Y. Enzymatic dimerization in the biosynthetic pathway of microbial natural products. Nat Prod Rep 2021; 38:1469-1505. [PMID: 33404031 DOI: 10.1039/d0np00063a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covering: up to August 2020The dramatic increase in the identification of dimeric natural products generated by microorganisms and plants has played a significant role in drug discovery. The biosynthetic pathways of these products feature inherent dimerization reactions, which are valuable for biosynthetic applications and chemical transformations. The extraordinary mechanisms of the dimerization of secondary metabolites should advance our understanding of the uncommon chemical rules for natural product biosynthesis, which will, in turn, accelerate the discovery of dimeric reactions and molecules in nature and provide promising strategies for the total synthesis of natural products through dimerization. This review focuses on the enzymes involved in the dimerization in the biosynthetic pathway of microbial natural products, with an emphasis on cytochrome P450s, laccases, and intermolecular [4 + 2] cyclases, along with other atypical enzymes. The identification, characterization, and catalytic landscapes of these enzymes are also introduced.
Collapse
Affiliation(s)
- Jiawang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | | | | |
Collapse
|
29
|
Marshall JW, de Mattos-Shipley KMJ, Ghannam IAY, Munawar A, Killen JC, Lazarus CM, Cox RJ, Willis CL, Simpson TJ. Fusarochromene, a novel tryptophan-derived metabolite from Fusarium sacchari. Org Biomol Chem 2021; 19:182-187. [PMID: 33107888 DOI: 10.1039/d0ob02031a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fusarochromene isolated from the plant pathogenic fungus, Fusarium sacchari is closely related to a group of mycotoxins including fusarochromanone previously isolated from various Fusaria spp. Despite their assumed polyketide biogenesis, incorporation studies with 13C-labelled acetate, glycerol and tryptophans show that fusarochromene is unexpectedly derived via oxidative cleavage of the aromatic amino acid tryptophan. A putative biosynthetic gene cluster has been identified.
Collapse
Affiliation(s)
- James W Marshall
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Singh SK, Rajput A, De A, Chakraborti T, Husain SM. Promiscuity of an unrelated anthrol reductase of Talaromyces islandicus WF-38-12. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02148b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new anthrol reductase from Talaromyces islandicus (ARti-2).
Collapse
Affiliation(s)
- Shailesh Kumar Singh
- Molecular Synthesis and Drug Discovery Unit
- Centre of Biomedical Research
- SGPGIMS Campus
- Lucknow-226014
- India
| | - Anshul Rajput
- Molecular Synthesis and Drug Discovery Unit
- Centre of Biomedical Research
- SGPGIMS Campus
- Lucknow-226014
- India
| | - Arijit De
- Molecular Synthesis and Drug Discovery Unit
- Centre of Biomedical Research
- SGPGIMS Campus
- Lucknow-226014
- India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics
- University of Kalyani
- Nadia-741235
- India
| | - Syed Masood Husain
- Molecular Synthesis and Drug Discovery Unit
- Centre of Biomedical Research
- SGPGIMS Campus
- Lucknow-226014
- India
| |
Collapse
|
31
|
Hüttel W, Müller M. Regio- and stereoselective intermolecular phenol coupling enzymes in secondary metabolite biosynthesis. Nat Prod Rep 2020; 38:1011-1043. [PMID: 33196733 DOI: 10.1039/d0np00010h] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2005 to 2020Phenol coupling is a key reaction in the biosynthesis of important biopolymers such as lignin and melanin and of a plethora of biarylic secondary metabolites. The reaction usually leads to several different regioisomeric products due to the delocalization of a radical in the reaction intermediates. If axial chirality is involved, stereoisomeric products are obtained provided no external factor influences the selectivity. Hence, in non-enzymatic organic synthesis it is notoriously difficult to control the selectivity of the reaction, in particular if the coupling is intermolecular. From biosynthesis, it is known that especially fungi, plants, and bacteria produce biarylic compounds regio- and stereoselectively. Nonetheless, the involved enzymes long evaded discovery. First progress was made in the late 1990s; however, the breakthrough came only with the genomic era and, in particular, in the last few years the number of relevant publications has dramatically increased. The discoveries reviewed in this article reveal a remarkable diversity of enzymes that catalyze oxidative intermolecular phenol coupling, including various classes of laccases, cytochrome P450 enzymes, and heme peroxidases. Particularly in the case of laccases, the catalytic systems are often complex and additional proteins, substrates, or reaction conditions have a strong influence on activity and regio- and atroposelectivity. Although the field of (selective) enzymatic phenol coupling is still in its infancy, the diversity of enzymes identified recently could make it easier to select suitable candidates for biotechnological development and to approach this challenging reaction through biocatalysis.
Collapse
Affiliation(s)
- Wolfgang Hüttel
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104 Freiburg, Germany.
| | | |
Collapse
|
32
|
Zhang L, Fasoyin OE, Molnár I, Xu Y. Secondary metabolites from hypocrealean entomopathogenic fungi: novel bioactive compounds. Nat Prod Rep 2020; 37:1181-1206. [PMID: 32211639 PMCID: PMC7529686 DOI: 10.1039/c9np00065h] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2014 up to the third quarter of 2019 Entomopathogens constitute a unique, specialized trophic subgroup of fungi, most of whose members belong to the order Hypocreales (class Sordariomycetes, phylum Ascomycota). These Hypocrealean Entomopathogenic Fungi (HEF) produce a large variety of secondary metabolites (SMs) and their genomes rank highly for the number of predicted, unique SM biosynthetic gene clusters. SMs from HEF have diverse roles in insect pathogenicity as virulence factors by modulating various interactions between the producer fungus and its insect host. In addition, these SMs also defend the carcass of the prey against opportunistic microbial invaders, mediate intra- and interspecies communication, and mitigate abiotic and biotic stresses. Thus, these SMs contribute to the role of HEF as commercial biopesticides in the context of integrated pest management systems, and provide lead compounds for the development of chemical pesticides for crop protection. These bioactive SMs also underpin the widespread use of certain HEF as nutraceuticals and traditional remedies, and allowed the modern pharmaceutical industry to repurpose some of these molecules as life-saving human medications. Herein, we survey the structures and biological activities of SMs described from HEF, and summarize new information on the roles of these metabolites in fungal virulence.
Collapse
Affiliation(s)
- Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China.
| | - Opemipo Esther Fasoyin
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China.
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA.
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China.
| |
Collapse
|
33
|
Qin Z, Devine R, Booth TJ, Farrar EHE, Grayson MN, Hutchings MI, Wilkinson B. Formicamycin biosynthesis involves a unique reductive ring contraction. Chem Sci 2020; 11:8125-8131. [PMID: 33033611 PMCID: PMC7504897 DOI: 10.1039/d0sc01712d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/08/2020] [Indexed: 11/24/2022] Open
Abstract
Using a combination of biomimetic chemistry and molecular genetics we demonstrate that formicamycin biosynthesis proceeds via reductive Favorskii-like reaction.
Fasamycin natural products are biosynthetic precursors of the formicamycins. Both groups of compounds are polyketide natural products that exhibit potent antibacterial activity despite displaying different three-dimensional topologies. We show here that transformation of fasamycin into formicamycin metabolites requires two gene products and occurs via a novel two-step ring expansion-ring contraction pathway. Deletion of forX, encoding a flavin dependent monooxygenase, abolished formicamycin production and leads to accumulation of fasamycin E. Deletion of the adjacent gene forY, encoding a flavin dependent oxidoreductase, also abolished formicamycin biosynthesis and led to the accumulation of new lactone metabolites that represent Baeyer–Villiger oxidation products of the fasamycins. These results identify ForX as a Baeyer–Villiger monooxygenase capable of dearomatizing ring C of the fasamycins. Through in vivo cross feeding and biomimetic semi-synthesis experiments we showed that these lactone products represent biosynthetic intermediates that are reduced to formicamycins in a unique reductive ring contraction reaction catalyzed by ForY.
Collapse
Affiliation(s)
- Zhiwei Qin
- Department of Molecular Microbiology , John Innes Centre , Norwich Research Park , Norwich , NR4 7UH , UK .
| | - Rebecca Devine
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK .
| | - Thomas J Booth
- Department of Molecular Microbiology , John Innes Centre , Norwich Research Park , Norwich , NR4 7UH , UK .
| | - Elliot H E Farrar
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , UK
| | - Matthew N Grayson
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , UK
| | - Matthew I Hutchings
- Department of Molecular Microbiology , John Innes Centre , Norwich Research Park , Norwich , NR4 7UH , UK . .,School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK .
| | - Barrie Wilkinson
- Department of Molecular Microbiology , John Innes Centre , Norwich Research Park , Norwich , NR4 7UH , UK .
| |
Collapse
|
34
|
Xue J, Li H, Wu P, Xu L, Yuan Y, Wei X. Bioactive Polyhydroxanthones from Penicillium purpurogenum. JOURNAL OF NATURAL PRODUCTS 2020; 83:1480-1487. [PMID: 32293887 DOI: 10.1021/acs.jnatprod.9b01071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Eight new polyhydroxanthones, penicixanthones A-H (1-8), including four monomers (1-4) and four dimers (5-8), were isolated from solid cultures of Penicillium purpurogenum SC0070. Their structures were elucidated by extensive spectroscopic analysis, X-ray single-crystal diffraction, and theoretical computations of ECD spectra. Penicixanthone B (2) has a hexahydroxanthone structure featuring an unusual oxygen bridge between C-6 and C-8a. Penicixanthone D (4) is distinct from other penicixanthones in stereochemistry, and its biosynthetic mechanism was proposed based on theoretical simulations for the reaction pathway of C-10a epimerization. Penicixanthone G (6) exhibited the most potent cytotoxicity (IC50: 0.3-0.6 μM) when tested against human carcinoma A549, HeLa, and HepG2 cells, whereas it was nontoxic to the normal Vero cells (IC50 > 50 μM). It also displayed the strongest antibacterial activity (MIC: 0.4 μg/mL) against both Staphylococcus aureus and the methicillin-resistant strain MRSA.
Collapse
Affiliation(s)
- Jinghua Xue
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, People's Republic of China
| | - Hanxiang Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, People's Republic of China
| | - Ping Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, People's Republic of China
| | - Liangxiong Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, People's Republic of China
| | - Yunfei Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, People's Republic of China
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, People's Republic of China
| |
Collapse
|
35
|
Wei X, Matsuda Y. Unraveling the Fungal Strategy for Tetrahydroxanthone Biosynthesis and Diversification. Org Lett 2020; 22:1919-1923. [DOI: 10.1021/acs.orglett.0c00285] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xingxing Wei
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
36
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as niduterpenoid A from Aspergillus nidulans.
Collapse
|