1
|
Oliveira M, Sarker PP, Skovorodkin I, Kalantarifard A, Haskavuk T, Mac Intyre J, Nallukunnel Raju E, Nooranian S, Shioda H, Nishikawa M, Sakai Y, Vainio SJ, Elbuken C, Raykhel I. From ex ovo to in vitro: xenotransplantation and vascularization of mouse embryonic kidneys in a microfluidic chip. LAB ON A CHIP 2024; 24:4816-4826. [PMID: 39290081 PMCID: PMC11408908 DOI: 10.1039/d4lc00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024]
Abstract
Organoids are emerging as a powerful tool to investigate complex biological structures in vitro. Vascularization of organoids is crucial to recapitulate the morphology and function of the represented human organ, especially in the case of the kidney, whose primary function of blood filtration is closely associated with blood circulation. Current in vitro microfluidic approaches have only provided initial vascularization of kidney organoids, whereas in vivo transplantation to animal models is problematic due to ethical problems, with the exception of xenotransplantation onto a chicken chorioallantoic membrane (CAM). Although CAM can serve as a good environment for vascularization, it can only be used for a fixed length of time, limited by development of the embryo. Here, we propose a novel lab on a chip design that allows organoids of different origin to be cultured and vascularized on a CAM, as well as to be transferred to in vitro conditions when required. Mouse embryonic kidneys cultured on the CAM showed enhanced vascularization by intrinsic endothelial cells, and made connections with the chicken vasculature, as evidenced by blood flowing through them. After the chips were transferred to in vitro conditions, the vasculature inside the organoids was successfully maintained. To our knowledge, this is the first demonstration of the combination of in vivo and in vitro approaches applied to microfluidic chip design.
Collapse
Affiliation(s)
- Micaela Oliveira
- Microfluidics and Biosensor Research Group, Disease Networks Research Unit, Department of Biochemistry and Molecular Medicine, University of Oulu, Finland.
| | - Partha Protim Sarker
- Microfluidics and Biosensor Research Group, Disease Networks Research Unit, Department of Biochemistry and Molecular Medicine, University of Oulu, Finland.
- Developmental Biology Laboratory, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| | - Ilya Skovorodkin
- Microfluidics and Biosensor Research Group, Disease Networks Research Unit, Department of Biochemistry and Molecular Medicine, University of Oulu, Finland.
- Developmental Biology Laboratory, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| | - Ali Kalantarifard
- Microfluidics and Biosensor Research Group, Disease Networks Research Unit, Department of Biochemistry and Molecular Medicine, University of Oulu, Finland.
| | - Tugce Haskavuk
- Microfluidics and Biosensor Research Group, Disease Networks Research Unit, Department of Biochemistry and Molecular Medicine, University of Oulu, Finland.
- Developmental Biology Laboratory, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| | - Jonatan Mac Intyre
- Microfluidics and Biosensor Research Group, Disease Networks Research Unit, Department of Biochemistry and Molecular Medicine, University of Oulu, Finland.
| | - Elizabath Nallukunnel Raju
- Microfluidics and Biosensor Research Group, Disease Networks Research Unit, Department of Biochemistry and Molecular Medicine, University of Oulu, Finland.
| | - Samin Nooranian
- Microfluidics and Biosensor Research Group, Disease Networks Research Unit, Department of Biochemistry and Molecular Medicine, University of Oulu, Finland.
| | - Hiroki Shioda
- Laboratory of Organs and Biosystems Engineering, Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| | - Masaki Nishikawa
- Laboratory of Organs and Biosystems Engineering, Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakai
- Laboratory of Organs and Biosystems Engineering, Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| | - Seppo J Vainio
- Developmental Biology Laboratory, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
- Infotech Oulu, University of Oulu, Oulu, Finland
- Kvantum Institute, University of Oulu, Oulu, Finland
| | - Caglar Elbuken
- Microfluidics and Biosensor Research Group, Disease Networks Research Unit, Department of Biochemistry and Molecular Medicine, University of Oulu, Finland.
- VTT Technical Research Centre of Finland Ltd., Finland
| | - Irina Raykhel
- Developmental Biology Laboratory, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
- Laboratory of Organs and Biosystems Engineering, Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Konopka J, Żuchowska A, Jastrzębska E. Vascularized tumor-on-chip microplatforms for the studies of neovasculature as hope for more effective cancer treatments. Biosens Bioelectron 2024; 249:115986. [PMID: 38194813 DOI: 10.1016/j.bios.2023.115986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Angiogenesis is the development of new blood vessels from pre-existing vasculature. Multiple factors control its course. Disorders of the distribution of angiogenic agents are responsible for development of solid tumors and its metastases. Understanding of the molecular interactions regulating pathological angiogenesis will allow for development of more effective, even personalized treatment. A simulation of angiogenesis under microflow conditions is a promising alternative to previous studies conducted on animals and on 2D cell cultures. In this review, we summarize what has been discovered so far in the field of vascularized tumor-on-a-chip platforms. For this purpose, we describe different vascularization techniques used in microfluidics, present various attempts to induce angiogenesis-on-a-chip and report some approaches to recapitulate vascularized tumor microenvironment under microflow conditions.
Collapse
Affiliation(s)
- Joanna Konopka
- Warsaw University of Technology, Faculty of Chemistry, Medical Biotechnology, 00-664, Warsaw, Poland
| | - Agnieszka Żuchowska
- Warsaw University of Technology, Faculty of Chemistry, Medical Biotechnology, 00-664, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Warsaw University of Technology, Faculty of Chemistry, Medical Biotechnology, 00-664, Warsaw, Poland.
| |
Collapse
|
3
|
Kumari M, Gupta V, Kumar N, Arun RK. Microfluidics-Based Nanobiosensors for Healthcare Monitoring. Mol Biotechnol 2024; 66:378-401. [PMID: 37166577 PMCID: PMC10173227 DOI: 10.1007/s12033-023-00760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/22/2023] [Indexed: 05/12/2023]
Abstract
Efficient healthcare management demands prompt decision-making based on fast diagnostics tools, astute data analysis, and informatics analysis. The rapid detection of analytes at the point of care is ensured using microfluidics in synergy with nanotechnology and biotechnology. The nanobiosensors use nanotechnology for testing, rapid disease diagnosis, monitoring, and management. In essence, nanobiosensors detect biomolecules through bioreceptors by modulating the physicochemical signals generating an optical and electrical signal as an outcome of the binding of a biomolecule with the help of a transducer. The nanobiosensors are sensitive and selective and play a significant role in the early identification of diseases. This article reviews the detection method used with the microfluidics platform for nanobiosensors and illustrates the benefits of combining microfluidics and nanobiosensing techniques by various examples. The fundamental aspects, and their application are discussed to illustrate the advancement in the development of microfluidics-based nanobiosensors and the current trends of these nano-sized sensors for point-of-care diagnosis of various diseases and their function in healthcare monitoring.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemical Engineering, Indian Institute of Technology, NH-44, Jagti, PO Nagrota, Jammu, Jammu & Kashmir, 181221, India
| | - Verruchi Gupta
- School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Katra, Jammu & Kashmir, 182320, India
| | - Natish Kumar
- Department of Chemical Engineering, Indian Institute of Technology, NH-44, Jagti, PO Nagrota, Jammu, Jammu & Kashmir, 181221, India
| | - Ravi Kumar Arun
- Department of Chemical Engineering, Indian Institute of Technology, NH-44, Jagti, PO Nagrota, Jammu, Jammu & Kashmir, 181221, India.
| |
Collapse
|
4
|
Shevchuk O, Palii S, Pak A, Chantada N, Seoane N, Korda M, Campos-Toimil M, Álvarez E. Vessel-on-a-Chip: A Powerful Tool for Investigating Endothelial COVID-19 Fingerprints. Cells 2023; 12:cells12091297. [PMID: 37174696 PMCID: PMC10177552 DOI: 10.3390/cells12091297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Coronavirus disease (COVID-19) causes various vascular and blood-related reactions, including exacerbated responses. The role of endothelial cells in this acute response is remarkable and may remain important beyond the acute phase. As we move into a post-COVID-19 era (where most people have been or will be infected by the SARS-CoV-2 virus), it is crucial to define the vascular consequences of COVID-19, including the long-term effects on the cardiovascular system. Research is needed to determine whether chronic endothelial dysfunction following COVID-19 could lead to an increased risk of cardiovascular and thrombotic events. Endothelial dysfunction could also serve as a diagnostic and therapeutic target for post-COVID-19. This review covers these topics and examines the potential of emerging vessel-on-a-chip technology to address these needs. Vessel-on-a-chip would allow for the study of COVID-19 pathophysiology in endothelial cells, including the analysis of SARS-CoV-2 interactions with endothelial function, leukocyte recruitment, and platelet activation. "Personalization" could be implemented in the models through induced pluripotent stem cells, patient-specific characteristics, or genetic modified cells. Adaptation for massive testing under standardized protocols is now possible, so the chips could be incorporated for the personalized follow-up of the disease or its sequalae (long COVID) and for the research of new drugs against COVID-19.
Collapse
Affiliation(s)
- Oksana Shevchuk
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Svitlana Palii
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Anastasiia Pak
- Department of Medical Biochemistry, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Nuria Chantada
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Nuria Seoane
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mykhaylo Korda
- Department of Medical Biochemistry, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Manuel Campos-Toimil
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ezequiel Álvarez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBERCV, Institute of Health Carlos III, 28220 Madrid, Spain
| |
Collapse
|
5
|
Mu X, Gerhard-Herman MD, Zhang YS. Building Blood Vessel Chips with Enhanced Physiological Relevance. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201778. [PMID: 37693798 PMCID: PMC10489284 DOI: 10.1002/admt.202201778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 09/12/2023]
Abstract
Blood vessel chips are bioengineered microdevices, consisting of biomaterials, human cells, and microstructures, which recapitulate essential vascular structure and physiology and allow a well-controlled microenvironment and spatial-temporal readouts. Blood vessel chips afford promising opportunities to understand molecular and cellular mechanisms underlying a range of vascular diseases. The physiological relevance is key to these blood vessel chips that rely on bioinspired strategies and bioengineering approaches to translate vascular physiology into artificial units. Here, we discuss several critical aspects of vascular physiology, including morphology, material composition, mechanical properties, flow dynamics, and mass transport, which provide essential guidelines and a valuable source of bioinspiration for the rational design of blood vessel chips. We also review state-of-art blood vessel chips that exhibit important physiological features of the vessel and reveal crucial insights into the biological processes and disease pathogenesis, including rare diseases, with notable implications for drug screening and clinical trials. We envision that the advances in biomaterials, biofabrication, and stem cells improve the physiological relevance of blood vessel chips, which, along with the close collaborations between clinicians and bioengineers, enable their widespread utility.
Collapse
Affiliation(s)
- Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Marie Denise Gerhard-Herman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Na JT, Chun-Dong Xue, Wang YX, Li YJ, Wang Y, Liu B, Qin KR. Fabricating a multi-component microfluidic system for exercise-induced endothelial cell mechanobiology guided by hemodynamic similarity. Talanta 2023; 253:123933. [PMID: 36113333 DOI: 10.1016/j.talanta.2022.123933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022]
Abstract
Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology.
Collapse
Affiliation(s)
- Jing-Tong Na
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Chun-Dong Xue
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Yan-Xia Wang
- School of Rehabilitation Medicine, Weifang Medical University, Weifang 261053, China
| | - Yong-Jiang Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Yu Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Kai-Rong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China; School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
7
|
Zhao L, Wang X. 3D printed microfluidics for cell biological applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
A human model of arteriovenous malformation (AVM)-on-a-chip reproduces key disease hallmarks and enables drug testing in perfused human vessel networks. Biomaterials 2022; 288:121729. [PMID: 35999080 PMCID: PMC9972357 DOI: 10.1016/j.biomaterials.2022.121729] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 02/09/2023]
Abstract
Brain arteriovenous malformations (AVMs) are a disorder wherein abnormal, enlarged blood vessels connect arteries directly to veins, without an intervening capillary bed. AVMs are one of the leading causes of hemorrhagic stroke in children and young adults. Most human sporadic brain AVMs are associated with genetic activating mutations in the KRAS gene. Our goal was to develop an in vitro model that would allow for simultaneous morphological and functional phenotypic data capture in real time during AVM disease progression. By generating human endothelial cells harboring a clinically relevant mutation found in most human patients (activating mutations within the small GTPase KRAS) and seeding them in a dynamic microfluidic cell culture system that enables vessel formation and perfusion, we demonstrate that vessels formed by KRAS4AG12V mutant endothelial cells (ECs) were significantly wider and more leaky than vascular beds formed by wild-type ECs, recapitulating key structural and functional hallmarks of human AVM pathogenesis. Immunofluorescence staining revealed a breakdown of adherens junctions in mutant KRAS vessels, leading to increased vascular permeability, a hallmark of hemorrhagic stroke. Finally, pharmacological blockade of MEK kinase activity, but not PI3K inhibition, improved endothelial barrier function (decreased permeability) without affecting vessel diameter. Collectively, our studies describe the creation of human KRAS-dependent AVM-like vessels in vitro in a self-assembling microvessel platform that is amenable to phenotypic observation and drug delivery.
Collapse
|
9
|
Bhattacharya S, M KR, Priyadarshani J, Ganguly R, Chakraborty S. Targeting Magnetic Nanoparticles in Physiologically Mimicking Tissue Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31689-31701. [PMID: 35786842 DOI: 10.1021/acsami.2c07246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic nanoparticles as drug carriers, despite showing immense promises in preclinical trials, have remained to be only of limited use in real therapeutic practice primarily due to unresolved anomalies concerning their grossly contrasting controllability and variability in performance in artificial test benches as compared to human tissues. To circumvent the deficits of reported in vitro drug testing platforms that deviate significantly from the physiological features of the living systems and result in this puzzling contrast, here, we fabricate a biomimetic microvasculature in a flexible tissue phantom and demonstrate distinctive mechanisms of magnetic-field-assisted controllable penetration of biocompatible iron oxide nanoparticles across the same, exclusively modulated by tissue deformability, which has by far remained unraveled. Our experiments deciphering the transport of magnetic nanoparticles in a blood analogue medium unveil a decisive interplay of the flexibility of the microvascular pathways, magnetic pull, and viscous friction toward orchestrating the optimal vascular penetration and targeting efficacy of the nanoparticles in colorectal tissue-mimicking bioengineered media. Subsequent studies with biological cells confirm the viability of using localized magnetic forces for aiding nanoparticle penetration within cancerous lesions. We establish nontrivially favorable conditions to induce a threshold force for vascular rupture and eventual target of the nanoparticles toward the desired extracellular site. These findings appear to be critical in converging the success of in vitro trials toward patient-specific targeted therapies depending on personalized vascular properties obtained from medical imaging data.
Collapse
Affiliation(s)
- Soumya Bhattacharya
- Department of Mechanical Engineering, IIT-Kharagpur, Kharagpur 721302, India
| | - Kiran Raj M
- Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Ranjan Ganguly
- Department of Power Engineering, Jadavpur University, LB-8, Sector-III, Salt Lake, Kolkata 700106, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, IIT-Kharagpur, Kharagpur 721302, India
| |
Collapse
|
10
|
IKEDA S, SEKINE S, BESSHO T, OTSUKI H, SIBATA S, NAKANO M, SATO K. Development of Gelatin Well Device for Cell Culture. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Suzune IKEDA
- Department of Chemical and Biological Sciences, Japan Women’s University
| | - Shino SEKINE
- Department of Chemical and Biological Sciences, Japan Women’s University
| | - Tomoka BESSHO
- Department of Chemical and Biological Sciences, Japan Women’s University
| | - Haruka OTSUKI
- Department of Chemical and Biological Sciences, Japan Women’s University
| | - Saki SIBATA
- Department of Chemical and Biological Sciences, Japan Women’s University
| | - Miku NAKANO
- Department of Chemical and Biological Sciences, Japan Women’s University
| | - Kae SATO
- Department of Chemical and Biological Sciences, Japan Women’s University
| |
Collapse
|
11
|
Wang J, Wang H, Wang Y, Liu Z, Li Z, Li J, Chen Q, Meng Q, Shu WW, Wu J, Xiao C, Han F, Li B. Endothelialized microvessels fabricated by microfluidics facilitate osteogenic differentiation and promote bone repair. Acta Biomater 2022; 142:85-98. [PMID: 35114373 DOI: 10.1016/j.actbio.2022.01.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
Abstract
In bone tissue engineering, vascularization is one of the critical factors that limit the effect of biomaterials for bone repair. While various approaches have been tried to build vascular networks in bone grafts, lack of endothelialization still constitutes a major technical hurdle. In this study, we have developed a facile technique to fabricate endothelialized biomimetic microvessels (BMVs) from alginate-collagen composite hydrogels within a single step using microfluidic technology. BMVs with different sizes could be readily prepared by adjusting the flow rate of microfluids. All BMVs supported perfusion and outward penetration of substances in the tube. Endothelial cells could adhere and proliferate on the inner wall of tubes. It was also found that the expression of CD31 and secretion of BMP-2 and PDGF-BB were higher in the rat umbilical vein endothelial cells (RUVECs) in BMVs than those cultured on hydrogel. When co-cultured with bone marrow mesenchymal stem cells (BMSCs), endothelialized BMVs promoted the osteogenic differentiation of BMSCs compared to those in acellular BMV group. In vivo, markedly enhanced new bone formation was achieved by endothelialized BMVs in a rat critical-sized calvarial defect model compared to those with non-endothelialized BMVs or without BMVs. Together, findings from both in vitro and in vivo studies have proven that endothelialized BMVs function to facilitate osteogenesis and promote bone regeneration, and therefore might present an effective strategy in bone tissue engineering. STATEMENT OF SIGNIFICANCE: In bone tissue engineering, limited vascularization is one of the critical factors that limit the effect of biomaterials for bone repair. In this study, we developed a facile technique to fabricate endothelialized biomimetic microvessels (BMVs) from alginate-collagen composite hydrogels within a single step using microfluidic technology. Both in vitro and in vivo studies have proven that endothelialized BMVs function to facilitate osteogenesis and promote bone regeneration, and therefore might present an effective strategy in bone tissue engineering.
Collapse
|
12
|
Wang Y, Kankala RK, Ou C, Chen A, Yang Z. Advances in hydrogel-based vascularized tissues for tissue repair and drug screening. Bioact Mater 2022; 9:198-220. [PMID: 34820566 PMCID: PMC8586021 DOI: 10.1016/j.bioactmat.2021.07.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The construction of biomimetic vasculatures within the artificial tissue models or organs is highly required for conveying nutrients, oxygen, and waste products, for improving the survival of engineered tissues in vitro. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular biology have enabled the creation of three-dimensional (3D) tissues and organs composed of highly complex vascular systems. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the vascularization of tissues. Initially, the significance of vascular elements and the regeneration mechanisms of vascularization, including angiogenesis and vasculogenesis, are briefly introduced. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments in fabricating vascularized tissues or organs, in terms of tunable physical properties, high similarity in physiological environments, and alternative shaping mechanisms, among others. Furthermore, we discuss the utilization of such hydrogels-based vascularized tissues in various applications, including tissue regeneration, drug screening, and organ-on-chips. Finally, we put forward the key challenges, including multifunctionalities of hydrogels, selection of suitable cell phenotype, sophisticated engineering techniques, and clinical translation behind the development of the tissues with complex vasculatures towards their future development.
Collapse
Affiliation(s)
- Ying Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Caiwen Ou
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Zhilu Yang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| |
Collapse
|
13
|
Das R, Fernandez JG. Biomaterials for Mimicking and Modelling Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:139-170. [DOI: 10.1007/978-3-031-04039-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Shape-programmable artificial cilia for microfluidics. iScience 2021; 24:103367. [PMID: 34825146 PMCID: PMC8605101 DOI: 10.1016/j.isci.2021.103367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/13/2021] [Accepted: 10/26/2021] [Indexed: 01/21/2023] Open
Abstract
The artificial ciliary motion has been known not to be hydrodynamically optimal, limiting their associated applications in the microscale flow domain. One of the major hurdles of contemporary artificial cilia is its structural rigidity, which restricts their flexibility. To address this issue, this work proposed a shape-programmable artificial cilia design with distinctive polydimethylsiloxane (PDMS) and magnetic segments distributed throughout the structure, which provided precise control for time-spatial modulation of the whole artificial cilia structure under external magnetic actuation. For the fabrication of the proposed multi-segment artificial cilia, a facile microfabrication process with stepwise mold blocking followed by the PDMS and magnetic composite casting was adopted. The hydrodynamic analysis further elucidated that the proposed artificial cilia beating induced significant flow disturbance within the flow field, and the associated application was demonstrated through an efficient mixing operation.
Fabrication of artificial cilia was conducted through micromilling and casting methods. The weighted index was correlated to the bending angles of artificial cilia. Hydrodynamic analysis of artificial cilia was performed through the μPIV analysis. A significant improvement in mixing performance was achieved in few seconds.
Collapse
|
15
|
Jia X, Yang X, Luo G, Liang Q. Recent progress of microfluidic technology for pharmaceutical analysis. J Pharm Biomed Anal 2021; 209:114534. [PMID: 34929566 DOI: 10.1016/j.jpba.2021.114534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
In recent years, the progress of microfluidic technology has provided new tools for pharmaceutical analysis and the proposal of pharm-lab-on-a-chip is appealing for its great potential to integrate pharmaceutical test and pharmacological test in a single chip system. Here, we summarize and highlight recent advances of chip-based principles, techniques and devices for pharmaceutical test and pharmacological/toxicological test focusing on the separation and analysis of drug molecules on a chip and the construction of pharmacological models on a chip as well as their demonstrative applications in quality control, drug screening and precision medicine. The trend and challenge of microfluidic technology for pharmaceutical analysis are also discussed and prospected. We hope this review would update the insight and development of pharm-lab-on-a-chip.
Collapse
Affiliation(s)
- Xiaomeng Jia
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Xiaoping Yang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Guoan Luo
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| | - Qionglin Liang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
16
|
Oliveira CS, Leeuwenburgh S, Mano JF. New insights into the biomimetic design and biomedical applications of bioengineered bone microenvironments. APL Bioeng 2021; 5:041507. [PMID: 34765857 PMCID: PMC8568480 DOI: 10.1063/5.0065152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
The bone microenvironment is characterized by an intricate interplay between cellular and noncellular components, which controls bone remodeling and repair. Its highly hierarchical architecture and dynamic composition provide a unique microenvironment as source of inspiration for the design of a wide variety of bone tissue engineering strategies. To overcome current limitations associated with the gold standard for the treatment of bone fractures and defects, bioengineered bone microenvironments have the potential to orchestrate the process of bone regeneration in a self-regulated manner. However, successful approaches require a strategic combination of osteogenic, vasculogenic, and immunomodulatory factors through a synergic coordination between bone cells, bone-forming factors, and biomaterials. Herein, we provide an overview of (i) current three-dimensional strategies that mimic the bone microenvironment and (ii) potential applications of bioengineered microenvironments. These strategies range from simple to highly complex, aiming to recreate the architecture and spatial organization of cell-cell, cell-matrix, and cell-soluble factor interactions resembling the in vivo microenvironment. While several bone microenvironment-mimicking strategies with biophysical and biochemical cues have been proposed, approaches that exploit the ability of the cells to self-organize into microenvironments with a high regenerative capacity should become a top priority in the design of strategies toward bone regeneration. These miniaturized bone platforms may recapitulate key characteristics of the bone regenerative process and hold great promise to provide new treatment concepts for the next generation of bone implants.
Collapse
Affiliation(s)
- Cláudia S. Oliveira
- Department of Chemistry, CICECO–Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sander Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - João F. Mano
- Department of Chemistry, CICECO–Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Dellaquila A, Le Bao C, Letourneur D, Simon‐Yarza T. In Vitro Strategies to Vascularize 3D Physiologically Relevant Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100798. [PMID: 34351702 PMCID: PMC8498873 DOI: 10.1002/advs.202100798] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/23/2021] [Indexed: 05/04/2023]
Abstract
Vascularization of 3D models represents a major challenge of tissue engineering and a key prerequisite for their clinical and industrial application. The use of prevascularized models built from dedicated materials could solve some of the actual limitations, such as suboptimal integration of the bioconstructs within the host tissue, and would provide more in vivo-like perfusable tissue and organ-specific platforms. In the last decade, the fabrication of vascularized physiologically relevant 3D constructs has been attempted by numerous tissue engineering strategies, which are classified here in microfluidic technology, 3D coculture models, namely, spheroids and organoids, and biofabrication. In this review, the recent advancements in prevascularization techniques and the increasing use of natural and synthetic materials to build physiological organ-specific models are discussed. Current drawbacks of each technology, future perspectives, and translation of vascularized tissue constructs toward clinics, pharmaceutical field, and industry are also presented. By combining complementary strategies, these models are envisioned to be successfully used for regenerative medicine and drug development in a near future.
Collapse
Affiliation(s)
- Alessandra Dellaquila
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Elvesys Microfluidics Innovation CenterParis75011France
- Biomolecular PhotonicsDepartment of PhysicsUniversity of BielefeldBielefeld33615Germany
| | - Chau Le Bao
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Université Sorbonne Paris NordGalilée InstituteVilletaneuseF‐93430France
| | | | | |
Collapse
|
18
|
Na JT, Hu SY, Xue CD, Wang YX, Chen KJ, Li YJ, Wang Y, Qin KR. A microfluidic system for precisely reproducing physiological blood pressure and wall shear stress to endothelial cells. Analyst 2021; 146:5913-5922. [PMID: 34570848 DOI: 10.1039/d1an01049b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To reproduce hemodynamic stress microenvironments of endothelial cells in vitro is of vital significance, by which one could exploit the quantitative impact of hemodynamic stresses on endothelial function and seek innovative approaches to prevent circulatory system diseases. Although microfluidic technology has been regarded as an effective method to create physiological microenvironments, a microfluidic system to precisely reproduce physiological arterial hemodynamic stress microenvironments has not been reported yet. In this paper, a novel microfluidic chip consisting of a cell culture chamber with on-chip afterload components designed by the principle of input impedance to mimic the global hemodynamic behaviors is proposed. An external feedback control system is developed to accurately generate the input pressure waveform. A lumped parameter hemodynamic model (LPHM) is built to represent the input impedance to mimic the on-chip global hemodynamic behaviors. Sensitivity analysis of the model parameters is also elaborated. The performance of reproducing physiological blood pressure and wall shear stress is validated by both numerical characterization and flow experiment. Investigation of intracellular calcium ion dynamics in human umbilical vein endothelial cells is finally conducted to demonstrate the biological applicability of the proposed microfluidic system.
Collapse
Affiliation(s)
- Jing-Tong Na
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, No. 2, Linggong Rd., Dalian 116024, Liaoning Province, China
| | - Si-Yu Hu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, No. 2, Linggong Rd., Dalian 116024, Liaoning Province, China.
| | - Chun-Dong Xue
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, No. 2, Linggong Rd., Dalian 116024, Liaoning Province, China.
| | - Yan-Xia Wang
- School of Rehabilitation Medicine, Weifang Medical University, No. 7166, Bao Tong West Str., Weifang 261053, Shandong Province, China
| | - Ke-Jie Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, No. 2, Linggong Rd., Dalian 116024, Liaoning Province, China.
| | - Yong-Jiang Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, No. 2, Linggong Rd., Dalian 116024, Liaoning Province, China.
| | - Yu Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, No. 2, Linggong Rd., Dalian 116024, Liaoning Province, China.
| | - Kai-Rong Qin
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, No. 2, Linggong Rd., Dalian 116024, Liaoning Province, China.
| |
Collapse
|
19
|
Argueta LB, Niles JA, Sakamoto J, Liu X, Vega SP, Frank L, Paessler M, Cortiella J, Nichols JE. Platforms to test the temporospatial capabilities of carrier systems in delivering growth factors to benefit vascular bioengineering. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 36:102419. [PMID: 34147665 DOI: 10.1016/j.nano.2021.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/04/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022]
Abstract
In this study we produced a set of in vitro culture platforms to model vascular cell responses to growth factors and factor delivery vehicles. Two of the systems (whole vessel and whole lung vascular development) were supported by microfluidic systems facilitating media circulation and waste removal. We assessed vascular endothelial growth factor (VEGF) delivery by Pluronic F-127 hydrogel, 30 nm pore-sized microparticles (MPs), 60 nm pore-sized MP or a 50/50 mixture of 30 and 60 nm pore-sized MP. VEGF was delivered to porcine acellular lung vascular scaffolds (2.5 cm2 square pieces or whole 3D segments of acellular blood vessels) as well as whole acellular lung scaffolds. Scaffold-cell attachment was examined as was vascular tissue formation. We showed that a 50/50 mixture of 30 and 60 nm pore-sized silicon wafer MPs allowed for long-term release of VEGF within the scaffold vasculature and supported vascular endothelial tissue development during in vitro culture.
Collapse
Affiliation(s)
| | - Jean A Niles
- University of Texas Medical Branch (UTMB) Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX.
| | | | - Xuewu Liu
- Houston Methodist Research Institute, Houston, TX.
| | - Stephanie P Vega
- University of Texas Medical Branch (UTMB) Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX.
| | - Luba Frank
- UTMB Department of Radiology, Galveston, TX.
| | - Marco Paessler
- University of Texas Medical Branch (UTMB) Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX; UTMB Department of Pathology, Galveston, TX.
| | | | | |
Collapse
|
20
|
Caine M, Bian S, Tang Y, Garcia P, Henman A, Dreher M, Daly D, Carlisle R, Stride E, Willis SL, Lewis AL. In situ evaluation of spatiotemporal distribution of doxorubicin from Drug-eluting Beads in a tissue mimicking phantom. Eur J Pharm Sci 2021; 160:105772. [PMID: 33621612 DOI: 10.1016/j.ejps.2021.105772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/18/2023]
Abstract
Understanding the intra-tumoral distribution of chemotherapeutic drugs is extremely important in predicting therapeutic outcome. Tissue mimicking gel phantoms are useful for studying drug distribution in vitro but quantifying distribution is laborious due to the need to section phantoms over the relevant time course and individually quantify drug elution. In this study we compare a bespoke version of the traditional phantom sectioning approach, with a novel confocal microscopy technique that enables dynamic in situ measurements of drug concentration. Release of doxorubicin from Drug-eluting Embolization Beads (DEBs) was measured in phantoms composed of alginate and agarose over comparable time intervals. Drug release from several different types of bead were measured. The non-radiopaque DC Bead™ generated a higher concentration at the boundary between the beads and the phantom and larger drug penetration distance within the release period, compared with the radiopaque DC Bead LUMI™. This is likely due to the difference of compositional and structural characteristics of the hydrogel beads interacting differently with the loaded drug. Comparison of in vitro results against historical in vivo data show good agreement in terms of drug penetration, when confounding factors such as geometry, elimination and bead chemistry were accounted for. Hence these methods have demonstrated potential for both bead and gel phantom validation, and provide opportunities for optimisation of bead design and embolization protocols through in vitro-in vivo comparison.
Collapse
Affiliation(s)
- Marcus Caine
- Boston Scientific, Lakeview, Watchmoor Park, Camberley, GU15 3YL, UK
| | - Shuning Bian
- Oxford Institute of Biomedical Engineering, University of Oxford, OX3 7DQ, UK
| | - Yiqing Tang
- Boston Scientific, Lakeview, Watchmoor Park, Camberley, GU15 3YL, UK.
| | - Pedro Garcia
- Boston Scientific, Lakeview, Watchmoor Park, Camberley, GU15 3YL, UK
| | - Alexander Henman
- Boston Scientific, Lakeview, Watchmoor Park, Camberley, GU15 3YL, UK
| | - Matthew Dreher
- Boston Scientific, 300 Boston Scientific Way, Marlborough, Massachusetts, 01752, United States
| | - Dan Daly
- Lein Applied Diagnostics, Reading Enterprise Centre, University of Reading, Earley Gate, Whiteknights Road, Reading, RG6 6BU, UK
| | - Robert Carlisle
- Oxford Institute of Biomedical Engineering, University of Oxford, OX3 7DQ, UK
| | - Eleanor Stride
- Oxford Institute of Biomedical Engineering, University of Oxford, OX3 7DQ, UK
| | - Sean L Willis
- Boston Scientific, Lakeview, Watchmoor Park, Camberley, GU15 3YL, UK
| | - Andrew L Lewis
- Boston Scientific, Lakeview, Watchmoor Park, Camberley, GU15 3YL, UK.
| |
Collapse
|
21
|
Cytotoxicity of Quillaja saponaria Saponins towards Lung Cells Is Higher for Cholesterol-Rich Cells. BIOPHYSICA 2021. [DOI: 10.3390/biophysica1020010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of the study was to compare cytotoxicity of two Quillaja saponaria bark saponin (QBS) mixtures against two lung cell lines: normal MRC-5 fibroblast cell line and tumor A-549 epithelial cells of lungs’ alveoli. The study, performed both at a macro-scale and in a dedicated microfluidic device, showed that QBS was more toxic to the cell line more abundant in cholesterol (MRC-5). The QBS mixture with higher saponin fraction was found to be more cytotoxic towards both cell lines. The results may help to better understand the cytotoxicity of saponin-rich herbal medicines towards normal and tumor cells depending on their cholesterol content.
Collapse
|
22
|
Vera D, García-Díaz M, Torras N, Álvarez M, Villa R, Martinez E. Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13920-13933. [PMID: 33739812 DOI: 10.1021/acsami.0c21573] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tissue barriers play a crucial role in human physiology by establishing tissue compartmentalization and regulating organ homeostasis. At the interface between the extracellular matrix (ECM) and flowing fluids, epithelial and endothelial barriers are responsible for solute and gas exchange. In the past decade, microfluidic technologies and organ-on-chip devices became popular as in vitro models able to recapitulate these biological barriers. However, in conventional microfluidic devices, cell barriers are primarily grown on hard polymeric membranes within polydimethylsiloxane (PDMS) channels that do not mimic the cell-ECM interactions nor allow the incorporation of other cellular compartments such as stromal tissue or vascular structures. To develop models that accurately account for the different cellular and acellular compartments of tissue barriers, researchers have integrated hydrogels into microfluidic setups for tissue barrier-on-chips, either as cell substrates inside the chip, or as self-contained devices. These biomaterials provide the soft mechanical properties of tissue barriers and allow the embedding of stromal cells. Combining hydrogels with microfluidics technology provides unique opportunities to better recreate in vitro the tissue barrier models including the cellular components and the functionality of the in vivo tissues. Such platforms have the potential of greatly improving the predictive capacities of the in vitro systems in applications such as drug development, or disease modeling. Nevertheless, their development is not without challenges in their microfabrication. In this review, we will discuss the recent advances driving the fabrication of hydrogel microfluidic platforms and their applications in multiple tissue barrier models.
Collapse
Affiliation(s)
- Daniel Vera
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona 08193, Spain
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - María García-Díaz
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Núria Torras
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Mar Álvarez
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona 08193, Spain
| | - Rosa Villa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red (CIBER), Madrid 28029, Spain
| | - Elena Martinez
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red (CIBER), Madrid 28029, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona (UB), Barcelona 08028, Spain
| |
Collapse
|
23
|
Nguyen TD, Tran VT, Du H. Manipulation of self-assembled three-dimensional architecture in reusable acoustofluidic device. Electrophoresis 2021; 42:2375-2382. [PMID: 33765330 DOI: 10.1002/elps.202000357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 02/03/2023]
Abstract
Reconstructing of cell architecture plays a vital role in tissue engineering. Recent developments of self-assembling of cells into three-dimensional (3D) matrix pattern using surface acoustic waves have paved a way for a better tissue engineering platform thanks to its unique properties such as nature of noninvasive and noncontact, high biocompatibility, low-power consumption, automation capability, and fast actuation. This article discloses a method to manipulate the orientation and curvature of 3D matrix pattern by redesigning the top wall of microfluidic chamber and the technique to create a 3D longitudinal pattern along preinserted polydimethylsiloxane (PDMS) rods. Experimental results showed a good agreement with model predictions. This research can actively contribute to the development of better organs-on-chips platforms with capability of controlling cell architecture and density. Meanwhile, the 3D longitudinal pattern is suitable for self-assembling of microvasculatures.
Collapse
Affiliation(s)
- Tan Dai Nguyen
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang, Singapore
| | - Van-Thai Tran
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang, Singapore
| | - Hejun Du
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang, Singapore
| |
Collapse
|
24
|
Ma Q, Ma H, Xu F, Wang X, Sun W. Microfluidics in cardiovascular disease research: state of the art and future outlook. MICROSYSTEMS & NANOENGINEERING 2021; 7:19. [PMID: 34567733 PMCID: PMC8433381 DOI: 10.1038/s41378-021-00245-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/08/2021] [Accepted: 01/16/2021] [Indexed: 05/21/2023]
Abstract
Due to extremely severe morbidity and mortality worldwide, it is worth achieving a more in-depth and comprehensive understanding of cardiovascular diseases. Tremendous effort has been made to replicate the cardiovascular system and investigate the pathogenesis, diagnosis and treatment of cardiovascular diseases. Microfluidics can be used as a versatile primary strategy to achieve a holistic picture of cardiovascular disease. Here, a brief review of the application of microfluidics in comprehensive cardiovascular disease research is presented, with specific discussions of the characteristics of microfluidics for investigating cardiovascular diseases integrally, including the study of pathogenetic mechanisms, the development of accurate diagnostic methods and the establishment of therapeutic treatments. Investigations of critical pathogenetic mechanisms for typical cardiovascular diseases by microfluidic-based organ-on-a-chip are categorized and reviewed, followed by a detailed summary of microfluidic-based accurate diagnostic methods. Microfluidic-assisted cardiovascular drug evaluation and screening as well as the fabrication of novel delivery vehicles are also reviewed. Finally, the challenges with and outlook on further advancing the use of microfluidics technology in cardiovascular disease research are highlighted and discussed.
Collapse
Affiliation(s)
- Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao, 266071 China
| | - Haixia Ma
- Center for Prenatal Diagnosis, Zibo Maternal and Child Health Care Hospital, Zibo, 255000 China
| | - Fenglan Xu
- Department of Clinical Pharmacy, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001 China
| | - Xinyu Wang
- Institute of Thermal Science and Technology, Shandong University, Jinan, 250061 China
| | - Wentao Sun
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & School of Medicine, Nankai University, Tianjin, 300457 China
| |
Collapse
|
25
|
Peelen DM, Hoogduijn MJ, Hesselink DA, Baan CC. Advanced in vitro Research Models to Study the Role of Endothelial Cells in Solid Organ Transplantation. Front Immunol 2021; 12:607953. [PMID: 33664744 PMCID: PMC7921837 DOI: 10.3389/fimmu.2021.607953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
The endothelium plays a key role in acute and chronic rejection of solid organ transplants. During both processes the endothelium is damaged often with major consequences for organ function. Also, endothelial cells (EC) have antigen-presenting properties and can in this manner initiate and enhance alloreactive immune responses. For decades, knowledge about these roles of EC have been obtained by studying both in vitro and in vivo models. These experimental models poorly imitate the immune response in patients and might explain why the discovery and development of agents that control EC responses is hampered. In recent years, various innovative human 3D in vitro models mimicking in vivo organ structure and function have been developed. These models will extend the knowledge about the diverse roles of EC in allograft rejection and will hopefully lead to discoveries of new targets that are involved in the interactions between the donor organ EC and the recipient's immune system. Moreover, these models can be used to gain a better insight in the mode of action of the currently prescribed immunosuppression and will enhance the development of novel therapeutics aiming to reduce allograft rejection and prolong graft survival.
Collapse
Affiliation(s)
- Daphne M Peelen
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Martin J Hoogduijn
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dennis A Hesselink
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Carla C Baan
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
26
|
3D printing of tissue engineering scaffolds: a focus on vascular regeneration. Biodes Manuf 2021; 4:344-378. [PMID: 33425460 PMCID: PMC7779248 DOI: 10.1007/s42242-020-00109-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/24/2020] [Indexed: 01/31/2023]
Abstract
Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine. Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels. Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues. The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering. Recent advances in 3D printing have facilitated fabrication of vascular scaffolds, contributing to broad prospects for tissue vascularization. This review presents state of the art on modeling methods, print materials and preparation processes for fabrication of vascular scaffolds, and discusses the advantages and application fields of each method. Specially, significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized. Print materials and preparation processes are discussed in detail. And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting, electrospinning, and Lego-like construction. And related studies are exemplified. Transformation of vascular scaffolds to clinical application is discussed. Also, four trends of 3D printing of tissue engineering vascular scaffolds are presented, including machine learning, near-infrared photopolymerization, 4D printing, and combination of self-assembly and 3D printing-based methods.
Collapse
|
27
|
Dvorak Z, Klapholz M, Burris TP, Willing BP, Gioiello A, Pellicciari R, Galli F, March J, O'Keefe SJ, Sartor RB, Kim CH, Levy M, Mani S. Weak Microbial Metabolites: a Treasure Trove for Using Biomimicry to Discover and Optimize Drugs. Mol Pharmacol 2020; 98:343-349. [PMID: 32764096 PMCID: PMC7485585 DOI: 10.1124/molpharm.120.000035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
For decades, traditional drug discovery has used natural product and synthetic chemistry approaches to generate libraries of compounds, with some ending as promising drug candidates. A complementary approach has been to adopt the concept of biomimicry of natural products and metabolites so as to improve multiple drug-like features of the parent molecule. In this effort, promiscuous and weak interactions between ligands and receptors are often ignored in a drug discovery process. In this Emerging Concepts article, we highlight microbial metabolite mimicry, whereby parent metabolites have weak interactions with their receptors that then have led to discrete examples of more potent and effective drug-like molecules. We show specific examples of parent-metabolite mimics with potent effects in vitro and in vivo. Furthermore, we show examples of emerging microbial ligand-receptor interactions and provide a context in which these ligands could be improved as potential drugs. A balanced conceptual advance is provided in which we also acknowledge potential pitfalls-hyperstimulation of finely balanced receptor-ligand interactions could also be detrimental. However, with balance, we provide examples of where this emerging concept needs to be tested. SIGNIFICANCE STATEMENT: Microbial metabolite mimicry is a novel way to expand on the chemical repertoire of future drugs. The emerging concept is now explained using specific examples of the discovery of therapeutic leads from microbial metabolites.
Collapse
Affiliation(s)
- Zdenek Dvorak
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Max Klapholz
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Thomas P Burris
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Benjamin P Willing
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Antimo Gioiello
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Roberto Pellicciari
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Francesco Galli
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - John March
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Stephen J O'Keefe
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - R Balfour Sartor
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Chang H Kim
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Maayan Levy
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Sridhar Mani
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| |
Collapse
|
28
|
Campo H, Murphy A, Yildiz S, Woodruff T, Cervelló I, Kim JJ. Microphysiological Modeling of the Human Endometrium. Tissue Eng Part A 2020; 26:759-768. [PMID: 32348708 DOI: 10.1089/ten.tea.2020.0022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Since the beginning of clinical medicine, the human uterus has held the fascination of clinicians and researchers, given its critical role in the reproduction of our species. The endometrial lining provides residence for the embryo; however, this symbiotic interaction can be disrupted if the timing is not correct and the endometrium is not receptive. Diseases associated with the endometrium interfere with the reproductive process and cause a life-altering burden of pain and even death. With the advancement of technologies and new insights into the biology of the endometrium, much has been uncovered about the dynamic and essential changes that need to occur for normal endometrial function, as well as aberrations that lead to endometrial diseases. As expected, the more that is uncovered, the more the complexity of the endometrium is made evident. In this study, we bring together three areas of scientific advancement that remain in their infancy, but which together have the potential to mirror this complexity and enable understanding. Studies on induced pluripotent stem cells, three-dimensional tissue mimics, and microfluidic culture platforms will be reviewed with a focus on the endometrium. These unconventional approaches will provide new perspectives and appreciation for the elegance and complexity of the endometrium. Impact statement The ability of the human endometrium to regenerate on a monthly basis for ∼4 decades of reproductive years exemplifies its complexity as well as its susceptibility to disease. Restrictions on the types of research that can be done in the human endometrium motivate the development of new technologies and model systems. The three areas of technological advancement reviewed here-induced pluripotent stem cells, three-dimensional model systems, and microfluidic culture systems-will highlight some of the tools that can be applied to studying the human endometrium in ways that have not been done before.
Collapse
Affiliation(s)
- Hannes Campo
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Alina Murphy
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sule Yildiz
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Obstetrics and Gynecology, Koc University Hospital, Istanbul, Turkey
| | - Teresa Woodruff
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Irene Cervelló
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - J Julie Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|