1
|
de la Rosa O, Aguayo-Acosta A, Valenzuela-Amaro HM, Meléndez-Sánchez ER, Sosa-Hernández JE, Parra-Saldívar R. Development of biomaterial composite hydrogel as a passive sampler with potential application in wastewater-based surveillance. Heliyon 2024; 10:e37014. [PMID: 39296035 PMCID: PMC11407980 DOI: 10.1016/j.heliyon.2024.e37014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Nowadays, the need to track fast-spreading infectious diseases has raised due to the recent COVID-19 disease pandemic. As a response, Wastewater-based Surveillance (WBS) has emerged as an early detection and disease tracking method for large populations that enables a comprehensive overview of public health allowing for a faster response from public health sector to prevent large outbreaks. The process to achieve WBS requires a highly intensive sampling strategy with either expensive equipment or trained personnel to continuously sample. The sampling problem can be addressed by passive sampler development. Chitosan-based hydrogels are recognized for their capability to sample and remove various contaminants from wastewater, including metals, dyes, pharmaceuticals, among others. However, chitosan-based hydrogels unique characteristics, can be exploited to develop passive samplers of genetic material that can be a very valuable tool for WBS. This study aimed to develop a novel chitosan hydrogel formulation with enhanced characteristics suitable for use as a passive sampler of genetic material and its application to detect disease-causing pathogens present in wastewater. The study evaluates the effect of the concentration of different components on the formulation of a Chitosan composite hydrogel (Chitosan, Glutaraldehyde, Microcrystalline cellulose (MCC), and Polyethylene glycol (PEG)) on the hydrogel properties using a Box Hunter & Hunter experimental matrix. Hydrogels' weight, thickness, swelling ratio, microscopic morphology (SEM), FTIR assay, and zeta potential were characterized. The resulting hydrogel formulations were shown to be highly porous, positively charged (Zeta potential up to 35.80 ± 1.44 mV at pH 3) and with high water swelling capacity (up to 703.89 ± 15.00 %). Based on the results, a formulation from experimental design was selected and then evaluated its capacity to adsorb genetic material from a control spiked water with Influenza A virus synthetic vector. The adsorption capacity of the selected formulation was 4157.04 ± 64.74 Gene Copies/mL of Influenza A virus synthetic vector. The developed hydrogel showed potential to be used as passive sampler for pathogen detection in wastewater. However, deeper research can be conducted to improve adsorption, desorption and extraction techniques of genetic material from chitosan-hydrogel matrices.
Collapse
Affiliation(s)
- Orlando de la Rosa
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Hiram Martín Valenzuela-Amaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Edgar Ricardo Meléndez-Sánchez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| |
Collapse
|
2
|
Xing Y, Wang Y, Wang R, Sun X, Min Z, Tian W, Jing G. The study on 4D culture system of squamous cell carcinoma of tongue. Biomed Mater 2024; 19:065006. [PMID: 39208843 DOI: 10.1088/1748-605x/ad7555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Traditional cell culture methods often fail to accurately replicate the intricate microenvironments crucial for studying specific cell growth patterns. In our study, we developed a 4D cell culture model-a precision instrument comprising an electromagnet, a force transducer, and a cantilever bracket. The experimental setup involves placing a Petri dish above the electromagnet, where gel beads encapsulating magnetic nanoparticles and tongue cancer cells are positioned. In this model, a magnetic force is generated on the magnetic nanoparticles in the culture medium to drive the gel to move and deform when the magnet is energized, thereby exerting an external force on the cells. This setup can mimic the microenvironment of tongue squamous cell carcinoma CAL-27 cells under mechanical stress induced by tongue movements. Electron microscopy and rheological analysis were performed on the hydrogels to confirm the porosity of alginate and its favorable viscoelastic properties. Additionally, Calcein-AM/PI staining was conducted to verify the biosafety of the hydrogel culture system. It mimics the microenvironment where tongue squamous cell carcinoma CAL-27 cells are stimulated by mechanical stress during tongue movement. Electron microscopy and rheological analysis experiments were conducted on hydrogels to assess the porosity of alginate and its viscoelastic properties. Calcein-AM/PI staining was performed to evaluate the biosafety of the hydrogel culture system. We confirmed that the proliferation of CAL-27 tongue squamous cells significantly increased with increased matrix stiffness after 5 d as assessed by MTT. After 15 d of incubation, the tumor spheroid diameter of the 1%-4D group was larger than that of the hydrogel-only culture. The Transwell assay demonstrated that mechanical stress stimulation and increased matrix stiffness could enhance cell aggressiveness. Flow cytometry experiments revealed a decrease in the number of cells in the resting or growth phase (G0/G1 phase), coupled with an increase in the proportion of cells in the preparation-for-division phase (G2/M phase). RT-PCR confirmed decreased expression levels of P53 and integrinβ3 RNA in the 1%-4D group after 21 d of 4D culture, alongside significant increases in the expression levels of Kindlin-2 and integrinαv. Immunofluorescence assays confirmed that 4D culture enhances tissue oxygenation and diminishes nuclear aggregation of HIF-1α. This device mimics the microenvironment of tongue cancer cells under mechanical force and increased matrix hardness during tongue movement, faithfully reproducing cell growthin vivo, and offering a solid foundation for further research on the pathogenic matrix of tongue cancer and drug treatments.
Collapse
Affiliation(s)
- Yuhang Xing
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
- School of Stomatology, Harbin Medical University, Harbin 150001, People's Republic of China
| | - Yuezhu Wang
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
- School of Stomatology, Harbin Medical University, Harbin 150001, People's Republic of China
| | - Ruiqi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Xiangyu Sun
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
- School of Stomatology, Harbin Medical University, Harbin 150001, People's Republic of China
| | - Zhang Min
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
- School of Stomatology, Harbin Medical University, Harbin 150001, People's Republic of China
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Guangping Jing
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
- School of Stomatology, Harbin Medical University, Harbin 150001, People's Republic of China
| |
Collapse
|
3
|
Fu F, Liu C, Jiang Z, Zhao Q, Shen A, Wu Y, Gu W. Polymeric silk fibroin hydrogel as a conductive and multifunctional adhesive for durable skin and epidermal electronics. SMART MEDICINE 2024; 3:e20240027. [PMID: 39420950 PMCID: PMC11425052 DOI: 10.1002/smmd.20240027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024]
Abstract
Silk fibroin (SF)-based hydrogels are promising multifunctional adhesive candidates for real-world applications in tissue engineering, implantable bioelectronics, artificial muscles, and artificial skin. However, developing conductive SF-based hydrogels that are suitable for the micro-physiological environment and maintain their physical and chemical properties over long periods of use remains challenging. Herein, we developed an ion-conductive SF hydrogel composed of glycidyl methacrylate silk fibroin (SilMA) and bioionic liquid choline acylate (ChoA) polymer chains, together with the modification of acrylated thymine (ThyA) and adenine (AdeA) functional groups. The resulting polymeric ion-conductive SF composite hydrogel demonstrated high bioactivity, strong adhesion strength, good mechanical compliance, and stretchability. The formed hydrogel network of ChoA chains can coordinate with the ionic strength in the micro-physiological environment while maintaining the adaptive coefficient of expansion and stable mechanical properties. These features help to form a stable ion-conducting channel for the hydrogel. Additionally, the hydrogel network modified with AdeA and ThyA, can provide a strong adhesion to the surface of a variety of substrates, including wet tissue through abundant hydrogen bonding. The biocompatible and ionic conductive SF composite hydrogels can be easily prepared and incorporated into flexible skin or epidermal sensing devices. Therefore, our polymeric SF-based hydrogel has great potential and wide application to be an important component of many flexible electronic devices for personalized healthcare.
Collapse
Affiliation(s)
- Fanfan Fu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Changyi Liu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Zhenlin Jiang
- College of Chemistry and Chemical EngineeringResearch Center for Advanced Mirco‐ and Nano‐Fabrication MaterialsShanghai University of Engineering ScienceShanghaiChina
| | - Qingyu Zhao
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Aining Shen
- Shenzhen Bay LaboratoryShenzhenGuangdongChina
| | - Yilun Wu
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
- Australian Institute of Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Wenyi Gu
- Australian Institute of Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
4
|
Hong SH, Lee MH, Go EJ, Park JC. A promising strategy for combating bacterial infections through the use of light-triggered ROS in Ce6-immobilized hydrogels. Regen Biomater 2024; 11:rbae101. [PMID: 39323742 PMCID: PMC11424027 DOI: 10.1093/rb/rbae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 09/27/2024] Open
Abstract
The reactive oxygen species (ROS) are composed of highly reactive molecules, including superoxide anions (O 2 • - ), hydrogen peroxide (H2O2) and hydroxyl radicals. Researchers have explored the potential benefits of using hydrogel dressings that incorporate active substances to accelerate wound healing. The present investigation involved the development of a hyaluronic acid (HA) hydrogel capable of producing ROS using LED irradiation. The process of creating a composite hydrogel was created by chemically bonding Ce6 to an amide group. Our analysis revealed that the synthesized hydrogel had a well-structured amide bond, and the degree of cross-linking was assessed through swelling, enzyme stability and cytotoxicity tests. ROS production was found to be influenced by both the intensity and duration of light exposure. Furthermore, in situations where cell toxicity resulting from ROS generation in the hydrogel surpassed 70%, no detectable genotoxic consequences were evident, and antibacterial activity was confirmed to be directly caused by the destruction of bacterial membranes as a result of ROS damage. Furthermore, the utilization of the generated ROS influences the polarization of macrophages, resulting in the secretion of pro-inflammatory cytokines, which is a characteristic feature of M1 polarization. Subsequently, we validated the efficacy of a HA hydrogel that produces ROS to directly eradicate microorganisms. Furthermore, this hydrogel facilitated indirect antibacterial activity by stimulating macrophages to release pro-inflammatory cytokines. These cytokines are crucial for coordinating cell-mediated immune responses and for modulating the overall effectiveness of the immune system. Therefore, the Ce6-HA hydrogel has the potential to serve as an effective wound dressing solution for infected wounds because of its ability to produce substantial levels or a consistent supply.
Collapse
Affiliation(s)
- Seung Hee Hong
- Department of Medical Engineering, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
| | - Mi Hee Lee
- Department of Medical Engineering, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
| | - Eun Jeong Go
- Department of Medical Engineering, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
| | - Jong-Chul Park
- Department of Medical Engineering, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Levin M, Tang Y, Eisenbach CD, Valentine MT, Cohen N. Understanding the Response of Poly(ethylene glycol) diacrylate (PEGDA) Hydrogel Networks: A Statistical Mechanics-Based Framework. Macromolecules 2024; 57:7074-7086. [PMID: 39156193 PMCID: PMC11325651 DOI: 10.1021/acs.macromol.3c02635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/31/2024] [Accepted: 06/28/2024] [Indexed: 08/20/2024]
Abstract
Thanks to many promising properties, including biocompatibility and the ability to experience large deformations, poly(ethylene glycol) diacrylate (PEGDA) hydrogels are excellent candidate materials for a wide range of applications. Interestingly, the polymerization of PEGDA leads to a network microstructure that is fundamentally different from that of the "classic" polymeric gels. Specifically, PEGDA hydrogels comprise PEG chains that are interconnected by multifunctional densely grafted rod-like polyacrylates (PAs), which serve as cross-linkers. In this work, we derive a microstructurally motivated model that captures the essential features which enable deformation in PEGDA hydrogels: (1) entropic elasticity of PEG chains, (2) deformation of PA rods, and (3) PA-PA interactions. Expressions for the energy-density functions and the stress associated with each of the three contributions are derived. The model demonstrates the microstructural evolution of the network during loading and reveals the role of key microscopic quantities. To validate the model, we fabricate and compress PEGDA hydrogel discs. The model is in excellent agreement with our experimental findings for a broad range of PEGDA compositions. Interestingly, we show that the response of PEGDA hydrogels with short PEG chains and long PA rods is governed by PA-PA interactions, whereas networks with longer PEG chains are dominated by entropy. To enable design, we employ the model to investigate the influence of key microstructural quantities, such as the length of the PEG and the PA chains, on the macroscopic properties and response. The findings from this work pave the way to the efficient design of PEGDA hydrogels with tunable properties and behaviors, which will enable the optimization of their performance in various applications.
Collapse
Affiliation(s)
- Michal Levin
- Department
of Materials Science and Engineering, Technion
- Israel Institute of Technology, Haifa 3200003, Israel
| | - Yongkui Tang
- Department
of Mechanical Engineering, University of
California, Santa
Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Claus D. Eisenbach
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Institut
for Polymerchemie, University of Stuttgart, Stuttgart D-70569, Germany
| | - Megan T. Valentine
- Department
of Mechanical Engineering, University of
California, Santa
Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Noy Cohen
- Department
of Materials Science and Engineering, Technion
- Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
6
|
Shi Y, Liu J, Deng J, Cao L, Li L, Shao J, Li J, Xiong D. Tough Bonding of PVA Hydrogel-on-Textured Titanium Alloy with Varying Texture Densities in Swollen State. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13773-13783. [PMID: 38920266 DOI: 10.1021/acs.langmuir.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cartilage defects in large joints are a common occurrence in numerous degenerative diseases, especially in osteoarthritis. The hydrogel-on-metal composite has emerged as a potential candidate material, as hydrogels, to some extent, replicate the composition of human articular cartilage consisting of collagen fibers and proteoglycans. However, achieving tough bonding between the hydrogel and titanium alloy remains a significant challenge due to the swelling of the hydrogel in a liquid medium. This swelling results in reduced interfacial toughness between the hydrogel and titanium alloy, limiting its potential clinical applications. Herein, our approach aimed to achieve durable bonding between a hydrogel and a titanium alloy composite in a swollen state by modifying the surface texture of the titanium alloy. Various textures, including circular and triangular patterns, with dimple densities ranging from 10 to 40%, were created on the surface of the titanium alloy. Subsequently, poly(vinyl alcohol) (PVA) hydrogel was deposited onto the textured titanium alloy using a casting-drying method. Our findings revealed that PVA hydrogel on the textured titanium alloy with a 30% texture density exhibited the highest interfacial toughness in the swollen state, measuring at 1300 J m-2 after reaching equilibrium swelling in deionized water, which is a more than 2-fold increase compared to the hydrogel on a smooth substrate. Furthermore, we conducted an analysis of the morphologies of the detached hydrogel from the textured titanium alloy after various swelling durations. The results indicated that interfacial toughness could be enhanced through mechanical interlocking, facilitated by the expanded volume of the hydrogel protrusions as the swelling time increased. Collectively, our study demonstrates the feasibility of achieving tough bonding between a hydrogel and a metal substrate in a liquid environment. This research opens up promising avenues for designing soft/hard heterogeneous materials with strong adhesive properties.
Collapse
Affiliation(s)
- Yan Shi
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jia Liu
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jinhai Deng
- School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China
| | - Long Li
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jiaojing Shao
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jianliang Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dangsheng Xiong
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
7
|
Sarhan N, Arafa EG, Elgiddawy N, Elsayed KNM, Mohamed F. Urea intercalated encapsulated microalgae composite hydrogels for slow-release fertilizers. Sci Rep 2024; 14:15032. [PMID: 38951590 PMCID: PMC11217492 DOI: 10.1038/s41598-024-58875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/03/2024] [Indexed: 07/03/2024] Open
Abstract
In agriculture, hydrogels can be addressed for effective operation of water and controlled-release fertilizers. Hydrogels have a significant ability for retaining water and improving nutrient availability in soil, enhancing plant growth while reducing water and fertilizer usage. This work aimed to prepare a hydrogel composite based on microalgae and biopolymers including chitosan and starch for use as a soil conditioner. The hydrogel composite was characterized by FTIR, XRD, and SEM. All hydrogel properties were studied including swelling degree, biodegradability, water-holding capacity, water retention, and re-swelling capacity in soil and water. The urea fertilizer loading and releasing behavior of the prepared hydrogels were investigated. The results revealed that the range of the maximal urea loading was between 99 and 440%, and the kinetics of loading was fitted with Freundlich model. The urea release % exhibited 78-95%, after 30 days, and the kinetics of release was fitted with zero-order, Higuchi, and Korsmeyer-Peppas models. Furthermore, the prepared hydrogels obtained a significant water-holding capacity, after blending soil (50 g) with small amount of hydrogels (1 g), the capacity increased in the range of 99.4-101.5%. In sum, the prepared hydrogels have the potential to be applied as a soil conditioner.
Collapse
Affiliation(s)
- Nada Sarhan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62 511, Egypt
| | - Esraa G Arafa
- Chemistry Department, Faculty of Science, Beni-Suef University, Salah Salim St., Beni-Suef, 62514, Egypt.
| | - Nada Elgiddawy
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62 511, Egypt
| | - Khaled N M Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma Mohamed
- Chemistry Department, Faculty of Science, Beni-Suef University, Salah Salim St., Beni-Suef, 62514, Egypt
- Materials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
- Nanophotonics and Applications Lab, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
8
|
Kim M, Hong S, Park JJ, Jung Y, Choi SH, Cho C, Ha I, Won P, Majidi C, Ko SH. A Gradient Stiffness-Programmed Circuit Board by Spatially Controlled Phase-Transition of Supercooled Hydrogel for Stretchable Electronics Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313344. [PMID: 38380843 DOI: 10.1002/adma.202313344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Due to emerging demands in soft electronics, there is an increasing need for material architectures that support robust interfacing between soft substrates, stretchable electrical interconnects, and embedded rigid microelectronics chips. Though researchers have adopted rigid-island structures to solve the issue, this approach merely shifts stress concentrations from chip-conductor interfaces to rigid-island-soft region interfaces in the substrate. Here, a gradient stiffness-programmed circuit board (GS-PCB) that possesses high stretchability and stability with surface mounted chips is introduced. The board comprises a stiffness-programmed hydrogel substrate and a laser-patterned liquid metal conductor. The hydrogel simultaneously obtains a large stiffness disparity and robust interfaces between rigid-islands and soft regions. These seemingly contradictory conditions are accomplished by adopting a gradient stiffness structure at the interfaces, enabled by combining polymers with different interaction energies and a supercooled sodium acetate solution. By integrating the gel with laser-patterned liquid metal with exceptional properties, GS-PCB exhibits higher electromechanical stability than other rigid-island research. To highlight the practicality of this approach, a finger-sensor device that successfully distinguishes objects by direct physical contact is fabricated, demonstrating its stability under various mechanical disturbances.
Collapse
Affiliation(s)
- Minwoo Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Sangwoo Hong
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jung Jae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Seok Hwan Choi
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Chulmin Cho
- Mechatronics Research, Device Solution, Samsung Electronics, 1, Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18848, South Korea
| | - Inho Ha
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Phillip Won
- Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Carmel Majidi
- Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Institute of Engineering Research/Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
9
|
Yang Y, Wang Y, Lin M, Liu M, Huang C. Bio-inspired facile strategy for programmable osmosis-driven shape-morphing elastomer composite structures. MATERIALS HORIZONS 2024; 11:2180-2190. [PMID: 38406864 DOI: 10.1039/d3mh01731a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Achieving programmable and reversible deformations of soft materials is a long-standing goal for various applications in soft robotics, flexible electronics and many other fields. Swelling-induced shape morphing has been intensively studied as one of the potential mechanisms. However, achieving an extremely large swelling ratio (>1000% in volume) remains challenging with existing swellable soft materials (e.g., hydrogels and water-swellable rubbers). Inspired by the shape change enabled by the osmosis-driven swelling in living organisms, herein, we report a polymer composite system composed of fine sodium chloride (NaCl) particles embedded in Ecoflex00-10 polymer. This Ecoflex00-10/NaCl polymer composite can achieve controllable volumetric swelling up to 3000% while maintaining a relatively high elastic stiffness. We demonstrate that this swellable polymer composite can serve as an active component to drive the shape morphing of various structures. By controlling the geometric design and the fraction of the NaCl particle, morphing structures capable of deforming sequentially are created. Finally, by encapsulating 3D printed polymer composite patterns using water-permeable PDMS membrane, a programmable braille with visual and tactile regulation is demonstrated for the purpose of information encryption. Our study provides a facile approach to generate customizable shape-morphing structures, aiming to broaden the range of techniques and applications for morphing devices.
Collapse
Affiliation(s)
- Yuanhang Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Yueying Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Marcus Lin
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Mingchao Liu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore.
- Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
10
|
Liu B, Chen K. Advances in Hydrogel-Based Drug Delivery Systems. Gels 2024; 10:262. [PMID: 38667681 PMCID: PMC11048949 DOI: 10.3390/gels10040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels, with their distinctive three-dimensional networks of hydrophilic polymers, drive innovations across various biomedical applications. The ability of hydrogels to absorb and retain significant volumes of water, coupled with their structural integrity and responsiveness to environmental stimuli, renders them ideal for drug delivery, tissue engineering, and wound healing. This review delves into the classification of hydrogels based on cross-linking methods, providing insights into their synthesis, properties, and applications. We further discuss the recent advancements in hydrogel-based drug delivery systems, including oral, injectable, topical, and ocular approaches, highlighting their significance in enhancing therapeutic outcomes. Additionally, we address the challenges faced in the clinical translation of hydrogels and propose future directions for leveraging their potential in personalized medicine and regenerative healthcare solutions.
Collapse
Affiliation(s)
- Boya Liu
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kuo Chen
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
11
|
Diepenbroek E, Mehta S, Borneman Z, Hempenius MA, Kooij ES, Nijmeijer K, de Beer S. Advances in Membrane Separation for Biomaterial Dewatering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4545-4566. [PMID: 38386509 PMCID: PMC10919095 DOI: 10.1021/acs.langmuir.3c03439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Biomaterials often contain large quantities of water (50-98%), and with the current transition to a more biobased economy, drying these materials will become increasingly important. Contrary to the standard, thermodynamically inefficient chemical and thermal drying methods, dewatering by membrane separation will provide a sustainable and efficient alternative. However, biomaterials can easily foul membrane surfaces, which is detrimental to the performance of current membrane separations. Improving the antifouling properties of such membranes is a key challenge. Other recent research has been dedicated to enhancing the permeate flux and selectivity. In this review, we present a comprehensive overview of the design requirements for and recent advances in dewatering of biomaterials using membranes. These recent developments offer a viable solution to the challenges of fouling and suboptimal performances. We focus on two emerging development strategies, which are the use of electric-field-assisted dewatering and surface functionalizations, in particular with hydrogels. Our overview concludes with a critical mention of the remaining challenges and possible research directions within these subfields.
Collapse
Affiliation(s)
- Esli Diepenbroek
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - Sarthak Mehta
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Zandrie Borneman
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Mark A. Hempenius
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - E. Stefan Kooij
- Physics
of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, 7500
AE Enschede, The
Netherlands
| | - Kitty Nijmeijer
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Sissi de Beer
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
12
|
Rodríguez-López R, Wang Z, Oda H, Erdi M, Kofinas P, Fytas G, Scarcelli G. Network Viscoelasticity from Brillouin Spectroscopy. Biomacromolecules 2024; 25:955-963. [PMID: 38156622 PMCID: PMC10865340 DOI: 10.1021/acs.biomac.3c01073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Even though the physical nature of shear and longitudinal moduli are different, empirical correlations between them have been reported in several biological systems. This correlation is of fundamental interest and immense practical value in biomedicine due to the importance of the shear modulus and the possibility to map the longitudinal modulus at high-resolution with all-optical spectroscopy. We investigate the origin of such a correlation in hydrogels. We hypothesize that both moduli are influenced in the same direction by underlying physicochemical properties, which leads to the observed material-dependent correlation. Matching theoretical models with experimental data, we quantify the scenarios in which the correlation holds. For polymerized hydrogels, a correlation was found across different hydrogels through a common dependence on the effective polymer volume fraction. For hydrogels swollen to equilibrium, the correlation is valid only within a given hydrogel system, as the moduli are found to have different scalings on the swelling ratio. The observed correlation allows one to extract one modulus from another in relevant scenarios.
Collapse
Affiliation(s)
- Raymundo Rodríguez-López
- Fischell
Department of Bioengineering, University
of Maryland, College
Park, Maryland 20742, United States
| | - Zuyuan Wang
- School
of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Haruka Oda
- School
of Information Science and Technology, The
University of Tokyo, Tokyo 113-8656,Japan
| | - Metecan Erdi
- Department
of Chemical and Biomolecular Engineering, University of Maryland, College
Park, Maryland 20742, United States
| | - Peter Kofinas
- Department
of Chemical and Biomolecular Engineering, University of Maryland, College
Park, Maryland 20742, United States
| | - George Fytas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Electronic Structure and Laser, FO.R.T.H, N. Plastira 10, Heraklion, 70013, Greece
| | - Giuliano Scarcelli
- Fischell
Department of Bioengineering, University
of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
13
|
Lee S, Lee WS, Enomoto T, Akimoto AM, Yoshida R. Anisotropically self-oscillating gels by spatially patterned interpenetrating polymer network. SOFT MATTER 2024; 20:796-803. [PMID: 38168689 DOI: 10.1039/d3sm01237a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Here we introduce sub-millimeter self-oscillating gels that undergo the Belousov-Zhabotinsky (BZ) reaction and can anisotropically oscillate like cardiomyocytes. The anisotropically self-oscillating gels in this study were realized by spatially patterning an acrylic acid-based interpenetrating network (AA-IPN). We found that the patterned AA-IPN regions, locally introduced at both ends of the gels through UV photolithography, can constrain the horizontal gel shape deformation during the BZ reaction. In other words, the two AA-IPN regions could act as a physical barrier to prevent isotropic deformation. Furthermore, we controlled the anisotropic deformation behavior during the BZ reaction by varying the concentration of acrylic acid used in the patterning process of the AA-IPN. As a result, a specific directional deformation behavior (66% horizontal/vertical amplitude ratio) was fulfilled, similar to that of cardiomyocytes. Our study can provide a promising insight to fabricating robust gel systems for cardiomyocyte modeling or designing novel autonomous microscale soft actuators.
Collapse
Affiliation(s)
- Suwen Lee
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Won Seok Lee
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Takafumi Enomoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Aya Mizutani Akimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
14
|
Zhang C, Wang Y, Xue Y, Cheng J, Chi P, Wang Z, Li B, Yan T, Wu B, Wang Z. Enhanced Hemostatic and Procoagulant Efficacy of PEG/ZnO Hydrogels: A Novel Approach in Traumatic Hemorrhage Management. Gels 2024; 10:88. [PMID: 38391418 PMCID: PMC10888357 DOI: 10.3390/gels10020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Managing severe bleeding, particularly in soft tissues and visceral injuries, remains a significant challenge in trauma and surgical care. Traditional hemostatic methods often fall short in wet and dynamic environments. This study addresses the critical issue of severe bleeding in soft tissues, proposing an innovative solution using a polyethylene glycol (PEG)-based hydrogel combined with zinc oxide (ZnO). The developed hydrogel forms a dual-network structure through amide bonds and metal ion chelation, resulting in enhanced mechanical properties and adhesion strength. The hydrogel, exhibiting excellent biocompatibility, is designed to release zinc ions, promoting coagulation and accelerating hemostasis. Comprehensive characterization, including gelation time, rheological properties, microstructure analysis, and swelling behavior, demonstrates the superior performance of the PEG/ZnO hydrogel compared to traditional PEG hydrogels. Mechanical tests confirm increased compression strength and adhesive properties, which are crucial for withstanding tissue dynamics. In vitro assessments reveal excellent biocompatibility and enhanced procoagulant ability attributed to ZnO. Moreover, in vivo experiments using rat liver and tail bleeding models demonstrate the remarkable hemostatic performance of the PEG/ZnO hydrogel, showcasing its potential for acute bleeding treatment in both visceral and peripheral scenarios.
Collapse
Affiliation(s)
- Chuyue Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Yifan Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Yuan Xue
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Junyao Cheng
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Pengfei Chi
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Zhaohan Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Bo Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Taoxu Yan
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Bing Wu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Zheng Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
15
|
Saghati S, Avci ÇB, Hassani A, Nazifkerdar S, Amini H, Saghebasl S, Mahdipour M, Banimohamad-Shotorbani B, Namjoo AR, Abrbekoh FN, Rahbarghazi R, Nasrabadi HT, Khoshfetrat AB. Phenolated alginate hydrogel induced osteogenic properties of mesenchymal stem cells via Wnt signaling pathway. Int J Biol Macromol 2023; 253:127209. [PMID: 37804896 DOI: 10.1016/j.ijbiomac.2023.127209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Osteogenic properties of phenolated alginate (1.2 %) hydrogel containing collagen (0.5 %)/nano-hydroxyapatite (1 %) were studied on human mesenchymal stem cells in vitro. The phenolation rate and physical properties of the hydrogel were assessed using nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), swelling ratio, gelation time, mechanical assay, and degradation rate. The viability of encapsulated cells was monitored on days 7, 14, and 21 using an MTT assay. Osteoblast differentiation was studied using western blotting, and real-time PCR. Using PCR array analysis, the role of the Wnt signaling pathway was also investigated. Data showed that the combination of alginate/collagen/nanohydroxyapatite yielded proper mechanical features. The addition of nanohydroxyapatite, and collagen reduced degradation, swelling rate coincided with increased stiffness. Elasticity and pore size were also diminished. NMR and FTIR revealed suitable incorporation of collagen and nanohydroxyapatite in the structure of alginate. Real-time PCR analysis and western blotting indicated the expression of osteoblast-related genes such as Runx2 and osteocalcin. PCR array revealed the induction of numerous genes related to Wnt signaling pathways during the maturation of human stem cells toward osteoblast-like cells. In vivo data indicated that transplantation of phenolated alginate/collagen/nanohydroxyapatite hydrogel led to enhanced de novo bone formation in rats with critical-sized calvarial defects. Phenolated alginate hydrogel can promote the osteogenic capacity of human amniotic membrane mesenchymal stem cells in the presence of nanohydroxyapatite and collagen via engaging the Wnt signaling pathway.
Collapse
Affiliation(s)
- Sepideh Saghati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Çığır Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ayla Hassani
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran; Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz 51335-1996, Iran
| | - Sajed Nazifkerdar
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran; Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz 51335-1996, Iran
| | - Hassan Amini
- Department of General and Vascular Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Banimohamad-Shotorbani
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamid Tayefi Nasrabadi
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Baradar Khoshfetrat
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey; Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran.
| |
Collapse
|
16
|
Qu Y, Haverkamp R, Jin Z, Jakobs-Schönwandt D, Patel AV, Hellweg T. Release Kinetics of Potassium, Calcium, and Iron Cations from Carboxymethyl Cellulose Hydrogels at Different pH Values. Chempluschem 2023; 88:e202300368. [PMID: 37881159 DOI: 10.1002/cplu.202300368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
In an in-depth study of the mechanism of cation release from carboxymethyl cellulose hydrogels synthesized through Schiff base reaction, we analyze the differences in the release kinetics of potassium, calcium, and iron cations with Peleg model at pH values of pH 3.5 and pH 8.5 using ICP-OES (inductively coupled plasma optical emission spectroscopy) technique.
Collapse
Affiliation(s)
- Yi Qu
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
- Fermentation and Formulation of Biologicals and Chemicals, Bielefeld Institute of Applied Materials Research, Bielefeld University of Applied Sciences, Interaktion 1, 33619, Bielefeld, Germany
| | - René Haverkamp
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Zhaorui Jin
- Otto Schott Institute for Materials Research, Friedrich Schiller University Jena, Fraunhoferstraße 6, 07743, Jena, Germany
| | - Désirée Jakobs-Schönwandt
- Fermentation and Formulation of Biologicals and Chemicals, Bielefeld Institute of Applied Materials Research, Bielefeld University of Applied Sciences, Interaktion 1, 33619, Bielefeld, Germany
| | - Anant V Patel
- Fermentation and Formulation of Biologicals and Chemicals, Bielefeld Institute of Applied Materials Research, Bielefeld University of Applied Sciences, Interaktion 1, 33619, Bielefeld, Germany
| | - Thomas Hellweg
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
17
|
Matonis S, Zhuang B, Bishop AF, Naik DA, Temel Z, Bettinger CJ. Edible Origami Actuators Using Gelatin-Based Bioplastics. ACS APPLIED POLYMER MATERIALS 2023; 5:6288-6295. [PMID: 37588084 PMCID: PMC10425958 DOI: 10.1021/acsapm.3c00919] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/22/2023] [Indexed: 08/18/2023]
Abstract
The potential of ingestible medical devices can be greatly enhanced through the use of smart structures made from stimuli-responsive materials. While hydration is a convenient stimulus for inducing shape changes in biomaterials, finding robust materials that can achieve rapid actuation, facile manufacturability, and biocompatibility suitable for ingestible medical devices poses practical challenges. Hydration is a convenient stimulus to induce shape changes in smart biomaterials; however, there are many practical challenges to identifying materials that can achieve rapid actuation and facile manufacturability while satisfying constraints associated with biocompatibility requirements and mechanical properties that are suitable for ingestible medical devices. Herein, we illustrate the formulation and processability of a moisture-responsive genipin-crosslinked gelatin bioplastic system, which can be processed into complex three-dimensional shapes. Mechanical characterization of bioplastic samples showed Young's Modulus values as high as 1845 MPa and toughness values up to 52 MJ/m3, using only food-safe ingredients. Custom molds and UV-laser processing enabled the fabrication of centimeter-scale structures with over 150 independent actuating joints. These self-actuating structures soften and unfold in response to surrounding moisture, eliminating the need for additional stimuli or actuating elements.
Collapse
Affiliation(s)
| | | | - Ailla F. Bishop
- Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Durva A. Naik
- Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Zeynep Temel
- Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | | |
Collapse
|
18
|
Kessler M, Yuan T, Kolinski JM, Amstad E. Influence of the Degree of Swelling on the Stiffness and Toughness of Microgel-Reinforced Hydrogels. Macromol Rapid Commun 2023; 44:e2200864. [PMID: 36809684 DOI: 10.1002/marc.202200864] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Indexed: 02/23/2023]
Abstract
The stiffness and toughness of conventional hydrogels decrease with increasing degree of swelling. This behavior makes the stiffness-toughness compromise inherent to hydrogels even more limiting for fully swollen ones, especially for load-bearing applications. The stiffness-toughness compromise of hydrogels can be addressed by reinforcing them with hydrogel microparticles, microgels, which introduce the double network (DN) toughening effect into hydrogels. However, to what extent this toughening effect is maintained in fully swollen microgel-reinforced hydrogels (MRHs) is unknown. Herein, it is demonstrated that the initial volume fraction of microgels contained in MRHs determines their connectivity, which is closely yet nonlinearly related to the stiffness of fully swollen MRHs. Remarkably, if MRHs are reinforced with a high volume fraction of microgels, they stiffen upon swelling. By contrast, the fracture toughness linearly increases with the effective volume fraction of microgels present in the MRHs regardless of their degree of swelling. These findings provide a universal design rule for the fabrication of tough granular hydrogels that stiffen upon swelling and hence, open up new fields of use of these hydrogels.
Collapse
Affiliation(s)
- Michael Kessler
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Tianyu Yuan
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - John M Kolinski
- Engineering Mechanics of Soft Interfaces Laboratory, Institute of Mechanical, Engineering, École Polytechnique Fédérale de Lausanne, (EPFL), Lausanne, 1015, Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
19
|
Abstract
Amyloid fibrils may serve as building blocks for the preparation of novel hydrogel materials from abundant, low-cost, and biocompatible polypeptides. This work presents the formation of physically cross-linked, self-healing hydrogels based on bovine serum albumin at room temperature through a straightforward disulfide reduction step induced by tris (2-carboxyethyl) phosphine hydrochloride. The structure and surface charge of the amyloid-like fibrils is determined by the pH of the solution during self-assembly, giving rise to hydrogels with distinct physicochemical properties. The hydrogel surface can be readily functionalized with the extracellular matrix protein fibronectin and supports cell adhesion, spreading, and long-term culture. This study offers a simple, versatile, and inexpensive method to prepare amyloid-based albumin hydrogels with potential applications in the biomedical field.
Collapse
Affiliation(s)
- Carolina Diaz
- Department of Cellular BiophysicsMax‐Planck‐Institute for Medical ResearchJahnstr. 2969120HeidelbergGermany
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)Facultad de Ciencias ExactasUNLP – CONICETCC16 Suc 4 (1900)La PlataBuenos Aires1900Argentina
| | - Dimitris Missirlis
- Department of Cellular BiophysicsMax‐Planck‐Institute for Medical ResearchJahnstr. 2969120HeidelbergGermany
| |
Collapse
|
20
|
Sorichetti V, Ninarello A, Ruiz-Franco J, Hugouvieux V, Zaccarelli E, Micheletti C, Kob W, Rovigatti L. Structure and elasticity of model disordered, polydisperse, and defect-free polymer networks. J Chem Phys 2023; 158:074905. [PMID: 36813705 DOI: 10.1063/5.0134271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The elasticity of disordered and polydisperse polymer networks is a fundamental problem of soft matter physics that is still open. Here, we self-assemble polymer networks via simulations of a mixture of bivalent and tri- or tetravalent patchy particles, which result in an exponential strand length distribution analogous to that of experimental randomly cross-linked systems. After assembly, the network connectivity and topology are frozen and the resulting system is characterized. We find that the fractal structure of the network depends on the number density at which the assembly has been carried out, but that systems with the same mean valence and same assembly density have the same structural properties. Moreover, we compute the long-time limit of the mean-squared displacement, also known as the (squared) localization length, of the cross-links and of the middle monomers of the strands, showing that the dynamics of long strands is well described by the tube model. Finally, we find a relation connecting these two localization lengths at high density and connect the cross-link localization length to the shear modulus of the system.
Collapse
Affiliation(s)
- Valerio Sorichetti
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, F-34095 Montpellier, France
| | | | | | | | | | - Cristian Micheletti
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Walter Kob
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, F-34095 Montpellier, France
| | | |
Collapse
|
21
|
Papagiannopoulos A, Nikolakis SP, Pamvouxoglou A, Koutsopoulou E. Physicochemical properties of electrostatically crosslinked carrageenan/chitosan hydrogels and carrageenan/chitosan/Laponite nanocomposite hydrogels. Int J Biol Macromol 2023; 225:565-573. [PMID: 36410537 DOI: 10.1016/j.ijbiomac.2022.11.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
In this work physical carrageenan/chitosan (Car/Chit) hydrogels are prepared by electrostatic complexation between the two oppositely charged polysaccharides. The hydrogels have storage moduli in the order of 5-10 kPa and swelling ratios in the order of 5000-6000 %. At conditions where both polysaccharides are highly charged (pH 5) the swelling ratios are lower than the ones at conditions of lower dissociation i.e., at pH 2 and 7 and the opposite trend is found for the storage modulus. Chit appears to act as a crosslinker for Car as increasing its concentration the swelling ratio decreases and the moduli increase. The hydrogels can incorporate the nanoclay Laponite (Lap) and form hybrid nanocomposites where the intercalation by the two biopolymers leads to exfoliation of the clay nanoplatelets in the presence of both Car and Chit. The composite hydrogels retain the mechanical properties of the Car/Chit hydrogels at the studied pH range (pH 2 to pH 7). This shows the prepared hydrogels can be potentially used as multifunctional biomaterials for drug delivery, tissue engineering and bone regeneration applications.
Collapse
Affiliation(s)
- Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Spiridon-Paraskevas Nikolakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Andreas Pamvouxoglou
- Experimental Soft Matter Group, Condensed Matter Physics Laboratory (IPKM), Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Eleni Koutsopoulou
- Technical University of Crete, Department of Mineral Resources Engineering, GR-73100 Chania, Greece; Hellenic Survey of Geology and Mineral Exploration (HSGME), 13677 Acharnes, Greece
| |
Collapse
|
22
|
Liu ZL, Chen X. Water-Content-Dependent Morphologies and Mechanical Properties of Bacillus subtilis Spores' Cortex Peptidoglycan. ACS Biomater Sci Eng 2022; 8:5094-5100. [PMID: 36442506 DOI: 10.1021/acsbiomaterials.2c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptidoglycan (PG), bacterial spores' major structural component in their cortex layers, was recently found to regulate the spore's water content and deform in response to relative humidity (RH) changes. Here, we report that the cortex PG dominates the Bacillus subtilis spores' water-content-dependent morphological and mechanical properties. When exposed to an environment having RH varied between 10% and 90%, the spores and their cortex PG reversibly expand and contract by 30.7% and 43.2% in volume, which indicates that the cortex PG contributes to 67.3% of a spore's volume change. The spores' and cortex PG's significant volumetric changes also lead to changes in their Young's moduli from 5.7 and 9.0 GPa at 10% RH to 0.62 and 1.2 GPa at 90% RH, respectively. Interestingly, these significant changes in the spores' and cortex PG's morphological and mechanical properties are only caused by a minute amount of the cortex PG's water exchange that occupies 28.0% of the cortex PG's volume. The cortex PG's capability in sensing and responding to environmental RH and effectively changing its structures and properties could provide insight into spores' high desiccation resistance and dormancy mechanisms.
Collapse
Affiliation(s)
- Zhi-Lun Liu
- Advanced Science Research Center (ASRC), The City University of New York, 85 St. Nicholas Terrace, New York, New York10031, United States.,Department of Chemical Engineering, The City College of New York, 275 Convent Ave., New York, New York10031, United States
| | - Xi Chen
- Advanced Science Research Center (ASRC), The City University of New York, 85 St. Nicholas Terrace, New York, New York10031, United States.,Department of Chemical Engineering, The City College of New York, 275 Convent Ave., New York, New York10031, United States.,Ph.D. Program in Physics, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York10016, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York10016, United States
| |
Collapse
|
23
|
Cross-evaluation of stiffness measurement methods for hydrogels. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Horsnell HL, Tetley RJ, De Belly H, Makris S, Millward LJ, Benjamin AC, Heeringa LA, de Winde CM, Paluch EK, Mao Y, Acton SE. Lymph node homeostasis and adaptation to immune challenge resolved by fibroblast network mechanics. Nat Immunol 2022; 23:1169-1182. [PMID: 35882934 PMCID: PMC9355877 DOI: 10.1038/s41590-022-01272-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 06/15/2022] [Indexed: 11/23/2022]
Abstract
Emergent physical properties of tissues are not readily understood by reductionist studies of their constituent cells. Here, we show molecular signals controlling cellular, physical, and structural properties and collectively determine tissue mechanics of lymph nodes, an immunologically relevant adult tissue. Lymph nodes paradoxically maintain robust tissue architecture in homeostasis yet are continually poised for extensive expansion upon immune challenge. We find that in murine models of immune challenge, cytoskeletal mechanics of a cellular meshwork of fibroblasts determine tissue tension independently of extracellular matrix scaffolds. We determine that C-type lectin-like receptor 2 (CLEC-2)-podoplanin signaling regulates the cell surface mechanics of fibroblasts, providing a mechanically sensitive pathway to regulate lymph node remodeling. Perturbation of fibroblast mechanics through genetic deletion of podoplanin attenuates T cell activation. We find that increased tissue tension through the fibroblastic stromal meshwork is required to trigger the initiation of fibroblast proliferation and restore homeostatic cellular ratios and tissue structure through lymph node expansion.
Collapse
Affiliation(s)
- Harry L Horsnell
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robert J Tetley
- Tissue Mechanics Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Henry De Belly
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Spyridon Makris
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Lindsey J Millward
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Agnesska C Benjamin
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Lucas A Heeringa
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Charlotte M de Winde
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Ewa K Paluch
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Yanlan Mao
- Tissue Mechanics Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Sophie E Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| |
Collapse
|
25
|
Wang J, Bian J, Pu B, Wang Y, Deng M. Facile fabrication of high performance zwitterionic P(
NVP
‐co
‐SPE
)/polyvinyl alcohol hydrogel polyelectrolyte for capacitor. J Appl Polym Sci 2022. [DOI: 10.1002/app.52905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jin Wang
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology Hefei China
| | - Jingjing Bian
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology Hefei China
| | - Bin Pu
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology Hefei China
| | - Yuanlu Wang
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology Hefei China
| | - Mengde Deng
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology Hefei China
| |
Collapse
|
26
|
Kaur M, Bains A, Chawla P, Yadav R, Kumar A, Inbaraj BS, Sridhar K, Sharma M. Milk Protein-Based Nanohydrogels: Current Status and Applications. Gels 2022; 8:432. [PMID: 35877517 PMCID: PMC9320064 DOI: 10.3390/gels8070432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/31/2022] Open
Abstract
Milk proteins are excellent biomaterials for the modification and formulation of food structures as they have good nutritional value; are biodegradable and biocompatible; are regarded as safe for human consumption; possess valuable physical, chemical, and biological functionalities. Hydrogels are three-dimensional, cross-linked networks of polymers capable of absorbing large amounts of water and biological fluids without dissolving and have attained great attraction from researchers due to their small size and high efficiency. Gelation is the primary technique used to synthesize milk protein nanohydrogels, whereas the denaturation, aggregation, and gelation of proteins are of specific significance toward assembling novel nanostructures such as nanohydrogels with various possible applications. These are synthesized by either chemical cross-linking achieved through covalent bonds or physical cross-linking via noncovalent bonds. Milk-protein-based gelling systems can play a variety of functions such as in food nutrition and health, food engineering and processing, and food safety. Therefore, this review highlights the method to prepare milk protein nanohydrogel and its diverse applications in the food industry.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Aarti Bains
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences, South Campus, Jalandhar 144020, Punjab, India;
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Rahul Yadav
- Shoolini Life Sciences Pvt. Ltd., Shoolini University, Solan 173229, Himachal Pradesh, India; (R.Y.); (A.K.)
| | - Anil Kumar
- Shoolini Life Sciences Pvt. Ltd., Shoolini University, Solan 173229, Himachal Pradesh, India; (R.Y.); (A.K.)
| | | | - Kandi Sridhar
- UMR1253, Science et Technologie du Lait et de L’œuf, INRAE, L’Institut Agro Rennes-Angers, 65 Rue de Saint Brieuc, F-35042 Rennes, France
| | - Minaxi Sharma
- Laboratoire de Chimie Verte et Produits Biobasés, Département Agro Bioscience et Chimie, Haute Ecole Provinciale du Hainaut-Condorcet, 11, Rue de la Sucrerie, 7800 Ath, Belgium
| |
Collapse
|
27
|
Cao D, Xie Y, Song J. DNA Hydrogels in the Perspective of Mechanical Properties. Macromol Rapid Commun 2022; 43:e2200281. [PMID: 35575627 DOI: 10.1002/marc.202200281] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/25/2022] [Indexed: 11/10/2022]
Abstract
Tailoring the mechanical properties has always been a key to the field of hydrogels in terms of different applications. Particularly, deoxyribonucleic acid (DNA) hydrogels offer an unambiguous way to precisely tune the mechanical properties, largely on account of their programmable sequences, abundant responding toolbox, and various ligation approaches. In this review, DNA hydrogels from the perspective of mechanical properties, from synthetic standpoint to different applications are introduced. The relationship between the structure and their mechanical properties in DNA hydrogels and the methods of regulating the mechanical properties of DNA hydrogels are specifically summarized. Furthermore, several recent applications of DNA hydrogels in relation to their mechanical properties are discussed. Benefiting from the tunability and flexibility, rational design of mechanical properties in DNA hydrogels provided unheralded interest from fundamental science to extensive applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dengjie Cao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| |
Collapse
|
28
|
Ahmad Z, Salman S, Khan SA, Amin A, Rahman ZU, Al-Ghamdi YO, Akhtar K, Bakhsh EM, Khan SB. Versatility of Hydrogels: From Synthetic Strategies, Classification, and Properties to Biomedical Applications. Gels 2022; 8:167. [PMID: 35323280 PMCID: PMC8950628 DOI: 10.3390/gels8030167] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Hydrogels are three-dimensional, cross-linked, and supramolecular networks that can absorb significant volumes of water. Hydrogels are one of the most promising biomaterials in the biological and biomedical fields, thanks to their hydrophilic properties, biocompatibility, and wide therapeutic potential. Owing to their nontoxic nature and safe use, they are widely accepted for various biomedical applications such as wound dressing, controlled drug delivery, bone regeneration, tissue engineering, biosensors, and artificial contact lenses. Herein, this review comprises different synthetic strategies for hydrogels and their chemical/physical characteristics, and various analytical, optical, and spectroscopic tools for their characterization are discussed. A range of synthetic approaches is also covered for the synthesis and design of hydrogels. It will also cover biomedical applications such as bone regeneration, tissue engineering, and drug delivery. This review addressed the fundamental, general, and applied features of hydrogels in order to facilitate undergraduates, graduates, biomedical students, and researchers in a variety of domains.
Collapse
Affiliation(s)
- Zubair Ahmad
- Department of Chemistry, University of Swabi, Swabi 23561, Pakistan; (Z.A.); (A.A.); (Z.U.R.)
| | - Saad Salman
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad 44000, Pakistan;
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Abdul Amin
- Department of Chemistry, University of Swabi, Swabi 23561, Pakistan; (Z.A.); (A.A.); (Z.U.R.)
| | - Zia Ur Rahman
- Department of Chemistry, University of Swabi, Swabi 23561, Pakistan; (Z.A.); (A.A.); (Z.U.R.)
| | - Youssef O. Al-Ghamdi
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| | - Kalsoom Akhtar
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.A.); (E.M.B.)
| | - Esraa M. Bakhsh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.A.); (E.M.B.)
| | - Sher Bahadar Khan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.A.); (E.M.B.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
29
|
Polymeric Composite of Magnetite Iron Oxide Nanoparticles and Their Application in Biomedicine: A Review. Polymers (Basel) 2022; 14:polym14040752. [PMID: 35215665 PMCID: PMC8878751 DOI: 10.3390/polym14040752] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
A broad spectrum of nanomaterials has been investigated for multiple purposes in recent years. Some of these studied materials are magnetics nanoparticles (MNPs). Iron oxide nanoparticles (IONPs) and superparamagnetic iron oxide nanoparticles (SPIONs) are MNPs that have received extensive attention because of their physicochemical and magnetic properties and their ease of combination with organic or inorganic compounds. Furthermore, the arresting of these MNPs into a cross-linked matrix known as hydrogel has attracted significant interest in the biomedical field. Commonly, MNPs act as a reinforcing material for the polymer matrix. In the present review, several methods, such as co-precipitation, polyol, hydrothermal, microemulsion, and sol-gel methods, are reported to synthesize magnetite nanoparticles with controllable physical and chemical properties that suit the required application. Due to the potential of magnetite-based nanocomposites, specifically in hydrogels, processing methods, including physical blending, in situ precipitation, and grafting methods, are introduced. Moreover, the most common characterization techniques employed to study MNPs and magnetic gel are discussed.
Collapse
|
30
|
Pätzold F, Stamm N, Kamps D, Specht M, Bolduan P, Dehmelt L, Weberskirch R. Synthesis and Characterization of Cationic Hydrogels from Thiolated Copolymers for Independent Manipulation of Mechanical and Chemical Properties of Cell Substrates. Macromol Biosci 2022; 22:e2100453. [DOI: 10.1002/mabi.202100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/17/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Florian Pätzold
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| | - Nils Stamm
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| | - Dominic Kamps
- Max‐Planck‐Institute of Molecular Physiology Otto‐Hahn‐Str. 11 Dortmund D‐44227 Germany
| | - Maria Specht
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| | - Patrick Bolduan
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| | - Leif Dehmelt
- Max‐Planck‐Institute of Molecular Physiology Otto‐Hahn‐Str. 11 Dortmund D‐44227 Germany
| | - Ralf Weberskirch
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| |
Collapse
|
31
|
Nakagawa S, Yoshie N. Star polymer networks: a toolbox for cross-linked polymers with controlled structure. Polym Chem 2022. [DOI: 10.1039/d1py01547h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of precisely controlled polymer networks has been a long-cherished dream of polymer scientists. Traditional random cross-linking strategies often lead to uncontrolled networks with various kinds of defects. Recent...
Collapse
|
32
|
Yermak IM, Gorbach VI, Karnakov IA, Davydova VN, Pimenova EA, Chistyulin DА, Isakov VV, Glazunov VP. Carrageenan gel beads for echinochrome inclusion: Influence of structural features of carrageenan. Carbohydr Polym 2021; 272:118479. [PMID: 34420738 DOI: 10.1016/j.carbpol.2021.118479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022]
Abstract
Carrageenan (CRG) and carrageenan/chitosan (CH) gel beads (CRG/CH) were prepared as a release delivery system for echinochrome A (Ech). According to spectral data, the Ech was dispersed in the polymer matrix, interacted with CRG, was not oxidised, and remained stable after encapsulation in CRG beads. Carrageenan beads containing Ech were coated with CH by layering. The influence of the structural features of CRG on the formation of beads and the beads morphology, swelling behaviour, mucoadhesive properties and drug release were evaluated. The polysaccharide matrices with Ech showed different swelling characteristics depending on the pH of the medium and the structure of the CRG used. The slow drug release from polysaccharide matrixes was observed for κ- and κ/β-CRG beads, that contained 3,6-anhydro-α-d-galactopyranose units and had high molecular weight. The obtained results showed the prospects of using polysaccharide beads to include Ech.
Collapse
Affiliation(s)
- Irina M Yermak
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation.
| | - Vladimir I Gorbach
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation
| | - Ivan A Karnakov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation
| | - Viktoria N Davydova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation
| | - Evgeniya A Pimenova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far-Eastern Branch of the Russian Academy of Sciences, Palchevskogo ul. 17, 690041, Russian Federation
| | - Dmitry А Chistyulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation
| | - Vladimir V Isakov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation
| | - Valery P Glazunov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation
| |
Collapse
|
33
|
Yu C, Cui K, Guo H, Ye YN, Li X, Gong JP. Structure Frustration Enables Thermal History-Dependent Responsive Behavior in Self-Healing Hydrogels. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Chengtao Yu
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Kunpeng Cui
- Institute for Chemical Reaction Design and Discovery (ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Honglei Guo
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Ya Nan Ye
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
| | - Xueyu Li
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
34
|
Chang CW, Yeh YC. Poly(glycerol sebacate)-co-poly(ethylene glycol)/Gelatin Hybrid Hydrogels as Biocompatible Biomaterials for Cell Proliferation and Spreading. Macromol Biosci 2021; 21:e2100248. [PMID: 34514730 DOI: 10.1002/mabi.202100248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/06/2021] [Indexed: 01/05/2023]
Abstract
Synthetic polymers have been widely employed to prepare hydrogels for biomedical applications, such as cell culture, drug delivery, and tissue engineering. However, the activity of cells cultured in the synthetic polymer-based hydrogels faces the challenges of limited cell proliferation and spreading compared to cells cultured in natural polymer-based hydrogels. To address this concern, a hybrid hydrogel strategy is demonstrated by incorporating thiolated gelatin (GS) into the norbornene-functionalized poly (glycerol sebacate)-co-polyethylene glycol (Nor_PGS-co-PEG, NPP) network to prepare highly biocompatible NPP/GS_UV hydrogels after the thiol-ene photo-crosslinking reaction. The GS introduces several desirable features (i.e., enhanced water content, enlarged pore size, increased mechanical property, and more cell adhesion sites) to the NPP/GS_UV hydrogels, facilitating the cell proliferation and spreading inside the network. Thus, the highly biocompatible NPP/GS_UV hydrogels are promising materials for cell encapsulation and tissue engineering applications. Taken together, the hybrid hydrogel strategy is demonstrated as a powerful approach to fabricate hydrogels with a highly friendly environment for cell culture, expanding the biomedical applications of hydrogels.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
35
|
Strategies for inclusion of growth factors into 3D printed bone grafts. Essays Biochem 2021; 65:569-585. [PMID: 34156062 DOI: 10.1042/ebc20200130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
There remains a critical need to develop new technologies and materials that can meet the demands of treating large bone defects. The advancement of 3-dimensional (3D) printing technologies has allowed the creation of personalized and customized bone grafts, with specific control in both macro- and micro-architecture, and desired mechanical properties. Nevertheless, the biomaterials used for the production of these bone grafts often possess poor biological properties. The incorporation of growth factors (GFs), which are the natural orchestrators of the physiological healing process, into 3D printed bone grafts, represents a promising strategy to achieve the bioactivity required to enhance bone regeneration. In this review, the possible strategies used to incorporate GFs to 3D printed constructs are presented with a specific focus on bone regeneration. In particular, the strengths and limitations of different methods, such as physical and chemical cross-linking, which are currently used to incorporate GFs to the engineered constructs are critically reviewed. Different strategies used to present one or more GFs to achieve simultaneous angiogenesis and vasculogenesis for enhanced bone regeneration are also covered in this review. In addition, the possibility of combining several manufacturing approaches to fabricate hybrid constructs, which better mimic the complexity of biological niches, is presented. Finally, the clinical relevance of these approaches and the future steps that should be taken are discussed.
Collapse
|
36
|
Yang Z, Yang X, Long R, Li J. Stimulation Modulates Adhesion and Mechanics of Hydrogel Adhesives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7097-7106. [PMID: 34081464 DOI: 10.1021/acs.langmuir.1c00696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability to modulate the adhesion of soft materials on-demand is desired for broad applications ranging from tissue repair to soft robotics. Research effort has been focused on the chemistry and architecture of interfaces, leaving the mechanics of soft adhesives overlooked. Stimuli-responsive mechanisms of smart hydrogels could be leveraged for achieving stimuli-responsive hydrogel adhesives that respond mechanically to external stimuli. Such stimuli-responsive hydrogel adhesives involve complex chemomechanical coupling and interfacial fracture phenomena, calling for mechanistic understanding to enable rational design. Here, we combine experimental, computational, and analytical approaches to study a thermo-responsive hydrogel adhesive. Experimentally, we show that the adhesion and mechanical properties of a stimuli-responsive hydrogel adhesive are both enhanced by the application of a stimulus. Our analysis further reveals that the enhanced adhesion stems from the increased fracture energy of the bulk hydrogel and the insignificant residual stress on the adhesive-tissue interface. This study presents a framework for designing stimuli-responsive hydrogel adhesives based on the modulation of bulk properties and sheds light on the development of smart adhesives with tunable mechanics.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Mechanical Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Xingwei Yang
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Rong Long
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| |
Collapse
|
37
|
Abstract
A hydrogel is a solid form of polymer network absorbed in a substantial amount of aqueous solution. In electrophoresis, hydrogels play versatile roles including as support media, sieving matrixes, affinity scaffolds, and compositions of molecularly imprinting polymers. Recently, the study of hydrogels has been advancing with unprecedented speed, and the application of hydrogels in separation science has brought new opportunities and possible breakthroughs. A good understanding about the roles and effects of the material is essential for hydrogel applications. This review summarizes the hydrogels that has been described in various modes of electrophoretic separations, including isoelectric focusing gel electrophoresis (IEFGE), isotachophoresis (ITP), gel electrophoresis and affinity gel electrophoresis (AGE). As microchip electrophoresis (ME) is one of the future trends in electrophoresis, thought provoking studies related to hydrogels in ME are also introduced. Novel hydrogels and methods that improve separation performance, facilitate the experimental operation process, allow for rapid analysis, and promote the integration to microfluidic devices are highlighted.
Collapse
Affiliation(s)
- Chenchen Liu
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| | - Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| |
Collapse
|
38
|
Saghati S, Rahbarghazi R, Baradar Khoshfetrat A, Moharamzadeh K, Tayefi Nasrabadi H, Roshangar L. Phenolated alginate-collagen hydrogel induced chondrogenic capacity of human amniotic mesenchymal stem cells. J Biomater Appl 2021; 36:789-802. [PMID: 34074175 DOI: 10.1177/08853282211021692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Horseradish peroxidase (HRP)-catalyzed hydrogels are considered to be an important platform for tissue engineering applications. In this study, we investigated the chondrogenic capacity of phenolated (1.2%) alginate-(0.5%) collagen hydrogel on human amniotic mesenchymal stem cells after 21 days. Using NMR, FTIR analyses, and SEM imaging, we studied the phenolation and structure of alginate-collagen hydrogel. For physicochemical evaluations, gelation time, mechanical properties, swelling, and degradation rate were assessed. The survival rate was monitored using the MTT assay and DAPI staining. Western blotting was performed to measure the chondrogenic differentiation of cells. NMR showed successful phenolation of the alginate-collagen hydrogel. FTIR exhibited the interaction between the functional groups of collagen with phenolated alginate. SEM showed the existence of collagen microfibrils in the alginate-collagen hydrogel. Compared to phenolated alginate, the addition of collagen increased hydrogel elasticity by 10%. Both swelling rate and biodegradability were reduced in the presence of collagen. We noted an increased survival rate in phenolated alginate-collagen compared to the control cells (p < 0.05). Western blotting revealed the increase of chondrocyte-associated proteins such as SOX9 and COL2A1 in phenolated-alginate-collagen hydrogels after 21 days. These data showed that phenolated alginate-collagen hydrogel is an appropriate 3 D substrate to induce chondrogenic capacity of human mesenchymal stem cells.
Collapse
Affiliation(s)
- Sepideh Saghati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Baradar Khoshfetrat
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamid Tayefi Nasrabadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Sorichetti V, Ninarello A, Ruiz-Franco JM, Hugouvieux V, Kob W, Zaccarelli E, Rovigatti L. Effect of Chain Polydispersity on the Elasticity of Disordered Polymer Networks. Macromolecules 2021; 54:3769-3779. [PMID: 34054144 PMCID: PMC8154883 DOI: 10.1021/acs.macromol.1c00176] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/20/2021] [Indexed: 12/15/2022]
Abstract
Due to their unique structural and mechanical properties, randomly cross-linked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are controlled by the physical details of the network (e.g., chain-length and end-to-end distributions), we generate disordered phantom networks with different cross-linker concentrations C and initial densities ρinit and evaluate their elastic properties. We find that the shear modulus computed at the same strand concentration for networks with the same C, which determines the number of chains and the chain-length distribution, depends strongly on the preparation protocol of the network, here controlled by ρinit. We rationalize this dependence by employing a generic stress-strain relation for polymer networks that does not rely on the specific form of the polymer end-to-end distance distribution. We find that the shear modulus of the networks is a nonmonotonic function of the density of elastically active strands, and that this behavior has a purely entropic origin. Our results show that if short chains are abundant, as it is always the case for randomly cross-linked polymer networks, the knowledge of the exact chain conformation distribution is essential for correctly predicting the elastic properties. Finally, we apply our theoretical approach to literature experimental data, qualitatively confirming our interpretations.
Collapse
Affiliation(s)
- Valerio Sorichetti
- Laboratoire
de Physique Théorique et Modéles Statistiques (LPTMS), CNRS, Université Paris-Saclay, F-91405 Orsay, France
- Laboratoire
Charles Coulomb (L2C), University of Montpellier,
CNRS, F-34095 Montpellier, France
- IATE,
University of Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France
| | - Andrea Ninarello
- CNR-ISC
Uos Sapienza, Piazzale
A. Moro 2, IT-00185 Roma, Italy
- Department
of Physics, Sapienza Università di
Roma, Piazzale A. Moro
2, IT-00185 Roma, Italy
| | - José M. Ruiz-Franco
- CNR-ISC
Uos Sapienza, Piazzale
A. Moro 2, IT-00185 Roma, Italy
- Department
of Physics, Sapienza Università di
Roma, Piazzale A. Moro
2, IT-00185 Roma, Italy
| | - Virginie Hugouvieux
- IATE,
University of Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France
| | - Walter Kob
- Laboratoire
Charles Coulomb (L2C), University of Montpellier,
CNRS, F-34095 Montpellier, France
- Institut
Universitaire de France, 75005 Paris, France
| | - Emanuela Zaccarelli
- CNR-ISC
Uos Sapienza, Piazzale
A. Moro 2, IT-00185 Roma, Italy
- Department
of Physics, Sapienza Università di
Roma, Piazzale A. Moro
2, IT-00185 Roma, Italy
| | - Lorenzo Rovigatti
- CNR-ISC
Uos Sapienza, Piazzale
A. Moro 2, IT-00185 Roma, Italy
- Department
of Physics, Sapienza Università di
Roma, Piazzale A. Moro
2, IT-00185 Roma, Italy
| |
Collapse
|
40
|
Nakajima T, Hoshino KI, Guo H, Kurokawa T, Gong JP. Experimental Verification of the Balance between Elastic Pressure and Ionic Osmotic Pressure of Highly Swollen Charged Gels. Gels 2021; 7:39. [PMID: 33915908 PMCID: PMC8167773 DOI: 10.3390/gels7020039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
The equilibrium swelling degree of a highly swollen charged gel has been thought to be determined by the balance between its elastic pressure and ionic osmotic pressure. However, the full experimental verification of this balance has not previously been conducted. In this study, we verified the balance between the elastic pressure and ionic osmotic pressure of charged gels using purely experimental methods. We used tetra-PEG gels created using the molecular stent method (St-tetra-PEG gels) as the highly swollen charged gels to precisely and separately control their network structure and charge density. The elastic pressure of the gels was measured through the indentation test, whereas the ionic osmotic pressure was determined by electric potential measurement without any strong assumptions or fittings. We confirmed that the two experimentally determined pressures of the St-tetra-PEG gels were well balanced at their swelling equilibrium, suggesting the validity of the aforementioned relationship. Furthermore, from single-strand level analysis, we investigated the structural requirements of the highly swollen charged gels in which the elasticity and ionic osmosis are balanced at their swelling equilibrium.
Collapse
Affiliation(s)
- Tasuku Nakajima
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan; (K.-i.H.); (H.G.); (T.K.); (J.P.G.)
- Global Station for Soft Matter, Hokkaido University, Sapporo 060-0808, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Ken-ichi Hoshino
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan; (K.-i.H.); (H.G.); (T.K.); (J.P.G.)
| | - Honglei Guo
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan; (K.-i.H.); (H.G.); (T.K.); (J.P.G.)
| | - Takayuki Kurokawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan; (K.-i.H.); (H.G.); (T.K.); (J.P.G.)
- Global Station for Soft Matter, Hokkaido University, Sapporo 060-0808, Japan
| | - Jian Ping Gong
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan; (K.-i.H.); (H.G.); (T.K.); (J.P.G.)
- Global Station for Soft Matter, Hokkaido University, Sapporo 060-0808, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
41
|
Garcia Cruz MDR, Postma A, Frith JE, Meagher L. Printability and bio-functionality of a shear thinning methacrylated xanthan - gelatin composite bioink. Biofabrication 2021; 13. [PMID: 33662950 DOI: 10.1088/1758-5090/abec2d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/04/2021] [Indexed: 11/12/2022]
Abstract
3D bioprinting is a recent technique that can create complex cell seeded scaffolds and therefore holds great promise to revolutionize the biomedical sector by combining materials and structures that more closely mimic the 3D cell environment in tissues. The most commonly used biomaterials for printing are hydrogels, however, many of the hydrogels used still present issues of printability, stability, or poor cell-material interactions. We propose that bio-inks with intrinsic self-assembling and shear thinning properties, such as xanthan gum, can be methacrylated (XGMA) and combined with a bio-functional material such as gelatin methacryloyl (GelMa) to create a stable, cell-interactive bio-ink with improved properties for 3D bioprinting. These biomaterials have reduced viscosity under high shear and recover their viscosity rapidly after the shear is removed, retaining their shape, which translates to easier extrusion whilst maintaining good fidelity after printing. This was confirmed in printing studies, with measured normalized strand widths of 1.2 obtained for high gel concentrations (5+5 % XGMA-GelMA). Furthermore, the introduction of a secondary photo-cross-linking method allowed tuning of the mechanical properties of the hydrogel with stiffness between 15 and 30 kPa, as well as improving the stability of the hydrogel with retention of 75 % of its mass after 90 days. The hydrogel was shown to be biocompatible and bio-active with 97 % cell viability, and cell spreading after 7 days of culture for low gel concentrations (3+3 % XGMA-GelMA). Shear stresses were relatively low while printing (1 kPa) as a result of the shear thinning property of the material, which supported cell viability during extrusion. Finally, printed hydrogels retained high cell viability for lower gel concentrations, and showed improved cell viability for more concentrated hydrogels when compared to cells cultured in bulk hydrogels, presumably due to improved nutrient/oxygen diffusion and cell migration. In conclusion, stability and formulation of a XGMA-GelMA shear thinning composite hydrogel has been optimized to create a bio-functional bio-ink, with improved printability, and in vitro culture stability via secondary photo-induced cross-linking, making this composite a promising bio-ink for 3D bioprinting.
Collapse
Affiliation(s)
- Maria Del Rocio Garcia Cruz
- Material Science and Engineering, Monash University Faculty of Engineering, Wellington Rd, 3800, Clayton, Victoria, 3800, AUSTRALIA
| | - Almar Postma
- Manufacturing, CSIRO Manufacturing and Materials Technology, Research Way, Clayton, Victoria, 3168, AUSTRALIA
| | - Jessica Ellen Frith
- Material Science and Engineering, Monash University Faculty of Engineering, Wellington Rd, Clayton, Victoria, 3800, AUSTRALIA
| | - Laurence Meagher
- Materials Science and Engineering, Monash University, 22/109 Alliance Lane, Clayton, Clayton, Victoria, 3800, AUSTRALIA
| |
Collapse
|
42
|
Tang J, Katashima T, Li X, Mitsukami Y, Yokoyama Y, Chung UI, Shibayama M, Sakai T. Effect of Nonlinear Elasticity on the Swelling Behaviors of Highly Swollen Polyelectrolyte Gels. Gels 2021; 7:gels7010025. [PMID: 33804574 PMCID: PMC8005930 DOI: 10.3390/gels7010025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
Polyelectrolyte gels exhibit swelling behaviors that are dependent on the external environment. The swelling behaviors of highly charged polyelectrolyte gels can be well explained using the Flory-Rehner model combined with the Gibbs-Donnan effect and Manning's counterion condensation effect (the FRGDM model). This study investigated the swelling properties of a series of model polyelectrolyte gels, namely tetra-polyacrylic acid-polyethylene glycol gels (Tetra-PAA-PEG gels), and determined the applicability of the FRGDM model. The swelling ratio (Vs/V0) was well reproduced by the FRGDM model in the moderate swelling regime (Vs/V0 < 10). However, in the high swelling regime (Vs/V0 > 10), the FRGDM model is approx. 1.6 times larger than the experimental results. When we introduced the finite extensibility to the elastic free energy in the FRGDM model, the swelling behavior was successfully reproduced even in the high swelling regime. Our results reveal that finite extensibility is one of the factors determining the swelling equilibrium of highly charged polyelectrolyte gels. The modified FRGDM model reproduces well the swelling behavior of a wide range of polyelectrolyte gels.
Collapse
Affiliation(s)
- Jian Tang
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (J.T.); (U.-i.C.)
| | - Takuya Katashima
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (J.T.); (U.-i.C.)
- Correspondence: (T.K.); (T.S.)
| | - Xiang Li
- The Institute for Solid State Physics, The University of Tokyo, Chiba 227-8581, Japan;
| | - Yoshiro Mitsukami
- Superabsorbents Research Department, Nippon Shokubai Co. Ltd., Hyogo 671-1292, Japan; (Y.M.); (Y.Y.)
| | - Yuki Yokoyama
- Superabsorbents Research Department, Nippon Shokubai Co. Ltd., Hyogo 671-1292, Japan; (Y.M.); (Y.Y.)
| | - Ung-il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (J.T.); (U.-i.C.)
| | - Mitsuhiro Shibayama
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Ibaraki 319-1106, Japan;
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (J.T.); (U.-i.C.)
- Correspondence: (T.K.); (T.S.)
| |
Collapse
|
43
|
Leslie KA, Doane-Solomon R, Arora S, Curley SJ, Szczepanski C, Driscoll MM. Gel rupture during dynamic swelling. SOFT MATTER 2021; 17:1513-1520. [PMID: 33367435 DOI: 10.1039/d0sm01718c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogels have had a profound impact in the fields of tissue engineering, drug delivery, and materials science as a whole. Due to the network architecture of these materials, imbibement with water often results in uniform swelling and isotropic expansion which scales with the degree of cross-linking. However, the development of internal stresses during swelling can have dramatic consequences, leading to surface instabilities as well as rupture or bursting events. To better understand hydrogel behavior, macroscopic mechanical characterization techniques (e.g. tensile testing, rheometry) are often used, however most commonly these techniques are employed on samples that are in two distinct states: (1) unswollen and without any solvent, or (2) in an equilibrium swelling state where the maximum amount of water has been imbibed. Rarely is the dynamic process of swelling studied, especially in samples where rupture or failure events are observed. To address this gap, here we focus on rupture events in poly(ethylene glycol)-based networks that occur in response to swelling with water. Rupture events were visualized using high-speed imaging, and the influence of swelling on material properties was characterized using dynamic mechanical analysis. We find that rupture events follow a three-stage process that includes a waiting period, a slow fracture period, and a final stage in which a rapid increase in the velocity of crack propagation is observed. We describe this fracture behavior based on changes in material properties that occur during swelling, and highlight how this rupture behavior can be controlled by straight-forward modifications to the hydrogel network structure.
Collapse
Affiliation(s)
- Kelsey-Ann Leslie
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA.
| | - Robert Doane-Solomon
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA. and Department of Physics, University of Oxford, Oxford, UK
| | - Srishti Arora
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA.
| | - Sabrina J Curley
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Caroline Szczepanski
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Michelle M Driscoll
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
44
|
Ni X, Yang Z, Li J. Scaling Behavior of Fracture Properties of Tough Adhesive Hydrogels. ACS Macro Lett 2021; 10:180-185. [PMID: 35570779 DOI: 10.1021/acsmacrolett.0c00854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tough adhesive hydrogels find broad applications in engineering and medicine. Such hydrogels feature high resistance against both cohesion and adhesion failure. The superior fracture properties may, however, deteriorate when the hydrogels swell upon exposure of water. The underlying correlation between the polymer fraction and fracture properties of tough adhesive hydrogels remains largely unexplored. Here, we study how the cohesion and adhesion energies of a tough adhesive hydrogel evolve with the swelling process. The results show a similar scaling law (ϕv) of the two quantities as a function of the polymer fraction (ϕ). Our scaling analysis and computational study reveal that it stems from the scaling of shear modulus. The study will promote the investigation of scaling of hydrogel fracture and provide development guidelines for next-generation tough adhesive hydrogels.
Collapse
Affiliation(s)
- Xiang Ni
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Zhen Yang
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| |
Collapse
|
45
|
Yang H, Song L, Zou Y, Sun D, Wang L, Yu Z, Guo J. Role of Hyaluronic Acids and Potential as Regenerative Biomaterials in Wound Healing. ACS APPLIED BIO MATERIALS 2021; 4:311-324. [PMID: 35014286 DOI: 10.1021/acsabm.0c01364] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The skin can protect the body from external harm, sense environmental changes, and maintain physiological homeostasis. Cutaneous repair and regeneration associated with surgical wounds, acute traumas, and chronic diseases are a central concern of healthcare. Patients may experience the failure of current treatments due to the complexity of the healing process; therefore, emerging strategies are needed. Hyaluronic acids (HAs, also known as hyaluronan), a glycosaminoglycan (GAG) of the extracellular matrix (ECM), play key roles in cell differentiation, proliferation, and migration throughout tissue development and regeneration. Recently, HA derivatives have been developed as regenerative biomaterials for treating skin damage and injury. In this review, the healing process, namely, hemostasis, inflammation, proliferation, and maturation, is described and the role of HAs in the healing process is discussed. This review also provides recent examples in the development of HA derivatives for wound healing.
Collapse
Affiliation(s)
- Hao Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Liu Song
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Limei Wang
- Department of Pharmacy, The General Hospital of FAW, Changchun 130011, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
46
|
Hu H, Huang C, Galluzzi M, Ye Q, Xiao R, Yu X, Du X. Editing the Shape Morphing of Monocomponent Natural Polysaccharide Hydrogel Films. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9786128. [PMID: 34195615 PMCID: PMC8214511 DOI: 10.34133/2021/9786128] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/08/2021] [Indexed: 01/06/2023]
Abstract
Shape-morphing hydrogels can be widely used to develop artificial muscles, reconfigurable biodevices, and soft robotics. However, conventional approaches for developing shape-morphing hydrogels highly rely on composite materials or complex manufacturing techniques, which limit their practical applications. Herein, we develop an unprecedented strategy to edit the shape morphing of monocomponent natural polysaccharide hydrogel films via integrating gradient cross-linking density and geometry effect. Owing to the synergistic effect, the shape morphing of chitosan (CS) hydrogel films with gradient cross-linking density can be facilely edited by changing their geometries (length-to-width ratios or thicknesses). Therefore, helix, short-side rolling, and long-side rolling can be easily customized. Furthermore, various complex artificial 3D deformations such as artificial claw, horn, and flower can also be obtained by combining various flat CS hydrogel films with different geometries into one system, which can further demonstrate various shape transformations as triggered by pH. This work offers a simple strategy to construct a monocomponent hydrogel with geometry-directing programmable deformations, which provides universal insights into the design of shape-morphing polymers and will promote their applications in biodevices and soft robotics.
Collapse
Affiliation(s)
- Hao Hu
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518035, China
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Chao Huang
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518035, China
| | - Massimiliano Galluzzi
- Institute of Advanced Materials Science and Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518035, China
| | - Qiang Ye
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Rui Xiao
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Xuefeng Yu
- Institute of Advanced Materials Science and Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518035, China
| | - Xuemin Du
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518035, China
| |
Collapse
|
47
|
Panyamao P, Ruksiriwanich W, Sirisa-ard P, Charumanee S. Injectable Thermosensitive Chitosan/Pullulan-Based Hydrogels with Improved Mechanical Properties and Swelling Capacity. Polymers (Basel) 2020; 12:E2514. [PMID: 33126695 PMCID: PMC7692642 DOI: 10.3390/polym12112514] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Thermosensitive chitosan/β-glycerophosphate (CS/BGP) systems have been developed as injectable hydrogels. However, the hydrogels exhibited poor mechanical properties due to their physically crosslinked networks. In this work, CS/BGP hydrogels were reinforced by covalent crosslinking using genipin (GE) and concomitantly semi-interpenetrating networks using pullulan (PL). Based on response surface methodology, the optimized formulation was composed of CS (1.05%, w/v), PL (1%, w/v), BGP (6%, w/v), and GE (70.79 mcg/mL). The optimized hydrogels exhibited Young's modulus of 92.65 ± 4.13 kPa and a percentage of equilibrium swelling ratio of 3259.09% ± 58.90%. Scanning electron micrographs revealed a highly porous structure with nanofibrous networks in the CS/PL/BGP/GE hydrogels. The chemical interactions between the compositions were investigated by Fourier-transform infrared spectroscopy. Rheological measurements illustrated that the optimized hydrogels displayed sol-gel transition within one minute at 37 °C, a lower critical solution temperature of about 31 °C, and viscoelastic behavior with high storage modulus. Furthermore, the optimized hydrogels demonstrated higher resistance to in vitro enzymatic degradation, compared to the hydrogels without GE. Our findings could suggest that the thermosensitive CS/PL/BGP/GE hydrogels with enhanced mechanical properties and swelling capacity demonstrate the potential for use as scaffolds and carriers for cartilage tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Prakasit Panyamao
- Department of Pharmaceutical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (W.R.); (P.S.-a.)
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (W.R.); (P.S.-a.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panee Sirisa-ard
- Department of Pharmaceutical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (W.R.); (P.S.-a.)
| | - Suporn Charumanee
- Department of Pharmaceutical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (W.R.); (P.S.-a.)
| |
Collapse
|
48
|
Johnson A, Kong F, Miao S, Lin HTV, Thomas S, Huang YC, Kong ZL. Therapeutic effects of antibiotics loaded cellulose nanofiber and κ-carrageenan oligosaccharide composite hydrogels for periodontitis treatment. Sci Rep 2020; 10:18037. [PMID: 33093521 PMCID: PMC7581766 DOI: 10.1038/s41598-020-74845-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Periodontitis is an inflammatory disease that can lead to the periodontal pocket formation and tooth loss. This study was aimed to develop antimicrobials loaded hydrogels composed of cellulose nanofibers (CNF) and κ-carrageenan oligosaccharides (CO) nanoparticles for the treatment of periodontitis. Two antimicrobial agents such as surfactin and Herbmedotcin were selected as the therapeutic agents and the hydrogels were formulated based on the increasing concentration of surfactin. The proposed material has high thermal stability, controlled release, and water absorption capacity. This study was proceeded by investigating the in vitro antibacterial and anti-inflammatory properties of the hydrogels. This material has strong antibacterial activity against periodontal pathogens such as Streptococcus mutans, Porphyromonas gingivalis, Fusobacterium nucleatum, and Pseudomonas aeruginosa. Moreover, a significant increase in malondialdehyde (MDA) production and a decrease in biofilm formation and metabolic activity of the bacteria was observed in the presence of hydrogel. Besides, it reduced the reactive oxygen species (ROS) generation, transcription factor, and cytokines production in human gingival fibroblast cells (HGF) under inflammatory conditions. In conclusion, the hydrogels were successfully developed and proven to have antibacterial and anti-inflammatory properties for the treatment of periodontitis. Thus, it can be used as an excellent candidate for periodontitis treatment.
Collapse
Affiliation(s)
- Athira Johnson
- Department of Food Science, National Taiwan Ocean University, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
| | - Fanbin Kong
- Department of Food Science and Technology, University of Georgia, 100 Cedar Street, Athens, GA, 30602, USA
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, P61 C996, Ireland
| | - Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
| | - Sabu Thomas
- School of Energy Studies and School of Chemical Sciences, Mahatma Gandhi University, Priyadarshini Hills P.O, Kottayam, Kerala, 686560, India
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Pei-Ning Road, Keelung, 20224, Taiwan, ROC.
| |
Collapse
|
49
|
Li G, Wang L, Wu L, Guo Z, Zhao J, Liu Y, Bai R, Yan X. Woven Polymer Networks via the Topological Transformation of a [2]Catenane. J Am Chem Soc 2020; 142:14343-14349. [PMID: 32787257 DOI: 10.1021/jacs.0c06416] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Weaving technology has been widely used to manufacture macroscopic fabrics to meet the artistic and practical needs of humanity for thousands of years. However, the fabrication of molecular fabrics with fascinating topologies and unique mechanical properties represents a significant challenge. Herein, we describe a topological transformation strategy to construct woven polymer networks (WPNs) at the molecular level via ring-opening metathesis polymerization (ROMP) of a zinc-template [2]catenane. The key feature of this approach is the exploitation of the pre-existing catenane crossing points that maintain the dense woven structure and the flexible alkyl chains on the [2]catenane that synergistically work with the crossing points to modulate the physicochemical and mechanical properties of the woven materials. As a result, the WPN possesses a certain degree of flexibility and stretchability, as well as high thermostability and mechanical robustness. Furthermore, we could remove the zinc ions to endow the WPN with more degrees of freedom and then enhance its mechanical behaviors by remetalation. This study not only provides a novel strategy toward woven materials with intriguing structural features and emergent mechanical adaptivities, but also highlights that mechanically interlocked molecules could offer unique opportunities for the construction of smart supramolecular materials with peculiar interlaced topologies at the molecular scale.
Collapse
Affiliation(s)
- Guangfeng Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhewen Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
50
|
Ishida-Ishihara S, Akiyama M, Furusawa K, Naguro I, Ryuno H, Sushida T, Ishihara S, Haga H. Osmotic gradients induce stable dome morphogenesis on extracellular matrix. J Cell Sci 2020; 133:jcs.243865. [PMID: 32576662 DOI: 10.1242/jcs.243865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/11/2020] [Indexed: 01/04/2023] Open
Abstract
One of the fundamental processes in morphogenesis is dome formation, but many of the mechanisms involved are unexplored. Previous in vitro studies showed that an osmotic gradient is the driving factor of dome formation. However, these investigations were performed without extracellular matrix (ECM), which provides structural support to morphogenesis. With the use of ECM, we observed that basal hypertonic stress induced stable domes in vitro that have not been seen in previous studies. These domes developed as a result of ECM swelling via aquaporin water transport activity. Based on computer simulation, uneven swelling, with a positive feedback between cell stretching and enhanced water transport, was a cause of dome formation. These results indicate that osmotic gradients induce dome morphogenesis via both enhanced water transport activity and subsequent ECM swelling.
Collapse
Affiliation(s)
- Sumire Ishida-Ishihara
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan
| | - Masakazu Akiyama
- Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Nakano 4-21-1, Nakano-ku, Tokyo 164-8525, Japan
| | - Kazuya Furusawa
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan.,Faculty of Environmental and Information Sciences, Fukui University of Technology, Gakuen 3-6-1, Fukui 910-8505, Japan
| | - Isao Naguro
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Ryuno
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takamichi Sushida
- Department of Computer Science and Technology, Salesian Polytechnic, Oyamagaoka 4-6-8, Machida City, Tokyo 194-0215, Japan
| | - Seiichiro Ishihara
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan.,Soft Matter GI-CoRE, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| | - Hisashi Haga
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan .,Soft Matter GI-CoRE, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|