1
|
Abdel-Baki PM, El-Sherei MM, Khaleel AE, Abdel-Sattar E, Salem MA, Okba MM. Correlation between secondary metabolites of Iris confusa Sealy and Iris pseudacorus L. and their newly explored antiprotozoal potentials. BMC Complement Med Ther 2023; 23:465. [PMID: 38104072 PMCID: PMC10725014 DOI: 10.1186/s12906-023-04294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND In the last few decades, the use of plant extracts and their phytochemicals as candidates for the management of parasitic diseases has increased tremendously. Irises are aromatic and medicinal plants that have long been employed in the treatment of different infectious diseases by traditional healers in many cultures. This study aims to explore the potential of three common Iris species (I. confusa Sealy, I. pseudacorus L. and I. germanica L.) against infectious diseases. Their in vitro antiprotozoal potency against Plasmodium falciparum, Trypanosoma brucei brucei, T. b. rhodesiense, T. cruzi and Leishmania infantum beside their cytotoxicity on MRC-5 fibroblasts and primary peritoneal murine macrophages were examined. METHODS The secondary metabolites of the tested extracts were characterized by UPLC-HRMS/MS and Pearsons correlation was used to correlate them with the antiprotozoal activity. RESULTS Overall, the non-polar fractions (NPF) showed a significant antiprotozoal activity (score: sc 2 to 5) in contrast to the polar fractions (PF). I. confusa NPF was the most active extract against P. falciparum [IC50 of 1.08 μg/mL, selectivity index (S.I. 26.11) and sc 5] and L. infantum (IC50 of 12.7 μg/mL, S.I. 2.22 and sc 2). I. pseudacorus NPF was the most potent fraction against T. b. rhodesiense (IC50 of 8.17 μg/mL, S.I. 3.67 and sc 3). Monogalactosyldiacylglycerol glycolipid (18:3/18:3), triaceylglycerol (18:2/18:2/18:3), oleic acid, and triterpenoid irridals (spirioiridoconfal C and iso-iridobelamal A) were the top positively correlated metabolites with antiplasmodium and antileishmanial activities of I. confusa NPF. Tumulosic acid, ceramide sphingolipids, corosolic, maslinic, moreollic acids, pheophytin a, triaceylglycerols, mono- and digalactosyldiacylglycerols, phosphatidylglycerol (22:6/18:3), phosphatidylcholines (18:1/18:2), and triterpenoid irridal iso-iridobelamal A, were highly correlated to I. pseudacorus NPF anti- T. b. rhodesiense activity. The ADME study revealed proper drug likeness properties for certain highly corelated secondary metabolites. CONCLUSION This study is the sole map correlating I. confusa and I. pseudacorus secondary metabolites to their newly explored antiprotozoal activity.
Collapse
Affiliation(s)
- Passent M Abdel-Baki
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt.
| | - Moshera M El-Sherei
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt
| | - Amal E Khaleel
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt
| | - Mohamed A Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin Elkom, 32511, Menoufia, Egypt
| | - Mona M Okba
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt
| |
Collapse
|
2
|
Quintero-Rincón P, Mesa-Arango AC, Flórez-Acosta OA, Zapata-Zapata C, Stashenko EE, Pino-Benítez N. Exploring the Potential of Extracts from Sloanea medusula and S. calva: Formulating Two Skincare Gels with Antioxidant, Sun Protective Factor, and Anti- Candida albicans Activities. Pharmaceuticals (Basel) 2023; 16:990. [PMID: 37513902 PMCID: PMC10384365 DOI: 10.3390/ph16070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Sloanea is a plant genus, native to tropical regions, used in medicinal practices for its anti-inflammatory properties. This study aimed to determine the antioxidant activity, sun protective factor (SPF), and antifungal of extracts obtained from two species of Sloanea and to develop extract-based gels with antioxidants, photoprotective, and anti-Candida albicans effects. Ethanolic extracts from S. medusula and S. calva collected in Chocó, Colombia, were used for antioxidant activity and SPF determination using the DPPH assay and the Mansur equation, respectively. Extracts were characterized using HPLC-MS and used to prepare the gels. The viscosity of the extract-based gels was evaluated using an MCR92 rheometer. In addition, the anti-Candida activity of extracts against five yeasts and anti-C. albicans of gels were evaluated following the Clinical and Laboratory Standards Institute M27, 4th Edition. High DPPH radical scavenging activity (42.4% and 44.7%) and a high SPF value (32.5 and 35.4) were obtained for the extracts of S. medusula and S. calva, respectively. Similarly, extract-based gels showed significant DPPH radical scavenging activity of 54.5% and 53.0% and maximum SPF values of 60 and 57. Extract from S. medusula showed an important antifungal activity against C. albicans (minimal inhibitory concentration (MIC) of 2 µg/mL). In contrast, S. calva extract was active against C. krusei, C. albicans (MIC of 2 µg/mL) and C. tropicalis (MIC of 4 µg/mL). Sloanea medusula gel (0.15%) exhibited an important C. albicans growth inhibition (98%), while with S. calva gel (0.3%) growth inhibition was slightly lower (76%). Polyphenolic and triterpenoid compounds were tentatively identified for S. medusula and S. calva, respectively. Both extracts can be considered promising sources for developing photoprotective gels to treat skin infections caused by C. albicans.
Collapse
Affiliation(s)
- Patricia Quintero-Rincón
- Natural Products Group, Technological University of Chocó, Quibdó 270002, Colombia
- Research Group Design and Formulation of Medicines, Cosmetics, and Related, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín 050010, Colombia
| | - Ana C Mesa-Arango
- Academic Group of Clinical Epidemiology, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia
| | - Oscar A Flórez-Acosta
- Research Group Design and Formulation of Medicines, Cosmetics, and Related, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín 050010, Colombia
| | - Carolina Zapata-Zapata
- Academic Group of Clinical Epidemiology, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia
| | - Elena E Stashenko
- Center for Chromatography and Mass Spectrometry, CROM-MASS, CIBIMOL-CENIVAM, Industrial University of Santander, Bucaramanga 680002, Colombia
| | - Nayive Pino-Benítez
- Natural Products Group, Technological University of Chocó, Quibdó 270002, Colombia
| |
Collapse
|
3
|
Pirker T, Pferschy-Wenzig EM, Bampali E, Bochkov V, Bauer R. Glycolipid-enriched fraction of Osmanthus fragrans inhibits LPS-induced expression of inflammatory genes, COX-2, E-selectin, and Interleukin-8. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116328. [PMID: 36870464 DOI: 10.1016/j.jep.2023.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osmanthus fragrans Lour. is a small ornamental tree native to the Southeastern parts of China. It is mainly cultivated because of its characteristic fragrance, and used in the food and perfume industry. Besides, its flowers are used in traditional Chinese medicine to treat a variety of diseases including those related to inflammation. AIM OF THE STUDY The aim of the study was to investigate in more detail the anti-inflammatory properties of O. fragrans flowers, and to characterize their active principles and mechanisms of action. MATERIALS AND METHODS O. fragrans flowers were successively extracted with n-hexane, dichloromethane and methanol. The extracts were further fractionated by chromatographic separation. COX-2 mRNA expression in PMA-differentiated, LPS-stimulated THP-1 cells was used as lead assay for activity-guided fractionation. The most potent fraction was chemically analyzed by LC-HRMS. The pharmacological activity was also evaluated in other inflammation-related in-vitro models, such as analysis of IL-8 secretion and E-selectin expression in HUVECtert cells and selective inhibition of COX-isoenzymes. RESULTS n-Hexane and dichloromethane extracts of O. fragrans flowers significantly inhibited COX-2 (PTGS2) mRNA expression. Additionally, both extracts inhibited COX-2 enzyme activity, whereas COX-1 enzyme activity was affected to a significantly lower extent. Fractionation of the extracts led to a highly active, glycolipid-containing fraction. In total, 10 glycolipids were tentatively annotated by LC-HRMS. This fraction also inhibited LPS-induced COX-2 mRNA expression, IL-8 secretion and E-selectin expression. The effects were limited to LPS-induced inflammation and not observed when inflammatory genes were induced by TNF-α, IL-1β or FSL-1. Since all these inducers of inflammation act via different receptors, it is likely that the fraction interferes with the binding of LPS to the TLR4-receptor, which mediates pro-inflammatory effects of LPS. CONCLUSION Taken together, the results demonstrate the anti-inflammatory potential of O. fragrans flower extracts in general, and of the glycolipid-enriched fraction in particular. The effects of glycolipid-enriched fraction are potentially mediated via the inhibition of the TLR4 receptor complex.
Collapse
Affiliation(s)
- Teresa Pirker
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Beethovenstraße 8, University of Graz, Graz, Austria
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Beethovenstraße 8, University of Graz, Graz, Austria
| | - Evangelia Bampali
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Beethovenstraße 8, University of Graz, Graz, Austria
| | - Valery Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Humboldtstraße 46/III, University of Graz, Graz, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Beethovenstraße 8, University of Graz, Graz, Austria.
| |
Collapse
|
4
|
Yang J, Gu T, Lu Y, Xu Y, Gan RY, Ng SB, Sun Q, Peng Y. Edible Osmanthus fragrans flowers: aroma and functional components, beneficial functions, and applications. Crit Rev Food Sci Nutr 2023; 64:10055-10068. [PMID: 37287270 DOI: 10.1080/10408398.2023.2220130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Osmanthus fragrans (O. fragrans) has been cultivated in China for over 2,500 years as a traditional fragrant plant. Recently, O. fragrans has drawn increasing attention due to its unique aroma and potential health benefits. In this review, the aroma and functional components of O. fragrans are summarized, and their biosynthetic mechanism is discussed. The beneficial functions and related molecular mechanism of O. fragrans extract are then highlighted. Finally, potential applications of O. fragrans are summarized, and future perspectives are proposed and discussed. According to the current research, O. fragrans extracts and components have great potential to be developed into value-added functional ingredients with preventive effects on certain chronic diseases. However, it is crucial to develop efficient, large-scale, and commercially viable extraction methods to obtain the bioactive components from O. fragrans. Furthermore, more clinical studies are highly needed to explore the beneficial functions of O. fragrans and guide its development into functional food products.
Collapse
Affiliation(s)
- Jiani Yang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yongtong Lu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | | | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
5
|
Wu L, Liu J, Huang W, Wang Y, Chen Q, Lu B. Exploration of Osmanthus fragrans Lour.'s composition, nutraceutical functions and applications. Food Chem 2022; 377:131853. [PMID: 34990948 DOI: 10.1016/j.foodchem.2021.131853] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022]
Abstract
Osmanthus fragrans (Thunb.) Lour. has been cultivated in China for over 2500 years. Due to the unique and strong fragrance, O. fragrans flowers have long been added into food, tea, and beverages. Not only the O. fragrans flowers, but also leaves, barks, roots, and fruits possess some beneficial effects such as relieving pain and alleviating cough in Traditional Chinese Medicine. Modern pharmacological researches demonstrated that O. fragrans possesses a broad spectrum of biological activities including antioxidant, neuroprotective, antidiabetic and anticancer activities etc. A large number of phytochemicals identified in O. fragrans are responsible for its health promoting and disease preventing effects. The components of volatile compounds in O. fragrans are complex but the content is less abundant. The present review mainly focuses on the bioactive ingredients identified from O. fragrans, the therapeutic effects of O. fragrans and its applications in food, cosmetics and medicines.
Collapse
Affiliation(s)
- Lipeng Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Junyi Liu
- Xianning Academy of Forestry Sciences, Xianning 437100, China
| | - Weisu Huang
- Zhejiang Institute of Economics and Trade, Hangzhou 310058, China
| | - Yixuan Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Qi Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
6
|
ZHANG TT, LIAO XY, REN J, CHEN C, WAN YY, WANG F, CHEN ZL. Construction of ERGO film modified electrode and its combination with HPLC in determination of five active components in Osmanthus fragrans fruits. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Zhang Y, Xiao F, Zhou Q, Diao T, Zhang M, Liu D, Wang Z, Huang T, Wu Y, Bai Y, Min Q. The Potential Protective Effect of Iridoid Glycosides Isolated From Osmanthus fragrans Seeds Against the Development of Immune Liver Injury in Mice. Front Pharmacol 2021; 12:760338. [PMID: 34819861 PMCID: PMC8606819 DOI: 10.3389/fphar.2021.760338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 12/04/2022] Open
Abstract
Objective: The iridoid glycosides were extracted and separated from Osmanthus fragrans seeds, and the potential protective effect of Osmanthus fragrans seed extract on concanavalin A-induced immune liver injury in mice was studied. Methods:Osmanthus fragrans seeds were extracted by 95% ethanol reflux. Then, the iridoid glycosides were enriched by extraction refined through petroleum ether (60°C–90°C), ethyl acetate, and water-saturated n-butanol in sequence, so as to purify the n-butanol part (Osmanthus fragrans seed’s n-butanol extraction, OFSN) by macroporous resin. Specnuezhenide and Nuezhenoside G13 were used as the reference substances to determine the concentration of iridoid glycosides by HPLC. On this basis, a mouse immune liver injury model was established by tail intravenous concanavalin A (20 mg/kg); the contents of serum ALT, AST, IFN-γ, and TNF-α and the contents of liver tissue MDA and SOD were determined; the pathological changes of the liver by HE staining were observed; and the expression levels of p38MAPK and p-p38mapk in liver tissue were detected by WB. Results: The linearity, precision, repeatability, recovery, and stability of HPLC all met the requirements by validating with the methodology. The contents of Specnuezhenide and Nuezhenoside G13 in the n-butanol extracts were 39.20% and 39.88%, respectively. Actually, their contents can reach up to 82.56% and 87.9% after being purified by macroporous resin. The results of animal experiments show that OFSN could significantly reduce the liver and spleen index, reduce the ALT and AST contents in plasma and the MDA content in liver tissue, and then increase the SOD content. Besides, OFSN could also reduce the plasma IFN-γ and TNF-α levels. The HE staining result indicates that the pathological changes in the liver tissues of mice treated with OFSN are alleviated to different degrees while the WB result suggests that OFSN could significantly inhibit the expression of p-p38mapk. Conclusion:Osmanthus fragrans seeds are rich in iridoid glycosides, which has a good protective effect on mouse immune liver injury caused by concanavalin A. The mechanism may be related to inhibiting the phosphorylation of p38MAPK, inhibiting the release of inflammatory mediators, improving the antioxidant capacity of liver cells, and weakening the occurrence of lipid peroxidation.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Pharmcy, Hubei University of Science and Technology, Xianning, China
| | - Feng Xiao
- School of Pharmcy, Hubei University of Science and Technology, Xianning, China
| | - Qiqi Zhou
- School of Pharmcy, Hubei University of Science and Technology, Xianning, China
| | - Tingting Diao
- School of Biological and Pharmaceutical Engineering, Xinyang Agricultural and Forestry University, Xinyang, China
| | - Meng Zhang
- School of Pharmcy, Hubei University of Science and Technology, Xianning, China
| | - Dongyang Liu
- School of Pharmcy, Hubei University of Science and Technology, Xianning, China
| | - Zhuowen Wang
- School of Pharmcy, Hubei University of Science and Technology, Xianning, China
| | - Ting Huang
- School of Pharmcy, Hubei University of Science and Technology, Xianning, China
| | - Yupei Wu
- School of Pharmcy, Hubei University of Science and Technology, Xianning, China
| | - Yuting Bai
- School of Pharmcy, Hubei University of Science and Technology, Xianning, China
| | - Qing Min
- School of Pharmcy, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
8
|
Catteau L, Schioppa L, Beaufay C, Girardi C, Hérent MF, Frédérich M, Quetin-Leclercq J. Antiprotozoal activities of Triterpenic Acids and Ester Derivatives Isolated from the Leaves of Vitellaria paradoxa. PLANTA MEDICA 2021; 87:860-867. [PMID: 33285591 DOI: 10.1055/a-1286-1879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Leaves of Vitellaria paradoxa, also called "Shea butter tree", are used in traditional medicine to treat various symptoms including malaria fever, dysentery, or skin infections. Composition of the dichloromethane extract of V. paradoxa leaves possessing antiparasitic activities was investigated. Five pentacyclic triterpenic acids together with 6 ester derivatives were isolated and identified by standards comparison, MS and 1H-NMR analysis. Corosolic, maslinic, and tormentic coumaroyl esters and their corresponding triterpenic acids were isolated from this plant for the first time. The antiparasitic activities of the 11 isolated compounds were evaluated in vitro on Plasmodium falciparum, Trypanosoma brucei brucei, and Leishmania mexicana mexicana and their selectivity determined by cytotoxicity evaluation on WI38 cells. None of the isolated compounds showed good antiplasmodial activity. The antitrypanosomal activity of individual compounds was in general higher than their antileishmanial one. One isolated triterpenic ester mixture in equilibrium, 3-O-p-E/Z-coumaroyltormentic acids, showed an attractive promising antitrypanosomal activity (IC50 = 0.7 µM) with low cytotoxicity (IC50= 44.5 µM) compared to the corresponding acid. Acute toxicity test on this ester did not show any toxicity at the maximal cumulative dose of 100 mg/kg intraperitoneally on mice. In vivo efficacy evaluation of this compound, at 50 mg/kg by intraperitoneal route on a T. b. brucei-infected mice model, showed a significant parasitemia reduction on day 4 post-infection together with 33.3% survival improvement. Further bioavailability and PK studies are needed along with mode of action investigations to further assess the potential of this molecule.
Collapse
Affiliation(s)
- Lucy Catteau
- Louvain Drug Research Institute-Pharmacognosy (LDRI-GNOS), Université catholique de Louvain Brussels, Belgium
| | - Laura Schioppa
- Louvain Drug Research Institute-Pharmacognosy (LDRI-GNOS), Université catholique de Louvain Brussels, Belgium
| | - Claire Beaufay
- Louvain Drug Research Institute-Pharmacognosy (LDRI-GNOS), Université catholique de Louvain Brussels, Belgium
| | - Cynthia Girardi
- Louvain Drug Research Institute-Pharmacognosy (LDRI-GNOS), Université catholique de Louvain Brussels, Belgium
| | - Marie-France Hérent
- Louvain Drug Research Institute-Pharmacognosy (LDRI-GNOS), Université catholique de Louvain Brussels, Belgium
| | - Michel Frédérich
- Laboratory of Pharmacognosy, CIRM, Université de Liège, Liège, Belgium
| | - Joëlle Quetin-Leclercq
- Louvain Drug Research Institute-Pharmacognosy (LDRI-GNOS), Université catholique de Louvain Brussels, Belgium
| |
Collapse
|
9
|
El-Shiekh RA, Saber FR, Abdel-Sattar EA. In vitro anti-hypertensive activity of Jasminum grandiflorum subsp. floribundum (Oleaceae) in relation to its metabolite profile as revealed via UPLC-HRMS analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1158:122334. [DOI: 10.1016/j.jchromb.2020.122334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
|
10
|
Liao X, Hong Y, Chen Z. Identification and quantification of the bioactive components in Osmanthus fragrans roots by HPLC-MS/MS. J Pharm Anal 2020; 11:299-307. [PMID: 34277118 PMCID: PMC8264379 DOI: 10.1016/j.jpha.2020.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/26/2022] Open
Abstract
The roots of O. fragrans are also a valuable resource in addition to its flowers and fruits. In this study, the HPLC-MS/MS method used for analyzing the chemical constituents in O. fragrans roots extract was developed, which showed high sensitivity for both qualitative and quantitative analyses. Thirty-two compounds were first discovered in O. fragrans roots, one compound of which was reported for the first time. The simultaneous determination method for acteoside, isoacteoside, oleuropein and phillyrin was validated to be sensitive and accurate. Then it was applied to determine the content of bioactive components in O. fragrans roots from different cultivars. The content of oleuropein and phillyrin in the twelve batches was relatively stable, while the content of acteoside and isoacteoside varied greatly. Moreover, the therapeutic material basis and mechanism of O. fragrans roots exerting its traditional pharmacodynamics were analyzed by network pharmacology. The results showed that O. fragrans roots might be effective for the treatment of inflammation, cardiovascular diseases, cancer, and rheumatoid arthritis, which is consistent with the traditional pharmacodynamics of O. fragrans roots. This work can provide an analytical method for the comprehensive development of O. fragrans roots. 36 compounds were identified and 32 components were firstly discovered in O. fragrans roots. Network pharmacology was used for analysis of therapeutic material basis. Simple, effective and sensitive HPLC-MS/MS was developed. Bioactive components in O. fragrans roots was elucidated by MS/MS.
Collapse
Affiliation(s)
- Xiaoyan Liao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education; Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals; School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yuan Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education; Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals; School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education; Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals; School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, 100080, China
| |
Collapse
|
11
|
Hu F, Liao X, Guo Y, Yamaki S, Li X, Hamada N, Hashi Y, Chen Z. Fast determination of isomeric triterpenic acids in Osmanthus fragrans (Thunb.) Lour. fruits by UHPLC coupled with triple quadrupole mass spectrometry. Food Chem 2020; 322:126781. [PMID: 32305878 DOI: 10.1016/j.foodchem.2020.126781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/01/2019] [Accepted: 04/08/2020] [Indexed: 01/30/2023]
Abstract
Triterpenic acids possess rich biological activity. Due to slight differences in structure and polarity, the simultaneous determination of isomeric triterpenic acids is challenging. In the present work, a simple and effective approach to chromatographic separation of such compounds based on conventional C18 stationary phase with gradient elution was developed, which allowed the simultaneous separation of eleven analytes including euscaphic, arjunic, tormentic, arjunolic, asiatic, pomolic, maslinic, corosolic, oleanolic, ursolic and 2-Epi tormentic acid (internal standard). This approach with mass spectrometric detection and ultrasonic extraction was fast, sensitive and accurate for analyzing isomeric triterpenic acids in O. fragrans fruits with a toal duration of the analytical cycle (including pretreatment) within one hour. The LODs lie in ranges of 0.8-12 ng/mL (30 ng/mL for asiatic and corosolic acid). The developed method was validated and successfully applied in ten batches of O. fragrans fruits, which could reflect the detail content difference of triterpenic acid components.
Collapse
Affiliation(s)
- Fangli Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080, China
| | - Xiaoyan Liao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080, China
| | - Yanli Guo
- Shimadzu China Corporation, China MS Center, Beijing Branch, Beijing 100020, China
| | - Satoshi Yamaki
- Shimadzu China Corporation, China MS Center, Beijing Branch, Beijing 100020, China
| | - Xiaodong Li
- Shimadzu China Corporation, China MS Center, Beijing Branch, Beijing 100020, China
| | - Naoki Hamada
- Shimadzu China Corporation, China MS Center, Beijing Branch, Beijing 100020, China
| | - Yuki Hashi
- Shimadzu China Corporation, China MS Center, Beijing Branch, Beijing 100020, China.
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080, China.
| |
Collapse
|