1
|
Wang Q, Liu P, Xiao K, Zhou W, Li J, Xi Y. Nanozyme linked multi-array gas driven sensor for real-time quantitative detection of Group A streptococcus. Analyst 2024; 149:5433-5442. [PMID: 39385607 DOI: 10.1039/d4an00787e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Group A streptococcus (GAS) is a pathogen typically transmitted through respiratory droplets and skin contact, causing an estimated 700 million mild non-invasive infections worldwide each year. There are approximately 650 000 infections that progress to severe invasive infections, even resulting in death. Therefore, the ability to detect GAS rapidly, accurately and in real time is important. Herein, we developed a nanozyme linked multi-array gas driven sensor (NLMAGS) to point-of-care testing of GAS within 2 h. The NLMAGS demonstrated excellent performance as it combined the advantages of nanozyme techniques, immunoassay techniques, and 3D printing techniques. Platinum- and palladium-rich nanozyme particles (Au@Pt@PdNPs) were synthesized and used to label monocloning antibodies as detection probes. Magnetic beads were labeled with monocloning antibodies as capture probes to establish a double-antibody sandwich immunoassay for the detection of GAS. The sandwich immune complex can catalyze the H2O2 substrate and produce O2. GAS quantification can be achieved by measuring the distance that the O2 pushes the ink drops forward in the sensor. Under optimized conditions, the NLMAGS quantitatively detected 24 spiked samples with a limit of detection (LOD) of 62 CFU mL-1, which was 5 times lower than that of ELISA (334 CFU mL-1). A strong correlation with the conventional ELISA was found (r = 0.99, P < 0.001). In comparison, the traditional lateral flow immunoassay based on Au@Pt@PdNPs-mAb2 (Au@Pt@PdNPs-LFIA) had a LOD of 104 CFU mL-1, which was significantly higher than that of NLMAGS. The NLMAGS demonstrated excellent sensitivity to GAS. The intra- and inter-assay precisions of the sensor were below 15%. Overall, the established NLMAGS has promising potential as a rapid and quantitative method for detecting GAS and can also be used to detect various pathogens.
Collapse
Affiliation(s)
- Qi Wang
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Pei Liu
- Department of Neurosurgery, Ningguo People's Hospital, Ningguo 242300, China
| | - Ke Xiao
- Department of Laboratory Medicine, The Second Hospital of Chinese Medicine in Guangdong, Guangzhou, 510095, China
| | - Wenying Zhou
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Jinfeng Li
- Shenzhen Bao'an District Central Blood Station, Shenzhen 518101, China.
| | - Yun Xi
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
2
|
Jiang H, Peng Z, Lv X, Liu Y, Li X, Deng Y. Hybrid chain reaction nanoscaffold-based functional nucleic acid nanomaterial cascaded with rolling circle amplification for signal enhanced miRNA let-7a detection. Mikrochim Acta 2024; 191:533. [PMID: 39134753 DOI: 10.1007/s00604-024-06617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
A novel functional nucleic acid (FNA) nanomaterial based on hybrid chain reaction (HCR) nanoscaffolds is proposed to solve the problem of time superposition and repeated primer design in sensitive miRND detection using cascade amplification technique. Rolling circle amplification (RCA) was cascaded with the prepared FNA nanomaterials for miRNA let-7a (as a model target) sensitive detection by lateral flow assay (LFA). Under the optimal conditions, the proposed RCA-FNA-LFA assay demonstrated the specificity and accuracy for miRNA let-7a detection with a detection limit of 1.07 pM, which increased sensitivity by nearly 20 times compared with that of RCA -LFA assay. It is worth noting that the non-target-dependent self-assembly process of HCR nanoscaffolds does not take up the whole detection time, thus, less time is taken than that of the conventional cascaded method. Moreover, the proposed assay does not need to consider the system compatibility between two kinds of isothermal amplification techniques. As for detection of different miRNAs, only the homologous arm of the padlock probe of RCA needs to be changed, while the FNA nanomaterial does not need any change, which greatly simplifies the primer design of the cascaded amplification techniques. With further development, the proposed RCA-FNA-LFA assay might achieve more sensitive and faster results to better satisfy the requirements of clinical diagnosis combing with more sensitive labels or small strip reader.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhao Peng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Ying Liu
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
3
|
Holliday EG, Zhang B. Machine learning-enabled colorimetric sensors for foodborne pathogen detection. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:179-213. [PMID: 39103213 DOI: 10.1016/bs.afnr.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In the past decade, there have been various advancements to colorimetric sensors to improve their potential applications in food and agriculture. One application of growing interest is sensing foodborne pathogens. There are unique considerations for sensing in the food industry, including food sample destruction, specificity amidst a complex food matrix, and high sensitivity requirements. Incorporating novel technology, such as nanotechnology, microfluidics, and smartphone app development, into colorimetric sensing methodology can enhance sensor performance. Nonetheless, there remain challenges to integrating sensors with existing food safety infrastructure. Recently, increasingly advanced machine learning techniques have been employed to facilitate nondestructive, multiplex detection for feasible assimilation of sensors into the food industry. With its ability to analyze and make predictions from highly complex data, machine learning holds potential for advanced yet practical colorimetric sensing of foodborne pathogens. This article summarizes recent developments and hurdles of machine learning-enabled colorimetric foodborne pathogen sensing. These advancements underscore the potential of interdisciplinary, cutting-edge technology in providing safer and more efficient food systems.
Collapse
Affiliation(s)
- Emma G Holliday
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States
| | - Boce Zhang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
4
|
Asgari S, Dhital R, Mustapha A, Lin M. Duplex detection of foodborne pathogens using a SERS optofluidic sensor coupled with immunoassay. Int J Food Microbiol 2022; 383:109947. [PMID: 36191492 DOI: 10.1016/j.ijfoodmicro.2022.109947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Herein, we developed a surface-enhanced Raman spectroscopy (SERS) optofluidic sensor coupled with immunoprobes to simultaneously separate and detect the foodborne pathogens, Escherichia coli O157:H7, and Salmonella in lettuce and packed salad. The method consists of three steps of (i) enrichment to enhance detection sensitivity, (ii) selective separation and labelling of target bacteria by their specific antibody-bearing SERS-nanotags and (iii) detection of tagged bacterial cells using SERS within a hydrodynamic flow-focusing SERS optofluidic device, where even low counts of bacterial cells were detectable in the very thin-film-like sample stream. SERS-nanotags consisted of different Raman reporter molecules, representing each species, i.e., the detection of Raman reporter confirms the presence of the target pathogen. The anti-E. coli antibody used in this study functions against all strains of E. coli O157:H7 and the anti-Salmonella antibody used in this work acts on a wide range of Salmonella enterica strains. Bacterial counts of 1000, 100, and 10 CFU/ 200 g sample were successfully detected after only 15 min enrichment. Our method showed a very low detection limit value of 10 CFU/ 200 g sample for the bacterial mixture in both lettuce and packed salad, proving the efficiency and high sensitivity of our method to detect multiple pathogens in the food samples. The total analysis time, including sample preparation for simultaneous detection of multiple bacteria, was estimated to be 2 h, which is much less than the time required in conventional methods. Hence, our proposed protocol is considered a promising rapid and efficient approach for pathogen screening of food samples.
Collapse
Affiliation(s)
- Sara Asgari
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Rajiv Dhital
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Azlin Mustapha
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
5
|
Hou Y, Lv CC, Guo YL, Ma XH, Liu W, Jin Y, Li BX, Yang M, Yao SY. Recent Advances and Applications in Paper-Based Devices for Point-of-Care Testing. JOURNAL OF ANALYSIS AND TESTING 2022; 6:247-273. [PMID: 35039787 PMCID: PMC8755517 DOI: 10.1007/s41664-021-00204-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Point-of-care testing (POCT), as a portable and user-friendly technology, can obtain accurate test results immediately at the sampling point. Nowadays, microfluidic paper-based analysis devices (μPads) have attracted the eye of the public and accelerated the development of POCT. A variety of detection methods are combined with μPads to realize precise, rapid and sensitive POCT. This article mainly introduced the development of electrochemistry and optical detection methods on μPads for POCT and their applications on disease analysis, environmental monitoring and food control in the past 5 years. Finally, the challenges and future development prospects of μPads for POCT were discussed.
Collapse
Affiliation(s)
- Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Cong-Cong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan-Li Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Xiao-Hu Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Bao-Xin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Min Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Shi-Yin Yao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| |
Collapse
|
6
|
Wen J, Liu J, Wu J, He D. Rapid measurement of waterborne bacterial viability based on difunctional gold nanoprobe. RSC Adv 2022; 12:1675-1681. [PMID: 35425161 PMCID: PMC8978865 DOI: 10.1039/d1ra07287k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Rapid measurement of waterborne bacterial viability is crucial for ensuring the safety of public health. Herein, we proposed a colorimetric assay for rapid measurement of waterborne bacterial viability based on a difunctional gold nanoprobe (dGNP). This versatile dGNP is composed of bacteria recognizing parts and signal indicating parts, and can generate color signals while recognizing bacterial suspensions of different viabilities. This dGNP-based colorimetric assay has a fast response and can be accomplished within 10 min. Moreover, the proposed colorimetric method is able to measure bacterial viability between 0% and 100%. The method can also measure the viability of other bacteria including Staphylococcus aureus, Shewanella oneidensis, and Escherichia coli O157H7. Furthermore, the proposed method has acceptable recovery (95.5–104.5%) in measuring bacteria-spiked real samples. This study offers a simple and effective method for the rapid measurement of bacterial viability and therefore should have application potential in medical diagnosis, food safety, and environmental monitoring. A colorimetric method is proposed to measure waterborne bacterial viability by using a difunctional gold nanoprobe that can generate color signals while recognizing bacterial suspensions of different viabilities.![]()
Collapse
Affiliation(s)
- Junlin Wen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jianbo Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jialin Wu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Daigui He
- College of Artificial Intelligence, Guangdong Mechanical & Electrical Polytechnic Guangzhou 510550 P. R. China +86-20-36552429 +86-20-36552429
| |
Collapse
|
7
|
Liu X, Guo J, Li Y, Wang B, Yang S, Chen W, Wu X, Guo J, Ma X. SERS substrate fabrication for biochemical sensing: towards point-of-care diagnostics. J Mater Chem B 2021; 9:8378-8388. [PMID: 34505606 DOI: 10.1039/d1tb01299a] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rapid technology development and economic growth have brought attention to public health issues, such as food safety and environmental pollution, which creates an ever-increasing demand for fast and portable sensing technologies. Portable surface-enhanced Raman spectroscopy (SERS) capable of various analyte detection with low concentration in a convenient manner shows advantages in sensing technology including enhanced diagnostic precision, improved diagnostic efficiency, reduced diagnostic cost, and alleviation of patient pain, which emerges as a promising candidate for point-of-care testing (POCT). SERS detection technology based on different nanostructures made of noble metal-based nanomaterials can increase the sensitivity of Raman scattering by 6-8 orders of magnitude, making Raman based trace detection possible, and greatly promote the application scenarios of portable Raman spectrometers. In this perspective, we provide an overview of fundamental knowledge about the SERS mechanism including chemical and electromagnetic field enhancement mechanisms, the design and fabrication of SERS substrates based on materials, progress of using SERS for POCT in biochemical sensing and its clinical applications. Furthermore, we present the prospective of developing new nanomaterials with different functionalities for advanced SERS substrates, as well as the future advancement of biomedical sensing and clinical potential of SERS technology.
Collapse
Affiliation(s)
- Xiaojia Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Jiuchuan Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | - Yang Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Bo Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Shikun Yang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Wenjun Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Xinggui Wu
- CloudMinds, Inc., Shenzhen Bay Science and Technology Ecological Park, Nanshan District, Shenzhen 100022, China.
| | - Jinhong Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| |
Collapse
|
8
|
Trends in the bacterial recognition patterns used in surface enhanced Raman spectroscopy. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Hassanain WA, Spoors J, Johnson CL, Faulds K, Keegan N, Graham D. Rapid ultra-sensitive diagnosis of clostridium difficile infection using a SERS-based lateral flow assay. Analyst 2021; 146:4495-4505. [PMID: 34184680 DOI: 10.1039/d1an00726b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium difficile (C. diff) infection is one of the most contagious diseases associated with high morbidity and mortality rates in hospitalised patients. Accurate diagnosis can slow its spread by determining the most effective treatment. Herein, we report a novel testing platform as a proof-of-concept for the selective, sensitive, rapid and cost-effective diagnosis of C. diff infection (CDI) based on a duplex measurement. This was achieved by detecting two specific biomarkers, surface layer protein A (SlpA) and toxin B (ToxB), using a surface enhanced Raman scattering-based lateral flow assay (SERS-based LFA). The simultaneous duplex detection of SlpA with ToxB has not been described for the clinical diagnosis of CDI previously. The SlpA biomarker "AKDGSTKEDQLVDALA" was first reported by our group in 2018 as a species-specific identification tool. The second biomarker, ToxB, is the essential virulence biomarker of C. diff pathogenic strains and is required to confirm true infection pathogenicity. The proposed SERS-based LFA platform enabled rapid duplex detection of SlpA and ToxB on separate test lines using a duplex LF test strip within 20 minutes. The use of a handheld Raman spectrometer to scan test lines allowed for the highly sensitive quantitative detection of both biomarkers with a lowest observable concentration of 0.01 pg μL-1. The use of a handheld device in this SERS-based LFA instead of benchtop machine paves the way for rapid, selective, sensitive and cheap clinical evaluation of CDI at the point of care (POC) with minimal sample backlog.
Collapse
Affiliation(s)
- Waleed A Hassanain
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK.
| | - Julia Spoors
- Diagnostic and Therapeutic Technologies, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK.
| | - Christopher L Johnson
- Diagnostic and Therapeutic Technologies, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK.
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK.
| | - Neil Keegan
- Diagnostic and Therapeutic Technologies, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK.
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK.
| |
Collapse
|
10
|
Automatic and sensitive detection of West Nile virus non-structural protein 1 with a portable SERS-LFIA detector. Mikrochim Acta 2021; 188:206. [PMID: 34046739 DOI: 10.1007/s00604-021-04857-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/13/2021] [Indexed: 02/02/2023]
Abstract
A portable surface-enhanced Raman scattering (SERS)-lateral flow immunoassay (LFIA) detector has been developed for the automatic and highly sensitive detection of West Nile virus (WNV) non-structural protein 1 (NS1) and actual WNV samples. Au@Ag nanoparticles (Au@Ag NPs) labeled with double-layer Raman molecules were used as SERS tags to prepare WNV-specific SERS-LFIA strips. On this platform, the WNV-specific antigen NS1 protein was quantitatively and sensitively detected. The detection limit for the WNV NS1 protein was 0.1 ng/mL, which was 100-fold more sensitive than visual signals. The detection limit for inactivated WNV virions was 0.2 × 102 copies/μL. The sensitivity of the SERS-LFIA detector was comparable to that of the fluorescence quantitative reverse transcription-polymerase chain reaction assay. The prepared SERS-LFIA strips exhibited high sensitivity and good specificity for WNV. Thus, the strips developed herein have clinical application value. Moreover, the portable SERS-LFIA detector enabled automatic and rapid detection of the SERS-LFIA strips. The platform established herein is expected to make a substantial contribution to the diagnosis and control of outbreaks of emerging infectious diseases, including WNV.
Collapse
|
11
|
Wang L, Wang X, Cheng L, Ding S, Wang G, Choo J, Chen L. SERS-based test strips: Principles, designs and applications. Biosens Bioelectron 2021; 189:113360. [PMID: 34051383 DOI: 10.1016/j.bios.2021.113360] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Test strips represent a class of point-of-care testing (POCT) tools for analysis of a variety of biomarkers towards diagnostics. Conventional test strips offer benefits of simple operation, visualization, and short detection time, along with the drawbacks of relatively low sensitivity and unavailability of quantitative analysis. Recently, the combination of surface-enhanced Raman scattering (SERS) and test strips have evolved to provide a powerful platform capable of ultrasensitive and multiplex detection of extensive analytes of interest. In this review, we focus on the working principles, design strategies and POCT applications of SERS-based test strips. Initially, both lateral and vertical flow test strips are briefly introduced, followed by presentation of various strategies for reforming SERS-based test strips with better detection performance. Applications of SERS-based test strips in diagnosis of disease biomarkers, nucleic acids and toxins are reviewed, with an emphasis on SERS tag design, sensitivity and analytical applicability. Finally, conclusions are made and perspectives on futuristic research directions are given.
Collapse
Affiliation(s)
- Luyang Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaokun Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lu Cheng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shansen Ding
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
12
|
Fuentes-Chust C, Parolo C, Rosati G, Rivas L, Perez-Toralla K, Simon S, de Lecuona I, Junot C, Trebicka J, Merkoçi A. The Microbiome Meets Nanotechnology: Opportunities and Challenges in Developing New Diagnostic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006104. [PMID: 33719117 DOI: 10.1002/adma.202006104] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/26/2020] [Indexed: 05/15/2023]
Abstract
Monitoring of the human microbiome is an emerging area of diagnostics for personalized medicine. Here, the potential of different nanomaterials and nanobiosensing technologies is reviewed for the development of novel diagnostic devices for the detection and measurement of microbiome-related biomarkers. Moreover, the current and future landscape of microbiome-based diagnostics is defined by exploring the advantages and disadvantages of current nanotechnology-based approaches, especially in the context of developing point-of-care (PoC) devices that would meet the international guidelines known as REASSURED (Real-time connectivity; Ease of specimen collection; Affordability; Sensitivity; Specificity; User-friendliness; Rapid & robust operation; Equipment-free; and Deliverability). Finally, the strategies of the latest international scientific consortia working in this field are analyzed, the current microbiome diagnostics market are reported and the principal ethical, legal, and societal issues related to microbiome R&D and innovation are discussed.
Collapse
Affiliation(s)
- Celia Fuentes-Chust
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Claudio Parolo
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Giulio Rosati
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Lourdes Rivas
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Karla Perez-Toralla
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), SPI, Gif-sur-Yvette cedex, 91191, France
| | - Stéphanie Simon
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), SPI, Gif-sur-Yvette cedex, 91191, France
| | - Itziar de Lecuona
- Bioethics and Law Observatory -UNESCO Chair in Bioethics-Department of Medicine, University of Barcelona, Barcelona, 08007, Spain
| | - Christophe Junot
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), SPI, Gif-sur-Yvette cedex, 91191, France
| | - Jonel Trebicka
- Department of Internal Medicine I, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- European Foundation for the Study of Chronic Liver Failure, Travesera de Gracia 11, Barcelona, 08021, Spain
| | - Arben Merkoçi
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
13
|
Siebe HS, Chen Q, Li X, Xu Y, Browne WR, Bell SEJ. Filter paper based SERS substrate for the direct detection of analytes in complex matrices. Analyst 2021; 146:1281-1288. [PMID: 33426548 DOI: 10.1039/d0an02103b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an emerging analytical technique for chemical analysis, which is favourable due to its combination of short measurement time, high sensitivity and molecular specificity. However, the application of SERS is still limited, largely because in real samples the analyte is often present in a complex matrix that contains micro/macro particles that block the probe laser, as well as molecular contaminants that compete for the enhancing surface. Here, we show a simple and scalable spray-deposition technique to fabricate SERS-active paper substrates which combine sample filtration and enhancement in a single material. Unlike previous spray-deposition methods, in which simple colloidal nanoparticles were sprayed onto solid surfaces, here the colloidal nanoparticles are mixed with hydroxyethyl cellulose (HEC) polymer before application. This leads to significantly improved uniformity in the distribution of enhancing particles as the film dries on the substrate surface. Importantly, the polymer matrix also protects the enhancing particles from air-oxidation during storage but releases them to provide SERS enhancement when the film is rehydrated. These SERS-paper substrates are highly active and a model analyte, crystal violet, was detected down to 4 ng in 10 μL of sample with less than 20% point-by-point signal deviation. The filter paper and HEC effectively filter out both interfering micro/macro particles and molecular (protein) contaminants, allowing the SERS-paper substrates to be used for SERS detection of thiram in mud and melamine in the presence of protein down to nanogram levels without sample pre-treatment or purification.
Collapse
Affiliation(s)
- Harmke S Siebe
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Huang W, Guo E, Li J, Deng A. Quantitative and ultrasensitive detection of brombuterol by a surface-enhanced Raman scattering (SERS)-based lateral flow immunochromatographic assay (FLIA) using Ag MBA@Au-Ab as an immunoprobe. Analyst 2021; 146:296-304. [PMID: 33146162 DOI: 10.1039/d0an01949f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Brombuterol is a new emerging β-adrenergic agonist that has been used as an additive in animal feed to enhance the lean meat-to-fat ratio. Due to its potential harm to consumers, it is urgent to develop sensitive, simple and rapid analytical methods to monitor brombuterol residue. In this study, a competitive lateral flow immunochromatographic assay (FLIA) based on surface-enhanced Raman scattering (SERS) was developed for ultrasensitive quantitative determination of brombuterol in swine liver, pork and feed samples. Ag@Au core-shell bimetallic nanoparticles with the highest SERS enhancement were synthesized, characterized and used as the substrate for preparation of the immunoprobe AgMBA@Au-Ab, in which the Raman reporter mercaptobenzoic acid (MBA) was embedded between the core-shell layers and monoclonal antibodies against brombuterol were immobilized on the surfaces of nanoparticles. The presence of brombuterol was identified through a color change on testing lines. In addition, quantitative detection of brombuterol was achieved by measuring the characteristic Raman peak intensity of MBA in the immunoprobes captured by the coating antigen. The IC50 and limit of detection (LOD) of the SERS-based FLIA for brombuterol were 45 pg mL-1 and 0.11 pg mL-1, respectively. The recoveries of brombuterol from spiked samples were in the range of 87.27-100.16% with relative standard deviations of 1.29%-6.99% (n = 3). The proposed SERS-based LFIA was proven to be a feasible method for ultrasensitive and rapid detection of brombuterol and might be a platform for sensitive and rapid detection of a broad range of analytes in clinical, environmental and food analyses.
Collapse
Affiliation(s)
- Wen Huang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Renai zRoad 199, Suzhou 215123, China.
| | | | | | | |
Collapse
|
15
|
Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat Protoc 2020; 15:3788-3816. [PMID: 33097926 DOI: 10.1038/s41596-020-0357-x] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
Lateral-flow assays (LFAs) are quick, simple and cheap assays to analyze various samples at the point of care or in the field, making them one of the most widespread biosensors currently available. They have been successfully employed for the detection of a myriad of different targets (ranging from atoms up to whole cells) in all type of samples (including water, blood, foodstuff and environmental samples). Their operation relies on the capillary flow of the sample throughout a series of sequential pads, each with different functionalities aiming to generate a signal to indicate the absence/presence (and, in some cases, the concentration) of the analyte of interest. To have a user-friendly operation, their development requires the optimization of multiple, interconnected parameters that may overwhelm new developers. In this tutorial, we provide the readers with: (i) the basic knowledge to understand the principles governing an LFA and to take informed decisions during lateral flow strip design and fabrication, (ii) a roadmap for optimal LFA development independent of the specific application, (iii) a step-by-step example procedure for the assembly and operation of an LF strip for the detection of human IgG and (iv) an extensive troubleshooting section addressing the most frequent issues in designing, assembling and using LFAs. By changing only the receptors, the provided example procedure can easily be adapted for cost-efficient detection of a broad variety of targets.
Collapse
|
16
|
Andryukov BG. Six decades of lateral flow immunoassay: from determining metabolic markers to diagnosing COVID-19. AIMS Microbiol 2020; 6:280-304. [PMID: 33134745 PMCID: PMC7595842 DOI: 10.3934/microbiol.2020018] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/20/2020] [Indexed: 01/10/2023] Open
Abstract
Technologies based on lateral flow immunoassay (LFIA), known in some countries of the world as immunochromatographic tests, have been successfully used for the last six decades in diagnostics of many diseases and conditions as they allow rapid detection of molecular ligands in biosubstrates. The popularity of these diagnostic platforms is constantly increasing in healthcare facilities, particularly those facing limited budgets and time, as well as in household use for individual health monitoring. The advantages of these low-cost devices over modern laboratory-based analyzers come from their availability, opportunity of rapid detection, and ease of use. The attractiveness of these portable diagnostic tools is associated primarily with their high analytical sensitivity and specificity, as well as with the easy visual readout of results. These qualities explain the growing popularity of LFIA in developing countries, when applied at small hospitals, in emergency situations where screening and monitoring health condition is crucially important, and as well as for self-testing of patients. These tools have passed the test of time, and now LFIA test systems are fully consistent with the world's modern concept of ‘point-of-care testing’, finding a wide range of applications not only in human medicine, but also in ecology, veterinary medicine, and agriculture. The extensive opportunities provided by LFIA contribute to the continuous development and improvement of this technology and to the creation of new-generation formats. This review will highlight the modern principles of design of the most widely used formats of test-systems for clinical laboratory diagnostics, summarize the main advantages and disadvantages of the method, as well as the current achievements and prospects of the LFIA technology. The latest innovations are aimed at improving the analytical performance of LFIA platforms for the diagnosis of bacterial and viral infections, including COVID-19.
Collapse
Affiliation(s)
- Boris G Andryukov
- Somov Research Institute of Epidemiology and Microbiology, Vladivostok, Russian Federation.,Far Eastern Federal University (FEFU), Vladivostok, Russian Federation
| |
Collapse
|
17
|
Xiao R, Lu L, Rong Z, Wang C, Peng Y, Wang F, Wang J, Sun M, Dong J, Wang D, Wang L, Sun N, Wang S. Portable and multiplexed lateral flow immunoassay reader based on SERS for highly sensitive point-of-care testing. Biosens Bioelectron 2020; 168:112524. [PMID: 32866724 DOI: 10.1016/j.bios.2020.112524] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
A portable surface-enhanced Raman scattering (SERS)-based lateral flow immunoassay (LFIA) reader with multiplexed detection was developed using an integrated LFIA reaction column. The proposed LFIA reader was designed to simultaneously detect multiple samples or samples with multiple biomarkers. With the integrated LFIA reaction column, we achieved the specific detection of alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), and prostate-specific antigen (PSA) with a detection limit of 0.01 ng/mL, which was three orders of magnitude lower than that of the visual signal. We also investigated the uniformity of channels based on an eight-channel integrated LFIA reaction column. The relative standard deviation values of the SERS intensity of the eight-channel for measuring the AFP, CEA, and PSA antigens at 1323 cm-1 were 13%, 4.8%, and 5%, respectively. We detected 45 clinical serum samples of the three antigens using the proposed portable SERS-based LFIA reader to further confirm its applicability to clinical samples. The SERS signals of the positive sera were higher than those of the negative sera and their thrice standard deviation. This result indicated the practicality of the developed integrated reaction column and the proposed portable and multiplexed Raman reader. This work provides a new high-sensitivity, multiplexed, and automated SERS-based LFIA detector for use in the point-of-care setting.
Collapse
Affiliation(s)
- Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Luchun Lu
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Zhen Rong
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Chongwen Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China.
| | - Yongjin Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Feng Wang
- Beijing Meiling Biotechnology Corporation, Beijing, 102600, PR China
| | - Jinhai Wang
- Beijing Meiling Biotechnology Corporation, Beijing, 102600, PR China
| | - Meijie Sun
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Jian Dong
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Dongfeng Wang
- Beijing Meiling Biotechnology Corporation, Beijing, 102600, PR China
| | - Luanluan Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Nanxi Sun
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China.
| |
Collapse
|
18
|
Pires NMM, Dong T, Yang Z, da Silva LFBA. Recent methods and biosensors for foodborne pathogen detection in fish: progress and future prospects to sustainable aquaculture systems. Crit Rev Food Sci Nutr 2020; 61:1852-1876. [PMID: 32539431 DOI: 10.1080/10408398.2020.1767032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aquaculture industry has advanced toward sustainable recirculating systems, in where parameters of food quality are strictly monitored. Despite that, as in the case of conventional aquaculture practices, the recirculating systems also suffer threats from Aeromonas spp., Vibrio spp., Streptococcus spp., among other foodborne pathogens infecting farmed fish. The aquaculture pathogens are routinely detected by conventional PCR methods or antibody-based tests, with the detection protocols confined to laboratory use. Emerging assay technologies and biosensors recently reported in the literature open new opportunities to the development of sensitive, specific, and portable analytical devices to use in the field. Techniques of DNA/RNA analysis, immunoassays and other nanomolecular technologies have been facing important advances in response time, sensitivity, and enhanced power of discrimination among and within species. Moreover, the recent developments of electrochemical and optical signal transduction have facilitated the incorporation of the innovative assays to practical miniaturized devices. In this work, it is provided a critical review over foodborne pathogen detection by existing and promising methods and biosensors applied to fish samples and extended to other food matrices. While isothermal DNA/RNA amplification methods can be highlighted among the assay methods for their promising analytical performance and suitability for point-of-care testing, the electrochemical transduction provides a way to achieve cost-effective biosensors amenable to use in the aquaculture field. The adoption of new methods and biosensors would constitute a step forward in securing sustainable aquaculture systems.
Collapse
Affiliation(s)
- Nuno M M Pires
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China.,Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, Kongsberg, Norway.,Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, Ås, Norway
| | - Tao Dong
- Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, Kongsberg, Norway
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China
| | - Luís F B A da Silva
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China
| |
Collapse
|
19
|
Eryılmaz M, Tamer U, Boyacı İH. Nanoparticle-assisted pyrrolidonyl arylamidase assay for a culture-free Group A Streptococcus pyogenes detection with image analysis. Talanta 2020; 212:120781. [PMID: 32113544 DOI: 10.1016/j.talanta.2020.120781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 10/25/2022]
Abstract
Existing techniques for the detection of Group A Streptococcus pyogenes (GAS) have drawbacks in rapidness, accuracy or in high-cost. Considering the clinical importance of GAS, we have developed a culture-free detection method based on pyrrolidonyl arylamidase (PYR) activity with the aid of magnetic gold nanoparticles (AuNPs). GAS is the reason for pharyngitis and sampling starts from the throat with cotton swabs. After swab sampling, the target was collected with antibody modified magnetic AuNPs and transferred into 500 μL of PYR-broth without any antigen extraction or pure colony isolation. Then, the assay was finished by adding 25 μL of 4-(dimethylamino)-cinnamaldehyde (DMACA) reagent after 4-h incubation. A red color formation was evaluated as the presence of GAS comparing to blank, however, image analysis was employed for the interpretation of color changes clearly. For this purpose, a formula related to image data was proposed and analytical validation parameters were defined. Thus, the correlation was found to be linear with the R2 of 0.9685 between the log of bacteria concentration and the image data with the limit of detection of 3.3 × 102 CFU/mL of GAS. In addition, the assay worked efficiently in the abundance interference of Enterococcus faecalis. The results represent a new feature to nanoparticles eliminating the selective growth media for a bacteria and this study provided a detection with intact cells of bacteria without any antigen or DNA/RNA extraction. The proposed work has been the most similar to the gold standard but a faster method in this field.
Collapse
Affiliation(s)
- Merve Eryılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey
| | - Uğur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| | - İsmail Hakkı Boyacı
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, 06800, Ankara, Turkey
| |
Collapse
|