1
|
Swapnil SI, Shoudho MTH, Rahman A, Ahmed T, Arafat MT. DOTAGEL: a hydrogen and amide bonded, gelatin based, tunable, antibacterial, and high strength adhesive synthesized in an unoxidized environment. J Mater Chem B 2024; 12:11025-11041. [PMID: 39355893 DOI: 10.1039/d4tb00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The development of bioadhesives that concurrently exhibit high adhesion strength, biocompatibility, and tunable properties and involve simple fabrication processes continues to be a significant challenge. In this study, a novel bioadhesive named DOTAGEL is synthesized by crosslinking gelatin (GA), dopamine (DA), and tannic acid (TA) in an unoxidized environment due to the advantage of controlling the degree of protonation in GA and TA, as well as controlling the degree of intermolecular amide and hydrogen bonding in the acidic medium. DOTAGEL (DA + TA + GA) shows superior adhesion strengths of 104.6 ± 46 kPa on dry skin and 35.6 ± 4.5 kPa on wet skin, up to 13 attachment-detachment cycles, retains adhesion strength under water for up to 10 days and is capable of joining two cut parts of internal organs of mice. Moreover, DOTAGEL shows strong antibacterial properties, self-healing, and biocompatibility since it contains TA, a natural and antibacterial cross-linker with abundant hydroxyl groups and the capability of forming non-covalent bonds in an unoxidized environment, and dopamine hydrochloride, a mussel inspired biomaterial containing both the amine and catechol groups for amide bonding and hydrogen bonding with TA and GA. The cross-linking among 20% (w/v) GA, 0.2% (w/v) DA, and 20% (w/v) TA is done by the centrifugation process at room temperature. Two different acids, hydrochloric acid and acetic acid, were used for tuning the pH of the medium, which led to two different samples named DOTAGEL/AA and DOTAGEL/HCL. The degree of cross-linking and mechanical and biochemical properties, like adhesion strength, degradation rate, antibacterial properties, stickiness, etc., are tuned by adjusting the pH of the medium. DOTAGEL/HCL showed 6.5 times faster degradation in 10 days, a faster release rate in the antibacterial study, 2 times adhesion strength in a dry medium, and more stickiness. The novelty lies not only in increased adhesion strength but also in the single-step fabrication process of the adhesive in the acidic medium. This research proposes the formation of a tunable antibacterial adhesive that is capable of working on wet surfaces within the body and that has the potential to become a successful tissue adhesive with a wide range of possibilities in controlled drug delivery at wound sites and other biomedical applications.
Collapse
Affiliation(s)
- Soham Irtiza Swapnil
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| | - Md Tashdid Hossain Shoudho
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| | - Abdur Rahman
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| | - Tahmed Ahmed
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| |
Collapse
|
2
|
Du R, Li X, Fielding LA. Investigating the Formation of Polymer-Nanoparticle Complex Coacervate Hydrogels Using Polymerization-Induced Self-Assembly-Derived Nanogels with a Succinate-Functional Core. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20648-20656. [PMID: 39291829 PMCID: PMC11447913 DOI: 10.1021/acs.langmuir.4c02626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
This paper reports polymer-nanoparticle-based complex coacervate (PNCC) hydrogels prepared by mixing anionic nanogels synthesized by polymerization-induced self-assembly (PISA) and cationic branched poly(ethylenimine) (bPEI). Specifically, poly(3-sulfopropyl methacrylate)58-b-poly(2-(methacryloyloxy)ethyl succinate)500 (PKSPMA58-PMES500) nanogels were prepared by reversible addition-fragmentation chain-transfer (RAFT)-mediated PISA. These nanogels swell on increasing the solution pH and form free-standing hydrogels at 20% w/w and pH ≥ 7.5. However, the addition of bPEI significantly improves the gel properties through the formation of PNCCs. Diluted bPEI/nanoparticle mixtures were analyzed by dynamic light scattering (DLS) and aqueous electrophoresis to examine the mechanism of PNCC formation. The influence of pH and the bPEI-to-nanogel mass ratio (MR) on the formation of these PNCC hydrogels was subsequently investigated. A maximum gel strength of 1300 Pa was obtained for 20% w/w bPEI/PKSPMA58-PMES500 PNCC hydrogels prepared at pH 9 with an MR of 0.1, and shear-thinning behavior was observed in all cases. After the removal of shear, these PNCC gels recovered rapidly, with the recovery efficiency being pH-dependent.
Collapse
Affiliation(s)
- Ruiling Du
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Xueyuan Li
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Lee A. Fielding
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
3
|
Huang Z, Xu L, Liu P, Peng J. Transparent, mechanically robust, conductive, self-healable, and recyclable ionogels for flexible strain sensors and electroluminescent devices. RSC Adv 2024; 14:28234-28243. [PMID: 39234525 PMCID: PMC11372454 DOI: 10.1039/d4ra05446f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
A mechanically robust, self-healable, and recyclable PVP-based ionogel was achieved through a simple one-pot photoinitiated polymerization process. This ionogel exhibits a combination of excellent properties, including transparency, high mechanical strength, good ionic conductivity, self healability, and recyclability. A wearable resistive strain sensor based on the ionogel is successfully assembled and demonstrated accurate response to human motion. Moreover, a flexible electroluminescent device has been fabricated based on our ionogel, which can maintain optimal luminescence functionality even when subjected to bending. Considering the simple preparation method and excellent applications, we believe that our PVP-based ionogel has promising applications in many fields such as in wearable devices, electronic skin, implantable materials, robotics and human-machine interfaces.
Collapse
Affiliation(s)
- Zhenkai Huang
- School of Materials and Energy, Foshan University Foshan 528000 China
| | - Liguo Xu
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic Foshan 528333 China
| | - Peijiang Liu
- Reliability Physics and Application Technology of Electronic Component Key Laboratory, The 5th Electronics Research Institute of the Ministry of Industry and Information Technology Guangzhou 510610 China
| | - Jianping Peng
- School of Environmental and Chemical Engineering, Foshan University Foshan 528000 China
| |
Collapse
|
4
|
Qian N, Hu J, Huang S, Liu Z, Wang M, Keller P, Yang H. Patterned Photonic Actuators with Dynamic Shape-Morphing and Color-Changing Capabilities Fabricated by Athermal Embossing Technology. Angew Chem Int Ed Engl 2024; 63:e202406534. [PMID: 38693606 DOI: 10.1002/anie.202406534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/03/2024]
Abstract
Stimuli-responsive patterned photonic actuators, characterized by their patterned nano/microscale structures and capacity to demonstrate synergistic color changes and shape morphing in response to external stimuli, have attracted intense scientific attention. However, traditional patterned photonic actuator systems still face limitations such as cumbersome and time-consuming preparation processes and small-scale deformations. Herein, we introduce a facile approach involving an athermal embossing technique to rapidly fabricate patterned photonic actuators based on near-infrared (NIR) light-responsive liquid crystal elastomers. The resulting patterned photonic actuators demonstrate remarkable features, including brilliant angle-dependent structural color, complex three-dimensional actuation, and good color durability under NIR light stimulation. As illustrative demonstrations of the proof-of-concept, we fabricate two light-fuelled patterned photonic soft actuators: a butterfly-inspired actuator that can produce wing-flapping dynamic changes in structural color, and an origami crane-shaped actuator with shape memory, structural color information storage, and dynamic display properties. This strategy provides distinct insights into the design and fabrication of various patterned photonic soft robotic devices and intelligent actuators.
Collapse
Affiliation(s)
- Nina Qian
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Jun Hu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Shuai Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Zhiyang Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Meng Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Patrick Keller
- Institut Curie, Centre De Recherche, CNRS UMR 168, Université Pierre et Marie Curie, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Hong Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| |
Collapse
|
5
|
Li Z, Lu J, Ji T, Xue Y, Zhao L, Zhao K, Jia B, Wang B, Wang J, Zhang S, Jiang Z. Self-Healing Hydrogel Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306350. [PMID: 37987498 DOI: 10.1002/adma.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels have emerged as powerful building blocks to develop various soft bioelectronics because of their tissue-like mechanical properties, superior bio-compatibility, the ability to conduct both electrons and ions, and multiple stimuli-responsiveness. However, hydrogels are vulnerable to mechanical damage, which limits their usage in developing durable hydrogel-based bioelectronics. Self-healing hydrogels aim to endow bioelectronics with the property of repairing specific functions after mechanical failure, thus improving their durability, reliability, and longevity. This review discusses recent advances in self-healing hydrogels, from the self-healing mechanisms, material chemistry, and strategies for multiple properties improvement of hydrogel materials, to the design, fabrication, and applications of various hydrogel-based bioelectronics, including wearable physical and biochemical sensors, supercapacitors, flexible display devices, triboelectric nanogenerators (TENGs), implantable bioelectronics, etc. Furthermore, the persisting challenges hampering the development of self-healing hydrogel bioelectronics and their prospects are proposed. This review is expected to expedite the research and applications of self-healing hydrogels for various self-healing bioelectronics.
Collapse
Affiliation(s)
- Zhikang Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jijian Lu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Ji
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kang Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Boqing Jia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxiang Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
6
|
Sacramento MMA, Oliveira MB, Gomes JR, Borges J, Freedman BR, Mooney DJ, Rodrigues JMM, Mano JF. Natural Polymer-Polyphenol Bioadhesive Coacervate with Stable Wet Adhesion, Antibacterial Activity, and On-Demand Detachment. Adv Healthc Mater 2024; 13:e2304587. [PMID: 38334308 PMCID: PMC11469155 DOI: 10.1002/adhm.202304587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Medical adhesives are emerging as an important clinical tool as adjuvants for sutures and staples in wound closure and healing and in the achievement of hemostasis. However, clinical adhesives combining cytocompatibility, as well as strong and stable adhesion in physiological conditions, are still in demand. Herein, a mussel-inspired strategy is explored to produce adhesive coacervates using tannic acid (TA) and methacrylate pullulan (PUL-MA). TA|PUL-MA coacervates mainly comprise van der Waals forces and hydrophobic interactions. The methacrylic groups in the PUL backbone increase the number of interactions in the adhesives matrix, resulting in enhanced cohesion and adhesion strength (72.7 Jm-2), compared to the non-methacrylated coacervate. The adhesive properties are kept in physiologic-mimetic solutions (72.8 Jm-2) for 72 h. The photopolymerization of TA|PUL-MA enables the on-demand detachment of the adhesive. The poor cytocompatibility associated with the use of phenolic groups is here circumvented by mixing reactive oxygen species-degrading enzyme in the adhesive coacervate. This addition does not hamper the adhesive character of the materials, nor their anti-microbial or hemostatic properties. This affordable and straightforward methodology, together with the tailorable adhesivity even in wet environments, high cytocompatibility, and anti-bacterial activity, enables foresee TA|PUL-MA as a promising ready-to-use bioadhesive for biomedical applications.
Collapse
Affiliation(s)
- Margarida M. A. Sacramento
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Mariana B. Oliveira
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - José R.B. Gomes
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - João Borges
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Benjamin R. Freedman
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityCambridgeMA02138USA
- Department of Orthopaedic SurgeryBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityCambridgeMA02138USA
| | - João M. M. Rodrigues
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - João F. Mano
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
7
|
Cai A, Zhang X, Cai P, Wu Z, Mondal AK, Tang Z. Preparation of tannic acid-reinforced cellulose nanofiber composites for all-water-based high-performance wood adhesives. Int J Biol Macromol 2024; 264:130770. [PMID: 38467230 DOI: 10.1016/j.ijbiomac.2024.130770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/21/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Traditional adhesives easily release toxic gases during the preparation process or apply to wood composite products, which have adverse effects on the human body and the environment. Herein, an all-water-based high-performance wood adhesive is prepared using TEMPO-oxidized cellulose nanofiber (TOCNF), acrylamide (AM), and tannic acid (TA) through free radical polymerization. Different characteristics of the prepared composites, including morphology, injectability, and adhesion properties, have been investigated. Results showed that the TA/TOCNF/PAM composite has excellent injectability. The addition of TA can enhance the lap shear strength of the TA/TOCNF/PAM composites and with the increment of TA content, the lap shear strength gradually decreases. The formation of effective hydrogen bonds and Van der Waals interaction among the rich functional groups in the composite, lead to strong lap shear strength on different substrates. The composite with 5.0 g of AM, 5.0 g of the TOCNF suspension and 0.1 g TA possesses a high lap shear strength of 10.5 MPa on wood and 1.5 MPa on aluminium. Based on strong adhesion properties and excellent injectability, the TA/TOCNF/PAM composites have great potential in the furniture construction and building industries.
Collapse
Affiliation(s)
- Anqi Cai
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Xinxin Zhang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Peirong Cai
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Zhenzeng Wu
- College of Ecology and Resource Engineering, Wuyi University, Wuyishan, Fujian 354300, PR China.
| | - Ajoy Kanti Mondal
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Zuwu Tang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China.
| |
Collapse
|
8
|
Ribeiro M, Simões M, Vitorino C, Mascarenhas-Melo F. Hydrogels in Cutaneous Wound Healing: Insights into Characterization, Properties, Formulation and Therapeutic Potential. Gels 2024; 10:188. [PMID: 38534606 DOI: 10.3390/gels10030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Hydrogels are polymeric materials that possess a set of characteristics meeting various requirements of an ideal wound dressing, making them promising for wound care. These features include, among others, the ability to absorb and retain large amounts of water and the capacity to closely mimic native structures, such as the extracellular matrix, facilitating various cellular processes like proliferation and differentiation. The polymers used in hydrogel formulations exhibit a broad spectrum of properties, allowing them to be classified into two main categories: natural polymers like collagen and chitosan, and synthetic polymers such as polyurethane and polyethylene glycol. This review offers a comprehensive overview and critical analysis of the key polymers that can constitute hydrogels, beginning with a brief contextualization of the polymers. It delves into their function, origin, and chemical structure, highlighting key sources of extraction and obtaining. Additionally, this review encompasses the main intrinsic properties of these polymers and their roles in the wound healing process, accompanied, whenever available, by explanations of the underlying mechanisms of action. It also addresses limitations and describes some studies on the effectiveness of isolated polymers in promoting skin regeneration and wound healing. Subsequently, we briefly discuss some application strategies of hydrogels derived from their intrinsic potential to promote the wound healing process. This can be achieved due to their role in the stimulation of angiogenesis, for example, or through the incorporation of substances like growth factors or drugs, such as antimicrobials, imparting new properties to the hydrogels. In addition to substance incorporation, the potential of hydrogels is also related to their ability to serve as a three-dimensional matrix for cell culture, whether it involves loading cells into the hydrogel or recruiting cells to the wound site, where they proliferate on the scaffold to form new tissue. The latter strategy presupposes the incorporation of biosensors into the hydrogel for real-time monitoring of wound conditions, such as temperature and pH. Future prospects are then ultimately addressed. As far as we are aware, this manuscript represents the first comprehensive approach that brings together and critically analyzes fundamental aspects of both natural and synthetic polymers constituting hydrogels in the context of cutaneous wound healing. It will serve as a foundational point for future studies, aiming to contribute to the development of an effective and environmentally friendly dressing for wounds.
Collapse
Affiliation(s)
- Mariana Ribeiro
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CISUC-Center for Informatics and Systems, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
| | - Marco Simões
- CISUC-Center for Informatics and Systems, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300-307 Guarda, Portugal
- REQUIMTE/LAQV, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
9
|
Wei X, Xie H, Hu Z, Zeng X, Dong H, Liu X, Bai W. Multiscale structure changes and mechanism of polyphenol-amylose complexes modulated by polyphenolic structures. Int J Biol Macromol 2024; 262:130086. [PMID: 38360224 DOI: 10.1016/j.ijbiomac.2024.130086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
This study was designed to investigate the effect of polyphenolic structure on the interaction strength and process between polyphenols (gallic acid (GA), epigallocatechin gallate (EGCG) and tannic acid (TA)) and amylose (AM). The results of Fourier transform infrared spectroscopy, isothermal titration calorimetry, X-ray photoelectron spectroscopy and molecular dynamic simulation (MD) suggested that the interactions between the three polyphenols and AM were noncovalent, spontaneous, low-energy and driven by enthalpy, which would be enhanced with increasing amounts of pyrogallol groups in the polyphenols. The results of turbidity, particle size and appearance of the complex solution showed that the interaction process between polyphenols and AM could be divided into three steps and would be advanced by increasing the number of pyrogallol groups in the polyphenols. At the same time, MD was intuitively employed to exhibit the interaction process between amylose and polyphenols, and it revealed that the interaction induced the aggregation of amylose and that the agglomeration degree of amylose increased with increasing number of pyrogallol groups at polyphenols. Last, the SEM and TGA results showed that TA/AM complexes had the tightest structure and the highest thermal stability (TA/AM˃EGCG/AM˃GA/AM), which could be attributed to TA having five pyrogallol groups.
Collapse
Affiliation(s)
- Xianling Wei
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Huan Xie
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; School of Food and Pharmacy, Shanghai Zhongqiao Vocational and Technology University, Shanghai 201514, China
| | - Ziqing Hu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Hao Dong
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xiaoyan Liu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| | - Weidong Bai
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
10
|
Nam MG, Moon J, Kim M, Koo JK, Ho JW, Choi GH, Kim HJ, Shin CS, Kwon SJ, Kim YJ, Chang H, Kim Y, Yoo PJ. p-Phenylenediamine-Bridged Binder-Electrolyte-Unified Supramolecules for Versatile Lithium Secondary Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304803. [PMID: 37589475 DOI: 10.1002/adma.202304803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/30/2023] [Indexed: 08/18/2023]
Abstract
The binder is an essential component in determining the structural integrity and ionic conductivity of Li-ion battery electrodes. However, conventional binders are not sufficiently conductive and durable to be used with solid-state electrolytes. In this study, a novel system is proposed for a Li secondary battery that combines the electrolyte and binder into a unified structure, which is achieved by employing para-phenylenediamine (pPD) moiety to create supramolecular bridges between the parent binders. Due to a partial crosslinking effect and charge-transferring structure of pPD, the proposed strategy improves both the ionic conductivity and mechanical properties by a factor of 6.4 (achieving a conductivity of 3.73 × 10-4 S cm-1 for poly(ethylene oxide)-pPD) and 4.4 (reaching a mechanical strength of 151.4 kPa for poly(acrylic acid)-pPD) compared to those of conventional parent binders. As a result, when the supramolecules of pPD are used as a binder in a pouch cell with a lean electrolyte loading of 2 µL mAh-1 , a capacity retention of 80.2% is achieved even after 300 cycles. Furthermore, when it is utilized as a solid-state electrolyte, an average Coulombic efficiency of 99.7% and capacity retention of 98.7% are attained under operations at 50 °C without external pressure or a pre-aging process.
Collapse
Affiliation(s)
- Myeong Gyun Nam
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Janghyeon Moon
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Minjun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jin Kyo Koo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jeong-Won Ho
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gwan Hyun Choi
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hye Jin Kim
- Samsung SDI Co., Ltd. R&D Center, Suwon, 16678, Republic of Korea
| | - Chang-Su Shin
- Samsung SDI Co., Ltd. R&D Center, Suwon, 16678, Republic of Korea
| | - Seok Joon Kwon
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Young-Jun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyuk Chang
- Samsung SDI Co., Ltd. R&D Center, Suwon, 16678, Republic of Korea
| | - Youngugk Kim
- Samsung SDI Co., Ltd. R&D Center, Suwon, 16678, Republic of Korea
| | - Pil J Yoo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
11
|
Sharma A, Dutta T, Srivastava A. Underwater Adhesives from Redox-Responsive Polyplexes of Thiolated Polyamide Polyelectrolytes. Chemistry 2024; 30:e202302157. [PMID: 37751057 DOI: 10.1002/chem.202302157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 09/27/2023]
Abstract
We report the fabrication of optically clear underwater adhesives using polyplexes of oppositely charged partially-thiolated polyamide polyelectrolytes (TPEs). The thiol content of the constituent PEs was varied to assess its influence on the adhesive properties of the resulting glues. These catechol-free, redox-responsive TPE-adhesives were formulated in aquo and exhibited high optical transparency and strong adhesion even on submerged or moist surfaces of diverse polar substrates such as glass, aluminium, wood, and bone pieces. The adhesives could be cured under water through oxidative disulphide crosslinking of the constituent TPEs. The polyamide backbone provided multi-site H-bonding interactions with the substrates while the disulphide crosslinking provided the cohesive strength to the glue. Strong adhesion of mammalian bones (load bearing capacity upto 7 kg/cm2 ) was achieved using the adhesive containing 30 mol % thiol residues. Higher pH and use of oxidants such as povidone-iodine solution enhanced the curing rate of the adhesives, and so did the use of Tris buffer instead of Phosphate buffer. The porous architecture of the adhesive and its progressive degradation in aqueous medium over the course of three weeks bode well for diverse biomedical applications where temporary adhesion of tissues is required.
Collapse
Affiliation(s)
- Aashish Sharma
- Department of Chemistry, Indian Institute of Science Education Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
- Current Affiliation: School of Medical and Allied Sciences, G.D. Goenka University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Tanmay Dutta
- Department of Chemistry, Indian Institute of Science Education Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
| |
Collapse
|
12
|
Fouilloux J, Abbad-Andaloussi S, Langlois V, Dammak L, Renard E. Green Physical Modification of Polypropylene Fabrics by Cross-Linking Chitosan with Tannic Acid and Postmodification by Quaternary Ammonium Grafting to Improve Antibacterial Activity. ACS APPLIED BIO MATERIALS 2023; 6:5609-5620. [PMID: 37966023 DOI: 10.1021/acsabm.3c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A green cross-linking and straightforward method to physically trap inert fibers in a network of chitosan was implemented. The cross-linking reaction involved a biosourced and biocompatible cross-linker [tannic acid (TA)] and mild conditions in water (pH = 8.5, O2 bubbling, 60 °C, 3 h). The steric hindrance of TA led to a low but effective cross-linking rate leaving parts of primary amines of chitosan available for postmodification such as the grafting of quaternary ammoniums for antibacterial purposes. Fabric's coatings were characterized by scanning electron microscopy coupled with energy-dispersive X-ray, infrared spectroscopy, and weight gain measurements. This allowed the optimization of process conditions. No significant antioxidant activity was observed on fabrics coated with chitosan cross-linked with TA, confirming the low cross-linking rate. This low cross-linking rate allowed grafting of quaternary ammoniums for antibacterial purposes, but it is possible to consider grafting other active molecules. Biological assays were conducted on this coating to assess its antibacterial properties. Reduction of bacterial colonization on both Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative), two of the major strains responsible for nosocomial infections, confirmed the potential of the coating for antibacterial purposes. This study displays a simple and ecofriendly process to coat inert fabrics with a chitosan network containing reactive functions (primary amines) available for grafting active molecules for various purposes.
Collapse
Affiliation(s)
- Julie Fouilloux
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est (UPEC), UMR 7182, CNRS, 2-8 rue Henri Dunant, Thiais 94320, France
| | - Samir Abbad-Andaloussi
- Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), Université Paris-Est (UPEC), UMR-MA 102, 61 Avenue Général de Gaulle, Créteil 94010, France
| | - Valérie Langlois
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est (UPEC), UMR 7182, CNRS, 2-8 rue Henri Dunant, Thiais 94320, France
| | - Lasâad Dammak
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est (UPEC), UMR 7182, CNRS, 2-8 rue Henri Dunant, Thiais 94320, France
| | - Estelle Renard
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est (UPEC), UMR 7182, CNRS, 2-8 rue Henri Dunant, Thiais 94320, France
| |
Collapse
|
13
|
He S, Bai J, Liu Y, Zeng Y, Wang L, Chen X, Wang J, Weng J, Zhao Y, Peng W, Zhi W. A polyglutamic acid/tannic acid-based nano drug delivery system: Antibacterial, immunoregulation and sustained therapeutic strategies for oral ulcers. Int J Pharm 2023; 648:123607. [PMID: 37967688 DOI: 10.1016/j.ijpharm.2023.123607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Oral ulcers are a common inflammatory mucosal ulcer, and the moist and dynamic environment in the oral cavity makes topical pharmacological treatment of oral ulcers challenging. Herein, oral ulcer tissue adhesion nanoparticles were prepared by using esterification reaction between polyglutamic acid and tannic acid, and at the same time doxycycline hydrochloride was loaded into the nanoparticles. The obtained slow drug release effect of the drug-loaded nanoparticles reduced the toxicity of the drug, and by penetrating into the fine crevice region of the wound tissue and adhering to it, they could in-situ release the carried drug more effectively and thus have shown significant antibacterial effects. In addition, tannic acid in the system conferred adhesion, antioxidant and immune regulation activities to the nanocarriers. A rat oral ulcer model based on fluorescent labeling was established to investigate the retention of nanoparticles at the ulcer, and the results showed that the retention rate of drug-loaded nanoparticles at the ulcer was 17 times higher than that of pure drug. Due to the antibacterial and immune regulation effects of the drug-loaded nanoparticles, the healing of oral ulcer wounds was greatly accelerated. Such application of doxycycline hydrochloride loaded polyglutamic acid/tannic acid nanoparticles is a novel and effective treatment strategy for oral ulcer.
Collapse
Affiliation(s)
- Siyuan He
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiafan Bai
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuhao Liu
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yili Zeng
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linyu Wang
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiangli Chen
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianxin Wang
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jie Weng
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuancong Zhao
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenzhen Peng
- Department of Biochemistry and Molecular Biology, College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Wei Zhi
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
14
|
Zhao X, Luo J, Huang Y, Mu L, Chen J, Liang Z, Yin Z, Chu D, Han Y, Guo B. Injectable Antiswelling and High-Strength Bioactive Hydrogels with a Wet Adhesion and Rapid Gelling Process to Promote Sutureless Wound Closure and Scar-free Repair of Infectious Wounds. ACS NANO 2023; 17:22015-22034. [PMID: 37862553 DOI: 10.1021/acsnano.3c08625] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Developing injectable antiswelling and high-strength bioactive hydrogels with wet tissue adhesiveness and a rapid gelling process to meet the requirements for rapid hemostasis, sutureless wound closure, and scar-free repair of infected skin wounds continues to have ongoing challenges. Herein, injectable, antibacterial, and antioxidant hydrogel adhesives based on poly(citric acid-co-polyethylene glycol)-g-dopamine and amino-terminated Pluronic F127 (APF) micelles loaded with astragaloside IV (AS) are prepared. The H2O2/horseradish peroxidase (HRP) system is used to cause cross-linking of the hydrogel network through oxidative coupling between catechol groups and chemical cross-linking between the catechol group and the amino group. The hydrogels exhibit a rapid gelling process, high mechanical strength, an antiswelling effect, good antioxidant property, H2O2 release behavior, and degradability. In addition, the hydrogels present good wet tissue adhesiveness, high bursting pressure, excellent antibacterial activity, long-term sustained release of AS, and good biocompatibility. The hydrogels perform good hemostasis on mouse liver, rat liver, and rabbit femoral vein bleeding models and achieve much better closure and healing of skin incisions than biomedical glue and surgical sutures. Furthermore, the hydrogel dressing significantly improved the scar-free repair of MRSA-infected full thickness skin defect wounds by modulating inflammation, regulating the ratio of collagen I/III, and improving the vascularization and granulation tissue formation. Thus, AS-loaded hydrogels show huge potential as multifunctional dressings for in vivo hemostasis, sutureless wound closure, and scar-free repair of infected skin wounds.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ying Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Mu
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jueying Chen
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhen Liang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
15
|
Wang C, Jing Y, Yu W, Gu J, Wei Z, Chen A, Yen Y, He X, Cen L, Chen A, Song X, Wu Y, Yu L, Tao G, Liu B, Wang S, Xue B, Li R. Bivalent Gadolinium Ions Forming Injectable Hydrogels for Simultaneous In Situ Vaccination Therapy and Imaging of Soft Tissue Sarcoma. Adv Healthc Mater 2023; 12:e2300877. [PMID: 37567584 PMCID: PMC11469252 DOI: 10.1002/adhm.202300877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Doxorubicin (DOX) is the classic soft tissue sarcomas (STS) first-line treatment drug, while dose-dependent myelosuppression and cardiotoxicity limit its application in clinic. This research intends to apply DOX, which is also an inducer of immunogenic cell death as a part for "in situ vaccination" and conjointly uses PD-1 inhibitors to enhance antitumor efficacy. In order to achieve the sustained vaccination effect and real-time monitoring of distribution in vivo, the in situ forming and injectable hydrogel platform with the function of visualization is established for local delivery. The hydrogel platform is synthesized by hyaluronic acid-dopamine coordinated with gadolinium ions (Gd2+ ). Gd2+ provides the ability of magnetic resonance imaging, meanwhile further cross-linking the hydrogel network. Experiments show excellent ability of sustained release and imaging tracking for the hydrogel platform. In mouse STS models, the "in situ vaccination" hydrogels show the best effect of inhibiting tumor growth. Further analysis of tumor tissues show that "in situ vaccination" group can increase T cell infiltration, promote M1-type macrophage polarization and block elevated PD-1/PD-L1 pathway caused by DOX. These results are expected to prove the potential for synthesized hydrogels to achieve a universal platform for "in situ vaccination" strategies on STS treatments.
Collapse
Affiliation(s)
- Chun Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
- Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Yuanhao Jing
- Comprehensive Cancer CentreNanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210008China
| | - Wenting Yu
- Collaborative Innovation Centre of Advanced MicrostructuresNational Laboratory of Solid State MicrostructureKey Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of PhysicsNanjing UniversityNanjing210008China
| | - Jie Gu
- Collaborative Innovation Centre of Advanced MicrostructuresNational Laboratory of Solid State MicrostructureKey Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of PhysicsNanjing UniversityNanjing210008China
| | - Zijian Wei
- Comprehensive Cancer CentreNanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210008China
| | - Anni Chen
- Comprehensive Cancer CentreNanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210008China
| | - Ying‐Tzu Yen
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
- Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Xiaowen He
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Lanqi Cen
- The Comprehensive Cancer CentreChina Pharmaceutical University Nanjing Drum Tower HospitalNanjing210008China
| | - Aoxing Chen
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
- Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Xueru Song
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
- Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Yirong Wu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
- Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
- Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Gaojian Tao
- Department of Pain ManagementNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjing210008China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
- Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Shoufeng Wang
- Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjing210008China
| | - Bin Xue
- Collaborative Innovation Centre of Advanced MicrostructuresNational Laboratory of Solid State MicrostructureKey Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of PhysicsNanjing UniversityNanjing210008China
| | - Rutian Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
- Clinical Cancer Institute of Nanjing UniversityNanjing210008China
- Comprehensive Cancer CentreNanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210008China
| |
Collapse
|
16
|
Gao Y, Zhang X, Zhou H. Biomimetic Hydrogel Applications and Challenges in Bone, Cartilage, and Nerve Repair. Pharmaceutics 2023; 15:2405. [PMID: 37896165 PMCID: PMC10609742 DOI: 10.3390/pharmaceutics15102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Tissue engineering and regenerative medicine is a highly sought-after field for researchers aiming to compensate and repair defective tissues. However, the design and development of suitable scaffold materials with bioactivity for application in tissue repair and regeneration has been a great challenge. In recent years, biomimetic hydrogels have shown great possibilities for use in tissue engineering, where they can tune mechanical properties and biological properties through functional chemical modifications. Also, biomimetic hydrogels provide three-dimensional (3D) network spatial structures that can imitate normal tissue microenvironments and integrate cells, scaffolds, and bioactive substances for tissue repair and regeneration. Despite the growing interest in various hydrogels for biomedical use in previous decades, there are still many aspects of biomimetic hydrogels that need to be understood for biomedical and clinical trial applications. This review systematically describes the preparation of biomimetic hydrogels and their characteristics, and it details the use of biomimetic hydrogels in bone, cartilage, and nerve tissue repair. In addition, this review outlines the application of biomimetic hydrogels in bone, cartilage, and neural tissues regarding drug delivery. In particular, the advantages and shortcomings of biomimetic hydrogels in biomaterial tissue engineering are highlighted, and future research directions are proposed.
Collapse
Affiliation(s)
- Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China;
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, China
| | - Xiaobo Zhang
- Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710000, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China;
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
17
|
Hirtzel J, Leks G, Favre J, Frisch B, Talon I, Ball V. Strongly Metal-Adhesive and Self-Healing Gelatin@Polydopamine-Based Hydrogels with Long-Term Antioxidant Activity. Antioxidants (Basel) 2023; 12:1764. [PMID: 37760067 PMCID: PMC10525539 DOI: 10.3390/antiox12091764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Bioinspired adhesives have been increasingly developed, especially towards a biomedical application. Therefore, in this study, dopamine (DA) was oxidized into polydopamine (PDA) in a gelatin mixture via titration with NaIO4 as a strong oxidant to easily obtain an adhesive antioxidant and self-healing PDA-gelatin hydrogel. Rheology experiments show a stiffness in the order of kPa and a thermal resistance above 50 °C, much above the gel-sol transition temperature of pristine gelatin. After heating at 55 °C, the gel is self-healing. In addition, just after formulation, it shows strong peeling-rate-dependent adhesion to steel with a tensile work per unit area (W) of up to 100 ± 39 J/m2, which is 2.5 times higher than that of the same gel without PDA at a peeling rate of 1000 µm/s. The increase in W between peeling rates of 10 and 1000 µm/s was studied and interpreted in terms of the gels' viscoelasticity. Moreover, this hydrogel offers significant antioxidant activity (measured by DPPH scavenging) that lasts with storage for at least over 15 days, this being then prolonged for 2 additional days, which seems particularly relevant considering the importance of reactive oxygen species (ROS) in wound healing. To summarize, PDA-gelatin gel is a promising strong and antioxidant adhesive.
Collapse
Affiliation(s)
- Jordana Hirtzel
- 3Bio, Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch Cedex, France; (J.H.); (G.L.); (J.F.); (B.F.)
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 Rue Sainte Elizabeth, 67000 Strasbourg, France
| | - Guillaume Leks
- 3Bio, Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch Cedex, France; (J.H.); (G.L.); (J.F.); (B.F.)
- Biomatériaux & Bioingénierie, UMR_S 1121, Université de Strasbourg, INSERM, 1 Rue Eugène Boeckel, 67000 Strasbourg, France;
| | - Julie Favre
- 3Bio, Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch Cedex, France; (J.H.); (G.L.); (J.F.); (B.F.)
| | - Benoît Frisch
- 3Bio, Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch Cedex, France; (J.H.); (G.L.); (J.F.); (B.F.)
| | - Isabelle Talon
- Biomatériaux & Bioingénierie, UMR_S 1121, Université de Strasbourg, INSERM, 1 Rue Eugène Boeckel, 67000 Strasbourg, France;
- Service de Chirurgie Pédiatrique, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Vincent Ball
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 Rue Sainte Elizabeth, 67000 Strasbourg, France
- Biomatériaux & Bioingénierie, UMR_S 1121, Université de Strasbourg, INSERM, 1 Rue Eugène Boeckel, 67000 Strasbourg, France;
| |
Collapse
|
18
|
Wang L, Duan L, Liu G, Sun J, Shahbazi M, Kundu SC, Reis RL, Xiao B, Yang X. Bioinspired Polyacrylic Acid-Based Dressing: Wet Adhesive, Self-Healing, and Multi-Biofunctional Coacervate Hydrogel Accelerates Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207352. [PMID: 37060151 PMCID: PMC10238202 DOI: 10.1002/advs.202207352] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/27/2023] [Indexed: 06/04/2023]
Abstract
Polyacrylic acid (PAA) and its derivatives are commonly used as essential matrices in wound dressings, but their weak wet adhesion restricts the clinical application. To address this issue, a PAA-based coacervate hydrogel with strong wet adhesion capability is fabricated through a facile mixture of PAA copolymers with isoprenyl oxy poly(ethylene glycol) ether and tannic acid (TA). The poly(ethylene glycol) segments on PAA prevent the electrostatic repulsion among the ionized carboxyl groups and absorbed TA to form coacervates. The absorbed TA provides solid adhesion to dry and wet substrates via multifarious interactions, which endows the coacervate with an adhesive strength to skin of 23.4 kPa and 70% adhesion underwater. This coacervate achieves desirable self-healing and extensible properties suitable for frequently moving joints. These investigations prove that the coacervate has strong antibacterial activity, facilitates fibroblast migration, and modulates M1/M2 polarization of macrophages. In vivo hemorrhage experiments further confirm that the coacervate dramatically shortens the hemostatic time from hundreds to tens of seconds. In addition, full-thickness skin defect experiments demonstrate that the coacervate achieves the best therapeutic effect by significantly promoting collagen deposition, angiogenesis, and epithelialization. These results demonstrate that a PAA-based coacervate hydrogel is a promising wound dressing for medical translation.
Collapse
Affiliation(s)
- Lingshuang Wang
- State Key Laboratory of Silkworm Genome BiologyCollege of Sericulture, Textile, and Biomass SciencesSouthwest UniversityChongqing400715China
| | - Lian Duan
- State Key Laboratory of Silkworm Genome BiologyCollege of Sericulture, Textile, and Biomass SciencesSouthwest UniversityChongqing400715China
| | - Ga Liu
- State Key Laboratory of Silkworm Genome BiologyCollege of Sericulture, Textile, and Biomass SciencesSouthwest UniversityChongqing400715China
| | - Jianfeng Sun
- Botnar Research CentreNuffield Department of Orthopedics, Rheumatology, and Musculoskeletal SciencesUniversity of OxfordHeadingtonOxfordOX3 7LDUK
| | - Mohammad‐Ali Shahbazi
- Department of Biomedical EngineeringUniversity Medical Center GroningenUniversity of GroningenAntonius Deusinglaan 1Groningen9713 AVNetherlands
| | - Subhas C. Kundu
- 3Bs Research GroupI3Bs — Research Institute on Biomaterials, Biodegradables, and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark, BarcoGuimaraes4805‐017Portugal
| | - Rui L. Reis
- 3Bs Research GroupI3Bs — Research Institute on Biomaterials, Biodegradables, and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark, BarcoGuimaraes4805‐017Portugal
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome BiologyCollege of Sericulture, Textile, and Biomass SciencesSouthwest UniversityChongqing400715China
| | - Xiao Yang
- State Key Laboratory of Silkworm Genome BiologyCollege of Sericulture, Textile, and Biomass SciencesSouthwest UniversityChongqing400715China
| |
Collapse
|
19
|
Versatile functionalization of pectic conjugate: From design to biomedical applications. Carbohydr Polym 2023; 306:120605. [PMID: 36746571 DOI: 10.1016/j.carbpol.2023.120605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Pectin exists extensively in nature and has attracted much attention in biological applications for its unique chemical and physical characteristics. Functionalized pectin, especially pectic conjugates, has given many possibilities for pectin to improve its properties and bioactivity as well as to deliver active molecules. To better exploit this strategy of pectic functionalization, this review presents in detail the structural modifications of pectin, different synthetic methods, and design strategies of pectic conjugates involving both traditional chemical and "green" approaches. Here, the research ideas and applications of pectic prodrugs as well as the development of preparation based on pectic conjugates are reviewed, with emphasis on crosslinking systems of functionalized pectin and nanosystems based on self-assembly techniques. We hope this review will provide comprehensive and valuable information for the functionalization and systematization of the pectic conjugate from synthesis to application.
Collapse
|
20
|
Yin Q, Kong F, Wang S, Du J, Pan L, Tao Y, Li P. 3D Printing of Solar Crystallizer with Polylactic Acid/Carbon Composites for Zero Liquid Discharge of High-Salinity Brine. Polymers (Basel) 2023; 15:polym15071656. [PMID: 37050270 PMCID: PMC10096562 DOI: 10.3390/polym15071656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Zero liquid discharge (ZLD) is a technique for treating high-salinity brine to obtain freshwater and/or salt using a solar interface evaporator. However, salt accumulation on the surface of the evaporator is a big challenge to maintaining stable water evaporation. In this study, a simple and easy-to-manufacture evaporator, also called a crystallizer, was designed and fabricated by 3D printing. The photothermal layer printed with polylactic acid/carbon composites had acceptable light absorption (93%) within the wavelength zone of 250 nm–2500 nm. The micron-sized voids formed during 3D printing provided abundant water transportation channels inside the crystallizer. After surface hydrophilic modification, the crystallizer had an ultra-hydrophilic channel structure and gravity-assisted salt recovery function. The results revealed that the angles between the photothermal layers affected the efficacy of solar evaporation and the yield of solid salt. The crystallizer with the angle of 90° between two photothermal layers could collect more solid salt than the three other designs with angles of 30°, 60°, and 120°, respectively. The crystallizer has high evaporation and salt crystallization efficiency in a high-salinity brine environment, which is expected to have application potentials in the zero liquid discharge of wastewater and valuable salt recovery.
Collapse
Affiliation(s)
- Qing Yin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Q.Y.); (F.K.); (S.W.); (J.D.)
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Q.Y.); (F.K.); (S.W.); (J.D.)
| | - Shoujuan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Q.Y.); (F.K.); (S.W.); (J.D.)
| | - Jinbao Du
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Q.Y.); (F.K.); (S.W.); (J.D.)
| | - Ling Pan
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China;
| | - Yubo Tao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Q.Y.); (F.K.); (S.W.); (J.D.)
- Correspondence: (Y.T.); (P.L.)
| | - Peng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Q.Y.); (F.K.); (S.W.); (J.D.)
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China;
- Correspondence: (Y.T.); (P.L.)
| |
Collapse
|
21
|
Self-healing, antibacterial, and conductive double network hydrogel for strain sensors. Carbohydr Polym 2023; 303:120468. [PMID: 36657864 DOI: 10.1016/j.carbpol.2022.120468] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Multifunctional hydrogels have great potential in smart wearable technology, flexible electronic devices, and biomedical research. However, it is highly challenging to prepare unique conductive hydrogels with combined properties such as self-healing, self-adhesive, and antibacterial activity. In this regard, herein, a conductive double network hydrogel (ACBt-PAA/CMCs) was fabricated using carboxymethyl chitosan (CMCs), acrylic acid (AA), and alkaline calcium bentonite (ACBt) via a convenient approach. Owing to the hydrogen bond interaction between PAA and CMCs, the ACBt-PAA/CMCs double network structured hydrogels exhibited excellent self-healing (the tensile strength recovered to 74.3 % after 1 h) and adjustable mechanical properties, in which the fracture stress and strain can be easily adjusted in the range of 0.039 to 0.93 MPa and 564 to 2900 %, respectively. In addition, the ACBt-PAA/CMCs hydrogels exhibited the remarkable antibacterial activities against Escherichia coli (bacterial inhibition efficiency of ~99.99 %) and Staphylococcus aureus (bacterial inhibition efficiency of ~99.98 %). Furthermore, the ACBt-PAA/CMCs hydrogel based wearable skin exhibited an excellent real-time sensing performance for monitoring various motions, signifying outstanding sensing and self-adhesion properties. Considering the unique features such as self-healing, excellent adhesion, highly active strain sensing, and antibacterial activities making the ACBt-PAA/CMCs hydrogel is an excellent multifunctional conductive hydrogel. Hence, we believe that this proposed design method for the fabrication of smart and multifunctional conductive hydrogels, and this ACBt-PAA/CMCs hydrogel could be a promising candidate for flexible wearable materials, health monitoring, and beyond.
Collapse
|
22
|
Multi-responsive chitosan-based hydrogels for controlled release of vincristine. Commun Chem 2023; 6:28. [PMID: 36765265 PMCID: PMC9918727 DOI: 10.1038/s42004-023-00829-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
As medical research progresses, the derivation and development of biological materials such as hydrogels have steadily gained more interest. The biocompatibility and non-toxicity of chitosan make chitosan hydrogels potential carriers for drug delivery. This work aims to develop two multi-reactive, safe, and highly swellable bio-hydrogels consisting of chitosan-graft-glycerol (CS-g-gly) and carboxymethyl chitosan-graft-glycerol (CMCS-g-gly), for sustained and controlled drug release, improved bioavailability along with entrapment in nanocarriers, which reduces side effects of vincristine sulphate. CS-g-gly and CMCS-g-gly are successfully prepared and fully characterized using analytical techniques. Under various conditions, the prepared hydrogels exhibit a high swelling ratio. Vincristine-loaded CS-g-gly (VCR/CS-g-gly), and CMCS-g-gly (VCR/CMCS-g-gly) show high encapsulation efficiency between 72.28-89.97%, and 56.97-71.91%, respectively. VCR/CS-g-gly show a sustained release behavior, and the maximum release of VCR from hydrogels reached 82% after 120 h of incubation. MCF-7 (breast cancer cell line) and MCF-10 (normal breast cell line) are evaluated for cell viability and apoptosis induction. The in-vitro anti-tumor efficacy is investigated using flow cytometry. The tetrazolium-based MTT assay of hydrogels shows no evidence of significant cytotoxicity in MCF-7 and MCF-10 cells. According to these findings, these hydrogels can effectively deliver drugs to MCF-7 and other breast cancer cells.
Collapse
|
23
|
Kang J, Li X, Zhou Y, Zhang L. Supramolecular interaction enabled preparation of high-strength water-based adhesives from polymethylmethacrylate wastes. iScience 2023; 26:106022. [PMID: 36818300 PMCID: PMC9932134 DOI: 10.1016/j.isci.2023.106022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/28/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The preparation of water-based adhesives with high bonding strength for various substrates is challenging. Moreover, to construct a sustainable society, it is highly desirable to develop a cost-effective way to achieve the reuse of plastic wastes. Herein, using polymethylmethacrylate (PMMA) chemicals or wastes as raw materials, water-based adhesives with high bonding strength for various substrates are prepared through a simple one-step hydrolysis strategy. The adhesives possess the maximum bonding strength of 7.1 MPa to iron, 4.2 MPa to wood, and ∼1.5 MPa to plastics. The adhesives have a world-record bonding strength to metal when compared with that of current reported water-based adhesives. Our method is low cost, simple, environmentally friendly, and suitable for large-scale industrial production. More importantly, using plastic wastes as raw materials opens up a new and low-cost way to turn wastes into valuables, which will greatly contribute to construct a sustainable society.
Collapse
Affiliation(s)
- Jing Kang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunlu Zhou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ling Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China,Corresponding author
| |
Collapse
|
24
|
Zhou X, Zhou Q, Chen Q, Ma Y, Wang Z, Luo L, Ding Q, Li H, Tang S. Carboxymethyl Chitosan/Tannic Acid Hydrogel with Antibacterial, Hemostasis, and Antioxidant Properties Promoting Skin Wound Repair. ACS Biomater Sci Eng 2023; 9:437-448. [PMID: 36508691 DOI: 10.1021/acsbiomaterials.2c00997] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Local causes of slow wound healing include infection and wound hemorrhage. Using sodium bicarbonate as a neutralizer, a variety of carboxymethyl chitosan-tannic acid (CMC-TA) composite hydrogels solidify through hydrogen bonding in this study. The best-performing hydrogel was synthesized by altering the concentration of TA and exhibited remarkable mechanical properties and biocompatibility. Following in vitro characterization tests, the CMC-TA hydrogel exhibited remarkable antibacterial and antioxidant properties, as well as quick hemostasis capabilities. In the in vivo wound healing study, the results showed that the CMC-TA hydrogel could relieve inflammation and promote the recovery of skin incision, re-epithelialization, and collagen deposition. Overall, this multifunctional hydrogel could be an ideal wound dressing for the clinical therapy of full-thickness wounds.
Collapse
Affiliation(s)
- Xujie Zhou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Qing Zhou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Yahao Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Zhenfang Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Lei Luo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Qiang Ding
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Hang Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Shunqing Tang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| |
Collapse
|
25
|
Tannin-coated PVA/PVP/PEI nanofibrous membrane as a highly effective adsorbent and detoxifier for Cr(VI) contamination in water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Tannic acid post-treatment of enzymatically crosslinked chitosan-alginate hydrogels for biomedical applications. Carbohydr Polym 2022; 295:119844. [DOI: 10.1016/j.carbpol.2022.119844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 01/11/2023]
|
27
|
Kim E, Jung JS, Yoon SG, Ho Park W. Eco-friendly silk fibroin/tannic acid coacervates for humid and underwater wood adhesives. J Colloid Interface Sci 2022; 632:151-160. [DOI: 10.1016/j.jcis.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/11/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
|
28
|
Tang S, Ke X, Wang H, Xie J, Yang J, Luo J, Li J. Biomineralization-Inspired Intermediate Precursor for the Controllable Gelation of Polyphenol-Macromolecule Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44890-44901. [PMID: 36136038 DOI: 10.1021/acsami.2c15068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogels composed of polyphenols and various macromolecules have been widely reported to have the advantage of facile preparation, mainly through the formation of hydrogen bonds. However, the traditional preparation method involves the direct mixing of polyphenols and macromolecules, which generally occurs too quickly and uncontrollably, and results in poor homogeneity, injectability, and shape designability. Here, inspired by the intermediate precursor during biomineralization, to facilitate transformation in a controllable way, we propose a novel and universal internal gelation method that creates an intermediate precursor by controlling the pH value to manipulate the elimination and generation of hydrogen bonds between a polyphenol and macromolecules. The precursor strategy greatly improves the homogeneity, injectability, and shape designability of the hydrogel while also achieving a controllable gelation process, and the gelation time can be accurately adjusted. The hydrogels prepared with this method exhibited superior capability to seal leaks, provided complete wound coverage, and showed the potential to be a shape-designable wearable strain sensor. Our study opens up a new way to construct and apply polyphenol-macromolecule hydrogels in a more controllable manner.
Collapse
Affiliation(s)
- Shuxian Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
29
|
Park J, Park E, Choi SQ, Wu J, Park J, Lee H, Kim H, Lee H, Seo M. Biodegradable Block Copolymer-Tannic Acid Glue. JACS AU 2022; 2:1978-1988. [PMID: 36186559 PMCID: PMC9516699 DOI: 10.1021/jacsau.2c00241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Bioadhesives are becoming an essential and important ingredient in medical science. Despite numerous reports, developing adhesive materials that combine strong adhesion, biocompatibility, and biodegradation remains a challenging task. Here, we present a biocompatible yet biodegradable block copolymer-based waterborne superglue that leads to an application of follicle-free hair transplantation. Our design strategy bridges self-assembled, temperature-sensitive block copolymer nanostructures with tannic acid as a sticky and biodegradable polyphenolic compound. The formulation further uniquely offers step-by-step increases in adhesion strength via heating-cooling cycles. Combining the modular design with the thermal treating process enhances the mechanical properties up to 5 orders of magnitude compared to the homopolymer formulation. This study opens a new direction in bioadhesive formulation strategies utilizing block copolymer nanotechnology for systematic and synergistic control of the material's properties.
Collapse
Affiliation(s)
- Jongmin Park
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eunsook Park
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
| | - Siyoung Q. Choi
- Department
of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Korea
| | - Jingxian Wu
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jihye Park
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyeonju Lee
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyungjun Kim
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
| | - Haeshin Lee
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
| | - Myungeun Seo
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
- KAIST
Institute for Nanocentury, KAIST, Daejeon 34141, Korea
| |
Collapse
|
30
|
Baek SL, Kim Y, Jang Y, Lee SM. Polyphenol-Incorporated Composite Nanogels of Multimodal Interactions for Enhanced Gel Stability and Cisplatin Delivery. ACS Macro Lett 2022; 11:1129-1135. [DOI: 10.1021/acsmacrolett.2c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- So-Lee Baek
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Yeojin Kim
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Yoojin Jang
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Sang-Min Lee
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| |
Collapse
|
31
|
Cao J, Yang X, Rao J, Mitriashkin A, Fan X, Chen R, Cheng H, Wang X, Goh J, Leo HL, Ouyang J. Stretchable and Self-Adhesive PEDOT:PSS Blend with High Sweat Tolerance as Conformal Biopotential Dry Electrodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39159-39171. [PMID: 35973944 DOI: 10.1021/acsami.2c11921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dry epidermal electrodes that can always form conformal contact with skin can be used for continuous long-term biopotential monitoring, which can provide vital information for disease diagnosis and rehabilitation. But, this application has been limited by the poor contact of dry electrodes on wet skin. Herein, we report a biocompatible fully organic dry electrode that can form conformal contact with both dry and wet skin even during physical movement. The dry electrodes are prepared by drop casting an aqueous solution consisting of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), poly(vinyl alcohol) (PVA), tannic acid (TA), and ethylene glycol (EG). The electrodes can exhibit a conductivity of 122 S cm-1 and a mechanical stretchability of 54%. Moreover, they are self-adhesive to not only dry skin but also wet skin. As a result, they can exhibit a lower contact impedance to skin than commercial Ag/AgCl gel electrodes on both dry and sweat skins. They can be used as dry epidermal electrodes to accurately detect biopotential signals including electrocardiogram (ECG) and electromyogram (EMG) on both dry and wet skins for the users at rest or during physical movement. This is the first time to demonstrate dry epidermal electrodes self-adhesive to wet skin for accurate biopotential detection.
Collapse
Affiliation(s)
- Jian Cao
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Xingyi Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117574
| | - Jiancheng Rao
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Aleksandr Mitriashkin
- Biomedical Engineering Department, College of Design and Engineering, National University of Singapore, Singapore 117574
| | - Xing Fan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Rui Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Hanlin Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Xinchao Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117574
| | - James Goh
- Biomedical Engineering Department, College of Design and Engineering, National University of Singapore, Singapore 117574
| | - Hwa Liang Leo
- Biomedical Engineering Department, College of Design and Engineering, National University of Singapore, Singapore 117574
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
- NUS Research Institute, No. 16 South Huashan Road, Liangjiang New Area, Chongqing 119077, China
| |
Collapse
|
32
|
Jafari H, Ghaffari-Bohlouli P, Niknezhad SV, Abedi A, Izadifar Z, Mohammadinejad R, Varma RS, Shavandi A. Tannic acid: a versatile polyphenol for design of biomedical hydrogels. J Mater Chem B 2022; 10:5873-5912. [PMID: 35880440 DOI: 10.1039/d2tb01056a] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tannic acid (TA), a natural polyphenol, is a hydrolysable amphiphilic tannin derivative of gallic acid with several galloyl groups in its structure. Tannic acid interacts with various organic, inorganic, hydrophilic, and hydrophobic materials such as proteins and polysaccharides via hydrogen bonding, electrostatic, coordinative bonding, and hydrophobic interactions. Tannic acid has been studied for various biomedical applications as a natural crosslinker with anti-inflammatory, antibacterial, and anticancer activities. In this review, we focus on TA-based hydrogels for biomaterials engineering to help biomaterials scientists and engineers better realize TA's potential in the design and fabrication of novel hydrogel biomaterials. The interactions of TA with various natural or synthetic compounds are deliberated, discussing parameters that affect TA-material interactions thus providing a fundamental set of criteria for utilizing TA in hydrogels for tissue healing and regeneration. The review also discusses the merits and demerits of using TA in developing hydrogels either through direct incorporation in the hydrogel formulation or indirectly via immersing the final product in a TA solution. In general, TA is a natural bioactive molecule with diverse potential for engineering biomedical hydrogels.
Collapse
Affiliation(s)
- Hafez Jafari
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| | - Pejman Ghaffari-Bohlouli
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, 71345-1978, Iran
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
33
|
Zhang H, Xiao Y, Chen P, Cao H, Bai W, Yang Z, Yang P, Li Y, Gu Z. Robust Natural Polyphenolic Adhesives against Various Harsh Environments. Biomacromolecules 2022; 23:3493-3504. [PMID: 35861485 DOI: 10.1021/acs.biomac.2c00704] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although adhesive hydrogels have been extensively explored, the development of adhesives with long-term strong adhesion capacity under various harsh environments is still met with profound challenges such as sophisticated preparation, long-term curing, and low bonding strength. Herein, a series of robust adhesive hydrogels have been developed via the polyphenol-epoxy-cross-linking (PEC) reactions between natural polyphenols (extracts) and epoxy glycidyl ethers. The as-prepared natural polyphenolic adhesive hydrogels could induce strong adhesion onto several kinds of typical substrates (i.e., wood, glass, paper, PET, PMMA, and Fe) under both dry and wet conditions based on multi-interactions. Moreover, those natural polyphenolic adhesives exhibited good low-temperature and solvent resistance performances, which could be widely used in different kinds of device repairment (i.e., chemical, petroleum, wood, metal, glass, plastic, rubber, and other industries) under different conditions. This work could provide new opportunities toward natural-inspired robust adhesives in various fields ranging from chemical transportation, industrial manufacturing, architectural design, and marine engineering to daily life.
Collapse
Affiliation(s)
- Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yao Xiao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Huan Cao
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanjie Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhen Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
34
|
Tang Z, Zhao M, Li N, Xiao H, Miao Q, Zhang M, Liu K, Huang L, Chen L, Zeng H, Wu H. Self-healing, reusable and conductive cellulose nanocrystals-containing adhesives. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Xue W, Yang R, Liu S, Pu Y, Wang P, Zhang W, Tan X, Chi B. Ascidian-inspired aciduric hydrogels with high stretchability and adhesiveness promote gastric hemostasis and wound healing. Biomater Sci 2022; 10:2417-2427. [PMID: 35393995 DOI: 10.1039/d2bm00183g] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adhesives for gastric hemorrhage are of great clinical significance. However, it remains a major challenge in clinics due to its poor stability under acidic environments and low adhesion to wet tissues. Herein, inspired by the high adhesiveness of the ascidian secretory protein, we designed a series of aciduric bionic hydrogel adhesives (PDTAs) based on poly(γ-glutamic acid) (γ-PGA) and tannic acid (TA). The formation of hydrogel adhesives was attributed to the abundant hydrogen bonds between amide groups of PGA-DA and polyphenol groups of TA. These hydrogel adhesives exhibited enhanced wet tissue adhesion (400%), higher stretchability (800% elongation), and aciduric stability (7 days) compared with commercial fibrin glue. Rodent wound models indicated that the hydrogel adhesives demonstrated significant healing promotion due to ameliorating collagen deposition and angiogenesis. These hydrogel adhesives show great potential in treating gastric hemorrhages and promoting wound healing.
Collapse
Affiliation(s)
- Wenliang Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yajie Pu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. .,National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. .,National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
36
|
Yang J, Yu H, Wang L, Liu J, Liu X, Hong Y, Huang Y, Ren S. Advances in adhesive hydrogels for tissue engineering. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Li H, Shi Y, Zhang W, Yu M, Chen X, Kong M. Ternary Complex Coacervate of PEG/TA/Gelatin as Reinforced Bioadhesive for Skin Wound Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18097-18109. [PMID: 35417132 DOI: 10.1021/acsami.2c00236] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioadhesives have attracted more attention in surgery due to their easy operability and abilities of promoting wound closure and tissue healing. However, it is still a great challenge to develop a robust and biocompatible bioadhesive through a facile preparation method. Herein, a ternary complex coacervate comprised of tannic acid (TA), polyethylene glycol (PEG), and gelatin (TPG) is proposed as a novel bioadhesive, which is fabricated by simple physical blending method. The adhesion capacity of TPG was reinforced through programming the cross-linking network of TPG matrix and tailoring the interfacial interactions between matrix and tissue. Curing parameters (pH, temperature, and period) and gelatin content in TPG have crucial impacts on the final comprehensive adhesion performance. The adhesion strength of the optimized formulation, fabricated with 10% (m/m) gelatin (TPG10), was over 3 folds of TPG0 (without gelatin inclusion) after 24 h curing at pH 6 and 37 °C. The mechanism of the reinforced comprehensive adhesion was also investigated, suggesting TA provided tough interfacial adhesion, covalent cross-link of TA-gelatin improved mechanical properties, and the hydrogen bonds mediated dynamic cross-link between TA and PEG enabled the bulk matrix to dissipate energy upon deformation. Furthermore, the additional antibacterial activity, biocompatibility, and suitable degradability endowed TPG10 with desirable wound closure and tissue repairing efficacy on rat skin wound model. Such low-cost, readily prepared, and function-efficient bioadhesive could provide a versatile platform for tissue repair and regeneration.
Collapse
Affiliation(s)
- Hu Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yan Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wenxue Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Miao Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiguang Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ming Kong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
38
|
Back F, Mathieu E, Betscha C, El Yakhlifi S, Arntz Y, Ball V. Optimization of the Elasticity and Adhesion of Catechol- or Dopamine-Loaded Gelatin Gels under Oxidative Conditions. Gels 2022; 8:210. [PMID: 35448111 PMCID: PMC9028716 DOI: 10.3390/gels8040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
The synthesis of surgical adhesives is based on the need to design glues that give rise to strong and fast bonds without cytotoxic side effects. A recent trend in surgical adhesives is to use gel-forming polymers modified with catechol groups, which can undergo oxidative crosslinking reactions and are strongly adhesive to all kinds on surfaces in wet conditions. We previously showed that blending gelatin with catechol can yield strong adhesion when the catechol is oxidized by a strong oxidant. Our previous work was limited to the study of the variation in the sodium periodate concentration. In this article, for an in-depth approach to the interactions between the components of the gels, the influence of the gelatin, the sodium periodate and dopamine/(pyro)catechol concentration on the storage (G') and loss (G″) moduli of the gels, as well as their adhesion on steel, have been studied by shear rheometry. The hydrogels were characterized by infrared and UV-Vis spectroscopy and the size of their pores visualized by digital microscopy and SEM after freeze drying but without further additives. In terms of adhesion between two stainless steel plates, the optimum was obtained for a concentration of 10% w/v in gelatin, 10 mM in sodium periodate, and 20 mM in phenolic compounds. Below these values, it is likely that crosslinking has not been maximized and that the oxidizing environment is weakening the gelatin. Above these values, the loss in adhesiveness may result from the disruption of the alpha helixes due to the large number of phenolic compounds as well as the maintenance of an oxidizing environment. Overall, this investigation shows the possibility to design strongly adhesive hydrogels to metal surfaces by blending gelatin with polyphenols in oxidative conditions.
Collapse
Affiliation(s)
- Florence Back
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 Rue Sainte Elisabeth, 67000 Strasbourg, France; (F.B.); (S.E.Y.); (Y.A.)
- Unité Mixte de Recherche 1121, Institut National de la Santé et de la Recherche Médicale, 1 Rue Eugène Boeckel, CEDEX, 67084 Strasbourg, France; (E.M.); (C.B.)
| | - Eric Mathieu
- Unité Mixte de Recherche 1121, Institut National de la Santé et de la Recherche Médicale, 1 Rue Eugène Boeckel, CEDEX, 67084 Strasbourg, France; (E.M.); (C.B.)
| | - Cosette Betscha
- Unité Mixte de Recherche 1121, Institut National de la Santé et de la Recherche Médicale, 1 Rue Eugène Boeckel, CEDEX, 67084 Strasbourg, France; (E.M.); (C.B.)
| | - Salima El Yakhlifi
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 Rue Sainte Elisabeth, 67000 Strasbourg, France; (F.B.); (S.E.Y.); (Y.A.)
- Unité Mixte de Recherche 1121, Institut National de la Santé et de la Recherche Médicale, 1 Rue Eugène Boeckel, CEDEX, 67084 Strasbourg, France; (E.M.); (C.B.)
| | - Youri Arntz
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 Rue Sainte Elisabeth, 67000 Strasbourg, France; (F.B.); (S.E.Y.); (Y.A.)
- Unité Mixte de Recherche 1121, Institut National de la Santé et de la Recherche Médicale, 1 Rue Eugène Boeckel, CEDEX, 67084 Strasbourg, France; (E.M.); (C.B.)
| | - Vincent Ball
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 Rue Sainte Elisabeth, 67000 Strasbourg, France; (F.B.); (S.E.Y.); (Y.A.)
- Unité Mixte de Recherche 1121, Institut National de la Santé et de la Recherche Médicale, 1 Rue Eugène Boeckel, CEDEX, 67084 Strasbourg, France; (E.M.); (C.B.)
| |
Collapse
|
39
|
Ke X, Tang S, Dong Z, Wang H, Xu X, Qiu R, Yang J, Luo J, Li J. A silk fibroin based bioadhesive with synergistic photothermal-reinforced antibacterial activity. Int J Biol Macromol 2022; 209:608-617. [PMID: 35367271 DOI: 10.1016/j.ijbiomac.2022.03.136] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023]
Abstract
Bioadhesives have gained considerable popularity for application in wound closure. However, applying bioadhesives incurs risks associated with bacterial infection during wound healing. Hence, in this study, a silk fibroin based bioadhesive was constructed via employing natural macromolecule, silk fibroin (SF), to spontaneously coassemble with natural plant polyphenol, tannic acid (TA), and iron oxide nanoparticles (Fe3O4 NPs). In the system, the natural macromolecule SF plays a key role in fabricating the macromolecular network matrix due to the change of the secondary structure of SF (from random coil to β-sheet) under the trigger of TA. Importantly, the strong hydrogen bonding interactions between SF and TA, and the coordination bonds between TA and Fe3O4 NPs endow the bioadhesive with high extensibility, self-healing properties, and considerable wet adhesion. Meanwhile, the synergy between the inherent photothermal properties of Fe3O4 NPs and TA/Fe3+ complexes under near-infrared (NIR) radiation enables the bioadhesive superior photothermal-reinforced antibacterial activity. The multifunctional natural macromolecule bioadhesive is a potential candidate in clinical wound management for improved outcomes, especially in infected wounds.
Collapse
Affiliation(s)
- Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Shuxian Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Hao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Rongmin Qiu
- College & Hospital of Stomatology, Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning 530021, China
| | - Jiaojiao Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China.; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China..
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China..
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China.; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China.; Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
40
|
Yang N, Yuan R, You D, Zhang Q, Wang J, Xuan H, Ge L. Gallol-based constant underwater coating adhesives for severe aqueous conditions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Guo S, Yao M, Zhang D, He Y, Chang R, Ren Y, Guan F. One-Step Synthesis of Multifunctional Chitosan Hydrogel for Full-Thickness Wound Closure and Healing. Adv Healthc Mater 2022; 11:e2101808. [PMID: 34787374 DOI: 10.1002/adhm.202101808] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/08/2021] [Indexed: 12/15/2022]
Abstract
Multifunctional hydrogel as a sealant or wound dressing with high adhesiveness and excellent antibacterial activity is highly desirable in clinical applications. In this contribution, one-step synthetic hydrogel based on quaternized chitosan (QCS), tannic acid (TA), and ferric iron (Fe(III)) is developed for skin incision closure and Staphylococcus aureus (S. aureus)-infected wound healing. In this hydrogel system, the ionic bonds and hydrogen bonds between QCS and TA form the main backbone of hydrogel, the metal coordination bonds between TA and Fe(III) (catechol-Fe) endow hydrogel with excellent adhesiveness and (near-infrared light) NIR-responsive photothermal property, and these multiple dynamic physical crosslinks enable QCS/TA/Fe hydrogel with flexible self-healing ability and injectability. Moreover, QCS/TA/Fe hydrogel possesses superior antioxidant, anti-inflammatory, hemostasis, and biocompatibility. Also, it is safe for vital organs. The data from the mouse skin incision model and infected full-thickness skin wound model presented the high wound closure effectiveness and acceleration of the wound healing process by this multifunctional hydrogel, highlighting its great potential in wound management.
Collapse
Affiliation(s)
- Shen Guo
- School of Life Science Zhengzhou University 100 Science Road Zhengzhou 450001 P. R. China
| | - Minghao Yao
- School of Life Science Zhengzhou University 100 Science Road Zhengzhou 450001 P. R. China
| | - Dan Zhang
- School of Life Science Zhengzhou University 100 Science Road Zhengzhou 450001 P. R. China
| | - Yuanmeng He
- School of Life Science Zhengzhou University 100 Science Road Zhengzhou 450001 P. R. China
| | - Rong Chang
- School of Life Science Zhengzhou University 100 Science Road Zhengzhou 450001 P. R. China
| | - Yikun Ren
- School of Life Science Zhengzhou University 100 Science Road Zhengzhou 450001 P. R. China
| | - Fangxia Guan
- School of Life Science Zhengzhou University 100 Science Road Zhengzhou 450001 P. R. China
| |
Collapse
|
42
|
Abstract
Tannic Acid (TA) is a naturally occurring antioxidant polyphenol that has gained popularity over the past decade in the field of biomedical research for its unique biochemical properties. Tannic acid, typically extracted from oak tree galls, has been used in many important historical applications. TA is a key component in vegetable tanning of leather, iron gall ink, red wines, and as a traditional medicine to treat a variety of maladies. The basis of TA utility is derived from its many hydroxyl groups and its affinity for forming hydrogen bonds with proteins and other biomolecules. Today, the study of TA has led to the development of many new pharmaceutical and biomedical applications. TA has been shown to reduce inflammation as an antioxidant, act as an antibiotic in common pathogenic bacterium, and induce apoptosis in several cancer types. TA has also displayed antiviral and antifungal activity. At certain concentrations, TA can be used to treat gastrointestinal disorders such as hemorrhoids and diarrhea, severe burns, and protect against neurodegenerative diseases. TA has also been utilized in biomaterials research as a natural crosslinking agent to improve mechanical properties of natural and synthetic hydrogels and polymers, while also imparting anti-inflammatory, antibacterial, and anticancer activity to the materials. TA has also been used to develop thin film coatings and nanoparticles for drug delivery. In all, TA is fascinating molecule with a wide variety of potential uses in pharmaceuticals, biomaterials applications, and drug delivery strategies.
Collapse
Affiliation(s)
- Andrew Baldwin
- RinggoldID:170373Department of Bioengineering, Clemson University, Clemson, SC USA
| | - Brian W Booth
- RinggoldID:170373Department of Bioengineering, Clemson University, Clemson, SC USA
| |
Collapse
|
43
|
Wan X, He Y, Yang C. Simulation of the peel of hydrogels with stiff backing. SOFT MATTER 2022; 18:272-281. [PMID: 34889348 DOI: 10.1039/d1sm01383a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, the peel of hydrogels under a stiff backing constraint was studied using a finite element method. The finite element method was first validated by comparing the simulation results to theoretical predictions and experimental measurements. Then, the method was used to investigate the effects of adhesion thickness, adhesion length and backing thickness on the peel behaviors, as well as the stress distribution within the adhesion layer. The results indicated that the peel force-displacement curve has a constant profile when the adhesion thickness and backing thickness are prescribed so long as the adhesion length is sufficiently long. The peak peel force increases with the adhesion length and then plateaus. The larger the intrinsic peak stress or the thicker the backing, the higher the plateau. The steady-state peel force is independent of the backing thickness, while positively correlated with the strain energy storage of the hydrogel adhesion layer. The critical vertical displacement corresponding to the peak peel force increases with the hydrogel thickness and decreases with the backing thickness. However, the critical vertical displacement corresponding to the steady-state peel force increases with the backing thickness. The present work puts forward an effective numerical approach to probe the peel of hydrogels, which is beneficial for the design of relevant structures.
Collapse
Affiliation(s)
- Xiaodong Wan
- Soft Mechanics Lab, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yunfeng He
- Soft Mechanics Lab, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Canhui Yang
- Soft Mechanics Lab, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
44
|
Yang SR, Yeh YY, Yeh YC. Ultrasound-triggered hydrogel formation through thiol-norbornene reactions. Chem Commun (Camb) 2022; 58:1119-1122. [PMID: 34981088 DOI: 10.1039/d1cc04848a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ultrasound-initiated thiol-norbornene reaction has been applied to fabricate hydrogels, and the ultrasound conditions in determining the properties of hydrogels have been systematically investigated.
Collapse
Affiliation(s)
- Su-Rung Yang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Ying-Yu Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
45
|
Khan F, Atif M, Haseen M, Kamal S, Khan MS, Shahid S, Nami SAA. Synthesis, classification and properties of hydrogels: their applications in drug delivery and agriculture. J Mater Chem B 2021; 10:170-203. [PMID: 34889937 DOI: 10.1039/d1tb01345a] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Absorbent polymers or hydrogel polymer materials have an enhanced water retention capacity and are widely used in agriculture and medicine. The controlled release of bioactive molecules (especially drug proteins) by hydrogels and the encapsulation of living cells are some of the active areas of drug discovery research. Hydrogel-based delivery systems may result in a therapeutically advantageous outcome for drug delivery. They can provide various sequential therapeutic agents including macromolecular drugs, small molecule drugs, and cells to control the release of molecules. Due to their controllable degradability, ability to protect unstable drugs from degradation and flexible physical properties, hydrogels can be used as a platform in which various chemical and physical interactions with encapsulated drugs for controlled release in the system can be studied. Practically, hydrogels that possess biodegradable properties have aroused greater interest in drug delivery systems. The original three-dimensional structure gets broken down into non-toxic substances, thus confirming the excellent biocompatibility of the gel. Chemical crosslinking is a resource-rich method for forming hydrogels with excellent mechanical strength. But in some cases the crosslinker used in the synthesis of the hydrogels may cause some toxicity. However, the physically cross-linked hydrogel preparative method is an alternative solution to overcome the toxicity of cross-linkers. Hydrogels that are responsive to stimuli formed from various natural and synthetic polymers can show significant changes in their properties under external stimuli such as temperature, pH, light, ion changes, and redox potential. Stimulus-responsive hydrogels have a wider range of applications in biomedicine including drug delivery, gene delivery and tissue regeneration. Stimulus-responsive hydrogels loaded with multiple drugs show controlled and sustained drug release and can act as drug carriers. By integrating stimulus-responsive hydrogels, such as those with improved thermal responsiveness, pH responsiveness and dual responsiveness, into textile materials, advanced functions can be imparted to the textile materials, thereby improving the moisture and water retention performance, environmental responsiveness, aesthetic appeal, display and comfort of textiles. This review explores the stimuli-responsive hydrogels in drug delivery systems and examines super adsorbent hydrogels and their application in the field of agriculture.
Collapse
Affiliation(s)
- Faisal Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Atif
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Haseen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Shahid Kamal
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Shoeb Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, India
| | - Shumaila Shahid
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shahab A A Nami
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
46
|
Superwetting PVDF membrane prepared by in situ extraction of metal ions for highly efficient oil/water mixture and emulsion separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119174] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Zhang HJ, Wang X, Wang L, Sun TL, Dang X, King DR, You X. Dynamic bonds enable high toughness and multifunctionality in gelatin/tannic acid-based hydrogels with tunable mechanical properties. SOFT MATTER 2021; 17:9399-9409. [PMID: 34605837 DOI: 10.1039/d1sm01201k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biopolymer-based functional hydrogels with excellent mechanical properties are desired, but their fabrication remains a challenge. Learning from the tofu-making process, we developed a freely formable hydrogel with high toughness and stiffness from the hydrogen bond-rich coacervation of tannic acid and gelatin through a simple hot-pressing process that transforms the coacervate particles into a bulk hydrogel. The mechanical properties of the obtained gelatin/tannic acid hydrogel (G/T gel) can be controlled by tuning the weight ratio of tannic acid to gelatin in the gel. The G/T gel with optimum mechanical properties possesses high Young's modulus, fracture strain, and fracture energy of ∼60 MPa, ∼10, and ∼24 kJ m-2, respectively. These properties arise from the phase-separated structure and high concentration of dynamic hydrogen bonds with widely distributed bond strengths. These dynamic hydrogen bonds also enable multifunctional properties of the gel, such as self-recovery, self-healing, rebuildability and shape memory. The combination of excellent mechanical properties, good biocompatibility, and useful functionalities into one hydrogel that comes from renewable sources demonstrates the great potential of G/T gels.
Collapse
Affiliation(s)
- Hui Jie Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Xinyi Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Lini Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Tao Lin Sun
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Xugang Dang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Daniel R King
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan.
| | - Xiangyu You
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
48
|
Yu Q, Zheng Z, Dong X, Cao R, Zhang S, Wu X, Zhang X. Mussel-inspired hydrogels as tough, self-adhesive and conductive bioelectronics: a review. SOFT MATTER 2021; 17:8786-8804. [PMID: 34596200 DOI: 10.1039/d1sm00997d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To overcome the wearable sensor's defects and achieve the goal of robust mechanical properties, long-term adhesion, sensitive electrical conductivity, the multifunctional hydrogels were inspired by various mussels on the base of catechol and its analogues. In this review, we review the strategies for improving the mechanical strength, adhesion, conductivity and antibacterial properties of mussel-inspired hydrogels as bioelectronics. Double network structures, nanocomposites, supramolecular block polymers and other strategies were utilized for achieving tough hydrogels to prevent tensile fractures under high deformation. Many mussel-inspired chemistries were incorporated for constructing skin-attachable hydrogel strain sensors and some strategies for controlling the oxidation of catechol were employed to achieve long-term adhesion. In addition, electrolytes, conductive fillers, conductive polymers and their relevant hydrophilic modifications were introduced for fabricating the conductive hydrogel bioelectronics to enhance the conductivity properties. Finally, the challenges and outlooks in this promising field are featured from the perspective of materials chemistry.
Collapse
Affiliation(s)
- Qin Yu
- South China University of Technology, Chemistry and Chemical Engineering, Guangzhou, 510006, China
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Zirong Zheng
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Xinhao Dong
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Rui Cao
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Shuheng Zhang
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Xiaolin Wu
- Daqing Research Institute of Exploration and Development, Daqing Oilfield Co., Ltd, 163318, China
| | - Xinya Zhang
- South China University of Technology, Chemistry and Chemical Engineering, Guangzhou, 510006, China
| |
Collapse
|
49
|
Feng L, Shi W, Chen Q, Cheng H, Bao J, Jiang C, Zhao W, Zhao C. Smart Asymmetric Hydrogel with Integrated Multi-Functions of NIR-Triggered Tunable Adhesion, Self-Deformation, and Bacterial Eradication. Adv Healthc Mater 2021; 10:e2100784. [PMID: 34050632 DOI: 10.1002/adhm.202100784] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Multifunctional hydrogels acting as wound dressing have received extensive attention in soft tissue repair; however, it is still a challenge to develop a non-antibiotic-dependent antibacterial hydrogel that has tunable adhesion and deformation to achieve on-demand removal. Herein, an asymmetric adhesive hydrogel with near-infrared (NIR)-triggered tunable adhesion, self-deformation, and bacterial eradication is designed. The hydrogel is prepared by the crosslinking polymerization of N-isopropylacrylamide and acrylic acid, during the sedimentation of conductive PPy-PDA nanoparticles based on the polymerization of pyrrole (Py) and dopamine (DA). Due to the conversion capacity from NIR light into heat for PPy-PDA NPs, the formed temperature-sensitive hydrogel exhibits tissue adhesive as well as NIR-triggered tunable adhesion and self-deformation property, which can achieve an on-demand dressing refreshing. Systematically in vitro/in vivo antibacterial experiments indicate that the hydrogel shows excellent disinfection capability to both Gram-negative and Gram-positive bacteria. The in vivo experiments in a full-layer cutaneous wound model demonstrate that the hydrogel has a good treatment effect to promote wound healing. Overall, the asymmetric hydrogel with tunable adhesion, self-deformation, conductive, and photothermal antibacterial activity may be a promising candidate to fulfill the functions of adhesion on skin tissue, easy removing on-demand, and accelerating the wound healing process.
Collapse
Affiliation(s)
- Lan Feng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610065 China
| | - Wenbin Shi
- College of Chemical Engineering Sichuan University Chengdu 610065 China
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Qin Chen
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610065 China
| | - Huitong Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610065 China
| | - Jianxu Bao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610065 China
| | - Chunji Jiang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610065 China
| | - Weifeng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610065 China
| | - Changsheng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610065 China
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
- College of Biomedical Engineering Sichuan University Chengdu 610064 China
| |
Collapse
|
50
|
Lee H, Bang JB, Na YG, Lee JY, Cho CW, Baek JS, Lee HK. Development and Evaluation of Tannic Acid-Coated Nanosuspension for Enhancing Oral Bioavailability of Curcumin. Pharmaceutics 2021; 13:pharmaceutics13091460. [PMID: 34575537 PMCID: PMC8468675 DOI: 10.3390/pharmaceutics13091460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Curcumin (CUR) has been used in the treatment of various diseases such as cough, fever, skin disease, and infection because of various biological benefits such as anti-inflammatory, antiviral, antibacterial, and antitumor activity. However, CUR is a BCS class 4 group and has a limitation of low bioavailability due to low solubility and permeability. Therefore, the purpose of this study is to prepare a nanosuspension (NSP) loaded with CUR (CUR-NSP) using a statistical design approach to improve the oral bioavailability of CUR, and then to develop CUR-NSP coated with tannic acid to increase the mucoadhesion in the GI tract. Firstly, the optimized CUR-NSP, composed of sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone/vinyl acetate (PVP/VA), was modified with tannic acid (TA). The particle size and polydispersity index of the formulation measured by laser scattering analyzer were 127.7 ± 1.3 nm and 0.227 ± 0.010, respectively. In addition, the precipitation in distilled water (DW) was 1.52 ± 0.58%. Using a differential scanning calorimeter and X-ray diffraction analysis, the stable amorphous form of CUR was confirmed in the formulation, and it was confirmed that CUR-NSP formulation was coated with TA through a Fourier transform-infrared spectroscopy. In the mucoadhesion assay using the turbidity, it was confirmed that TA-CUR-NSP had higher affinity for mucus than CUR-NSP under all pH conditions. This means that the absorption of CUR can be improved by increasing the retention time in the GI tract of the formulation. In addition, the drug release profile showed more than 80% release, and in the cellular uptake study, the absorption of the formulation (TA-CUR-NSP) containing TA acting as an inhibitor of P-gp was increased by 1.6-fold. In the evaluation of antioxidant activity, the SOD activity of TA-CUR-NSP was remarkably high due to TA, which improves cellular uptake and has antioxidant activity. In the pharmacokinetic evaluation, the maximum drug plasma concentration of the TA-coated NSP formulation was 7.2-fold higher than that of the pure drug. In all experiments, it was confirmed that the TA-CUR-NSP is a promising approach to overcome the low oral bioavailability of CUR.
Collapse
Affiliation(s)
- Hyeonmin Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.L.); (J.-B.B.); (Y.-G.N.); (J.-Y.L.)
| | - Jun-Bae Bang
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.L.); (J.-B.B.); (Y.-G.N.); (J.-Y.L.)
| | - Young-Guk Na
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.L.); (J.-B.B.); (Y.-G.N.); (J.-Y.L.)
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.L.); (J.-B.B.); (Y.-G.N.); (J.-Y.L.)
- Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Cheong-Weon Cho
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.L.); (J.-B.B.); (Y.-G.N.); (J.-Y.L.)
- Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
- Correspondence: (C.-W.C.); (J.-S.B.); (H.-K.L.); Tel.: +82-42-821-5934 (C.-W.C.); Fax: +82-42-823-6566 (C.-W.C.)
| | - Jong-Suep Baek
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea
- Department of Herbal Medicine Resource, Kangwon National University, 346 Hwangjo-gil, Dogye-eup, Samcheok-si 25949, Korea
- Correspondence: (C.-W.C.); (J.-S.B.); (H.-K.L.); Tel.: +82-42-821-5934 (C.-W.C.); Fax: +82-42-823-6566 (C.-W.C.)
| | - Hong-Ki Lee
- Animal Model Research Group, Jeonbuk Branch, Korea Institute of Toxicology (KIT), Jeongeup 53212, Korea
- Correspondence: (C.-W.C.); (J.-S.B.); (H.-K.L.); Tel.: +82-42-821-5934 (C.-W.C.); Fax: +82-42-823-6566 (C.-W.C.)
| |
Collapse
|