1
|
Zhu H, Xu G. Electrochemical biosensors for dopamine. Clin Chim Acta 2025; 566:120039. [PMID: 39550057 DOI: 10.1016/j.cca.2024.120039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Dopamine (DA), a key catecholamine, plays a pivotal role in the regulation of human cognition and emotions. It has profound effects on the hormonal, memory, and cardiovascular systems. Anomalies like Alzheimer's, Parkinson's, schizophrenia, and senile dementia are linked to abnormal DA levels. Consequently, the precise determination of DA levels in biological systems is critical for the accurate diagnosis and treatment of these disorders. Among all analytical techniques, electrochemical studies provide the most selective and highly sensitive methods for detecting DA in biological samples. Ascorbic acid and uric acid are two examples of small biomolecules that can obstruct the detection of DA in biological fluids. To address this issue, numerous attempts have been made to modify bare electrodes to separate the signals of these substances and enhance the electrocatalytic activity towards DA. Various surface modifiers, including coatings, conducting polymers, ionic liquids, nanomaterials, and inorganic complexes, have been employed in the modification process. Despite the reported success in DA detection using electrochemical sensors, many of these approaches are deemed too complex and costly for real-world applications. Therefore, this review aims to provide an overview of DA electrochemical biosensors that are practical for real-world applications.
Collapse
Affiliation(s)
- Hang Zhu
- School of Pharmacy and Medical Technology, Putian University, Putian, Fujian 351100, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian, Fujian 351100, China.
| | - Guifen Xu
- School of Pharmacy and Medical Technology, Putian University, Putian, Fujian 351100, China
| |
Collapse
|
2
|
Yang T, Shen T, Duan B, Liu Z, Wang C. In Vivo Electrochemical Biosensing Technologies for Neurochemicals: Recent Advances in Electrochemical Sensors and Devices. ACS Sens 2025; 10:100-121. [PMID: 39748564 DOI: 10.1021/acssensors.4c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
In vivo electrochemical sensing of neurotransmitters, neuromodulators, and metabolites plays a critical role in real-time monitoring of various physiological or psychological processes in the central nervous system. Currently, advanced electrochemical biosensors and technologies have been emerging as prominent ways to meet the surging requirements of in vivo monitoring of neurotransmitters and neuromodulators ranging from single cells to brain slices, even the entire brain. This review introduces the fundamental working principles and summarizes the achievements of in vivo electrochemical biosensing technologies including voltammetry, amperometry, potentiometry, field-effect transistor (FET), and organic electrochemical transistor (OECT). According to the elaborate feature of sensing technology, versatile strategies have been devoted to solve critical issues associated with the sensing of neurochemicals under an intricate physiological environment. Voltammetry is a universal technique to investigate electrochemical processes in complex matrices which could realize the miniaturization of electrodes, while amperometry serves as a well-suited approach offering high temporal resolution which is favorable for the fast oxidation-reduction kinetics of neurochemicals. Potentiometry realizes quantitative analysis by recording the potential difference with reduced invasiveness and high compatibility. FET and OECT serve as amplification strategies with higher sensitivity than traditional technologies. Furthermore, we point out the current shortcomings and address the challenges and perspectives of in vivo electrochemical biosensing technologies.
Collapse
Affiliation(s)
- Tuo Yang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Tongjun Shen
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Boyuan Duan
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Zeyang Liu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Chunxia Wang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
3
|
Park C, Kwak Y, Jang J, Hwang S, Cho HU, Jeon SJ, Oh Y, Shin H, Lee KH, Jang DP. Real-Time Monitoring of Electrode Surface Changes in Fast-Scan Cyclic Voltammetry Using Fourier Transform Electrochemical Impedance Spectroscopy. ACS OMEGA 2025; 10:2061-2068. [PMID: 39866634 PMCID: PMC11755184 DOI: 10.1021/acsomega.4c08240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/26/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025]
Abstract
Fast-scan cyclic voltammetry (FSCV) is a widely used electrochemical technique to measure the phasic response of neurotransmitters in the brain. It has the advantage of reducing tissue damage to the brain due to the use of carbon fiber microelectrodes as well as having a high temporal resolution (10 Hz) sufficient to monitor neurotransmitter release in vivo. During the FSCV experiment, the surface of the carbon fiber microelectrode is inevitably changed by the fouling effect. In terms of redox peak potential and sensitivity against neurotransmitters, a changed electrode surface results in a voltammogram that differs from the precalibration. However, when an electrode is implanted in the brain, the method for monitoring the electrode status change is limited. In this study, we propose employing an electrochemical impedance concept to monitor the gradual change of the electrode surface during FSCV scanning. Fourier transform electrochemical impedance spectroscopy (FTEIS) was used in combination with FSCV to detect the real-time impedance of the electrode. The relationship between impedance and electrode surface conditions was studied by immersing carbon fiber microelectrodes in bovine serum albumin solution to induce biofouling and diminish electrode sensitivity. As a result of the nonspecific adsorption of bovine serum albumin during the interleave scan of FSCV and FTEIS, both the measured dopamine response and the capacitance of the equivalent circuit model from FTEIS decreased over time. The capacitance and sensitivity of the electrode showed correlation (R2 = 0.90), while the resistance of the equivalent circuit did not. In vivo measurements using the interleave scan of FSCV and FTEIS were also carried out to observe biofouling on the FSCV electrode surface and to measure dopamine sensitivity in the striatum of the rat brain for an hour. The results showed that the resistance did not significantly change, while capacitance and measured dopamine were significantly diminishing over time. In summary, real-time neurotransmitter measurements and electrode monitoring with the combination of FSCV and FTEIS would be useful in neuroscience research.
Collapse
Affiliation(s)
- Cheonho Park
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
| | - Youngjong Kwak
- Department
of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Jaehyun Jang
- Department
of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sangmun Hwang
- Department
of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun U Cho
- Department
of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Se Jin Jeon
- Department
of Pharmacology, College of Medicine, Hallym
University, Chuncheon 24252, Republic of Korea
| | - Yoonbae Oh
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Brain and Cognitive Engineering, Korea
University, Seoul 02841, Republic of Korea
| | - Hojin Shin
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Kendall H. Lee
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Dong Pyo Jang
- Department
of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department
of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
4
|
Okeke ES, Nwankwo CEI, Owonikoko WM, Emencheta SC, Ozochi CA, Nweze EJ, Okeke VC, Nwuche CO, Enochoghene AE. Mercury's poisonous pulse: Blazing a new path for aquatic conservation with eco-friendly mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177719. [PMID: 39631341 DOI: 10.1016/j.scitotenv.2024.177719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Many compounds and inorganic elements released from natural and anthropogenic origins contaminate the environment and are implicated in catastrophes involving most biologically driven ecological processes and public health. One such element is Mercury. Mercury exists in both inorganic elemental form and the more metabolically active molecular form e.g. methyl mercury. They enjoy wide applications in medicine and form key components of numerous electrical and electronic devices. Unfortunately, severe health and adverse physiological conditions have developed from the impacts of mercury on the flora and fauna of both aquatic and terrestrial organisms. Despite being present in tiny amounts in water bodies, mercury undergoes a process of trophic amplification where its concentration increases significantly as it moves up the food chain through processes like biomethylation, bioaccumulation, and biomagnification. Most current methods for removing mercury through physical and chemical means have significant drawbacks, including high costs, complex technical requirements, and harmful secondary effects on the environment. Therefore, only environmentally friendly and sustainable approaches are acceptable to mitigate the risks to public health and ecosystem damage. Bioremediation involves the use of biological systems, i.e., plants and microbes, to recover mercury from the environment. The application of microorganisms in remediation is the hallmark of all mitigation strategies targeted at mercury pollution in the soil and aquatic matrices. The present paper provides a comprehensive overview of the current knowledge on mercury pollution in the environment (i.e., atmosphere, soil, water, and sediments). Many symptoms of mercury poisoning in fish, birds, and other animals, including man, were extensively treated. Information on the existing physico-chemical treatment methods, as well as the more ecologically friendly bioremediation measures available, was summarized. The importance of strengthening existing international policies, commitments, protocols, and alignments on the control of anthropogenic generation, treatment, and reduction of mercury discharges to the environment was highlighted.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu, China
| | - Chidiebele Emmanuel Ikechukwu Nwankwo
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu, China; Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | - Wasiu Mathew Owonikoko
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Nigeria
| | - Stephen Chijioke Emencheta
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; VBLab - Laboratory of Bacterial Viruses, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Chizoba Anthonia Ozochi
- Department of Science Laboratory Technology, Federal Polytechnic, Ohodo 411103, PMB 01801, Enugu, Enugu State, Nigeria
| | - Ekene John Nweze
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria.
| | - Veronica Chisom Okeke
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria
| | - Charles Ogugua Nwuche
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria.
| | - Adebisi Esther Enochoghene
- Environmental Management and Toxicology Unit, Department of Biological Sciences, Lead City University, Ibadan, Nigeria.
| |
Collapse
|
5
|
Dhahi TS, Yousif Dafhalla AK, Al-Mufti AW, Elobaid ME, Adam T, Gopinath SC. Application of Nanobiosensor engineering in the diagnosis of neurodegenerative disorders. RESULTS IN ENGINEERING 2024; 24:102790. [DOI: 10.1016/j.rineng.2024.102790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Driscoll N, Antonini MJ, Cannon TM, Maretich P, Olaitan G, Van VDP, Nagao K, Sahasrabudhe A, Paniagua EV, Frey EJ, Kim YJ, Hunt S, Hummel M, Mupparaju S, Jasanoff A, Venton BJ, Anikeeva P. Multifunctional Neural Probes Enable Bidirectional Electrical, Optical, and Chemical Recording and Stimulation In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408154. [PMID: 39506430 DOI: 10.1002/adma.202408154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Recording and modulation of neuronal activity enables the study of brain function in health and disease. While translational neuroscience relies on electrical recording and modulation techniques, mechanistic studies in rodent models leverage genetic precision of optical methods, such as optogenetics and fluorescent indicator imaging. In addition to electrical signal transduction, neurons produce and receive diverse chemical signals which motivate tools to probe and modulate neurochemistry. Although the past decade has delivered a wealth of technologies for electrophysiology, optogenetics, chemical sensing, and optical recording, combining these modalities within a single platform remains challenging. This work leverages materials selection and convergence fiber drawing to permit neural recording, electrical stimulation, optogenetics, fiber photometry, drug and gene delivery, and voltammetric recording of neurotransmitters within individual fibers. Composed of polymers and non-magnetic carbon-based conductors, these fibers are compatible with magnetic resonance imaging, enabling concurrent stimulation and whole-brain monitoring. Their utility is demonstrated in studies of the mesolimbic reward pathway by interfacing with the ventral tegmental area and nucleus accumbens in mice and characterizing the neurophysiological effects of a stimulant drug. This study highlights the potential of these fibers to probe electrical, optical, and chemical signaling across multiple brain regions in both mechanistic and translational studies.
Collapse
Affiliation(s)
| | | | - Taylor M Cannon
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pema Maretich
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | | | - Keisuke Nagao
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | | | - Ethan J Frey
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ye Ji Kim
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sydney Hunt
- Stanford University, Stanford, CA, 94305, USA
| | - Melissa Hummel
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sanju Mupparaju
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alan Jasanoff
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - B Jill Venton
- The University of Virginia, Charlottesville, VA, 22904, USA
| | - Polina Anikeeva
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
7
|
Gottschalk A, Menees H, Bogner C, Zewde S, Jibin J, Gamam A, Flink D, Mosissa M, Bonneson F, Wehelie H, Alonso-Caraballo Y, Hamid AA. Wideband ratiometric measurement of tonic and phasic dopamine release in the striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618918. [PMID: 39484621 PMCID: PMC11526850 DOI: 10.1101/2024.10.17.618918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Reward learning, cognition, and motivation are supported by changes in neurotransmitter levels across multiple timescales. Current measurement technologies for various neuromodulators (such as dopamine and serotonin) do not bridge timescales of fluctuations, limiting the ability to define the behavioral significance, regulation, and relationship between fast (phasic) and slow (tonic) dynamics. To help resolve longstanding debates about the behavioral significance of dopamine across timescales, we developed a novel quantification strategy, augmenting extensively used carbon-fiber Fast Scan Cyclic Voltammetry (FSCV). We iteratively engineered the FSCV scan sequence to rapidly modify electrode sensitivity within a sampling window and applied ratiometric analysis for wideband dopamine measurement. This allowed us to selectively eliminate artifacts unrelated to electrochemical detection (i.e., baseline drift), overcoming previous limitations that precluded wideband dopamine detection from milliseconds to hours. We extensively characterize this approach in vitro, validate performance in vivo with simultaneous microdialysis, and deploy this technique to measure wideband dopamine changes across striatal regions under pharmacological, optogenetic, and behavioral manipulations. We demonstrate that our approach can extend to additional analytes, including serotonin and pH, providing a robust platform to assess the contributions of multi-timescale neuromodulator fluctuations to cognition, learning, and motivation.
Collapse
Affiliation(s)
- Amy Gottschalk
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Haley Menees
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Celine Bogner
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Semele Zewde
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Joanna Jibin
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Asma Gamam
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Dylan Flink
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Meea Mosissa
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Faith Bonneson
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Hibo Wehelie
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | | | - Arif A Hamid
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| |
Collapse
|
8
|
Tonn J, Keithley RB. Waveform Optimization for the In Vitro Detection of Caffeic Acid by Fast-Scan Cyclic Voltammetry. ACS MEASUREMENT SCIENCE AU 2024; 4:534-545. [PMID: 39430967 PMCID: PMC11487675 DOI: 10.1021/acsmeasuresciau.4c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 10/22/2024]
Abstract
Caffeic acid is a polyphenol of critical importance in plants, involved in a variety of physiological processes including lignin formation, cellular growth, stress response, and external signaling. This small molecule also acts as a powerful antioxidant and thus has therapeutic potential for a variety of health conditions. Traditional methods of detecting caffeic acid lack appropriate temporal resolution to monitor real time concentration changes on a subsecond time scale with nM detection limits. Here we report on the first usage of fast-scan cyclic voltammetry with carbon fiber microelectrodes for the detection of caffeic acid. Through the use of flow injection analysis, the optimal waveform for its detection under acidic conditions at a scan rate of 400 V/s was determined to be sawtooth-shaped, from 0 to 1.4 to -0.4 to 0 V. Signal was linear with concentration up to 1 μM with a sensitivity of 44.8 ± 1.3 nA/μM and a detection limit of 2.3 ± 0.2 nM. The stability of its detection was exceptional, with an average of 0.96% relative standard deviation across 32 consecutive injections. This waveform was also successful in detecting other catechol-based plant antioxidants including 5-chlorogenic acid, oleuropein, rosmarinic acid, chicoric acid, and caffeic acid phenethyl ester. Finally, we show the successful use of fast-scan cyclic voltammetry in monitoring the degradation of caffeic acid by polyphenol oxidase on a subsecond time scale via a novel modification of a Ramsson cell. This work demonstrates that fast-scan cyclic voltammetry can be used to successfully monitor real-time dynamic changes in the concentrations of catechol-containing plant polyphenols.
Collapse
Affiliation(s)
- Joseph
N. Tonn
- Department of Chemistry, Roanoke College, 221 College Lane, Salem, Virginia 24153, United States
| | - Richard B. Keithley
- Department of Chemistry, Roanoke College, 221 College Lane, Salem, Virginia 24153, United States
| |
Collapse
|
9
|
Mintz Hemed N, Hwang FJ, Zhao ET, Ding JB, Melosh NA. Multiplexed neurochemical sensing with sub-nM sensitivity across 2.25 mm 2 area. Biosens Bioelectron 2024; 261:116474. [PMID: 38870827 DOI: 10.1016/j.bios.2024.116474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Multichannel arrays capable of real-time sensing of neuromodulators in the brain are crucial for gaining insights into new aspects of neural communication. However, measuring neurochemicals, such as dopamine, at low concentrations over large areas has proven challenging. In this research, we demonstrate a novel approach that leverages the scalability and processing power offered by microelectrode array devices integrated with a functionalized, high-density microwire bundle, enabling electrochemical sensing at an unprecedented scale and spatial resolution. The sensors demonstrate outstanding selective molecular recognition by incorporating a selective polymeric membrane. By combining cutting-edge commercial multiplexing, digitization, and data acquisition hardware with a bio-compatible and highly sensitive neurochemical interface array, we establish a powerful platform for neurochemical analysis. This multichannel array has been successfully utilized in vitro and ex vivo systems. Notably, our results show a sensing area of 2.25 mm2 with an impressive detection limit of 820 pM for dopamine. This new approach paves the way for investigating complex neurochemical processes and holds promise for advancing our understanding of brain function and neurological disorders.
Collapse
Affiliation(s)
- Nofar Mintz Hemed
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Fuu-Jiun Hwang
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Eric T Zhao
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Perry AN, Jarosova R, Witt CE, Weese-Myers ME, Subedi V, Ross AE. Plasma-treated gold microelectrodes for subsecond detection of Zn(II) with fast-scan cyclic voltammetry. Analyst 2024; 149:4643-4652. [PMID: 39136087 DOI: 10.1039/d4an00307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The sensitivity of zinc (Zn(II)) detection using fast-scan cyclic voltammetry (FSCV) with carbon fiber microelectrodes (CFMEs) is low compared to other neurochemicals. We have shown previously that Zn(II) plates to the surface of CFME's and we speculate that it is because of the abundance of oxide functionality on the surface. Plating reduces sensitivity over time and causes significant disruption to detection stability. This limited sensitivity and stability hinders Zn(II) detection, especially in complex matrices like the brain. To address this, we developed plasma-treated gold fiber microelectrodes (AuMEs) which enable sensitive and stable Zn(II) detection with FSCV. Typically, gold fibers are treated using corrosive acids to clean the surface and this step is important for preparing the surface for electrochemistry. Likewise, because FSCV is an adsorption-based technique, it is also important for Zn(II) to adsorb and desorb to prevent irreversible plating. Because of these requirements, careful optimization of the electrode surface was necessary to render the surface for Zn(II) adsorption yet strike a balance between attraction to the surface vs. irreversible interactions. In this study, we employed oxygen plasma treatment to activate the gold fiber surface without inducing significant morphological changes. This treatment effectively removes the organic layer while functionalizing the surface with oxygen, enabling Zn(II) detection that is not possible on untreated gold surfaces. Our results demonstrate significantly improved Zn(II) detection sensitivity and stability on AuME compared to CFME's. Overall, this work provides an advance in our understanding of Zn(II) electrochemistry and a new tool for improved metallotransmitter detection in the brain.
Collapse
Affiliation(s)
- Anntonette N Perry
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Office# 418A Rieveschl, Cincinnati, OH 45221-0172, USA.
| | - Romana Jarosova
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Office# 418A Rieveschl, Cincinnati, OH 45221-0172, USA.
| | - Colby E Witt
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Office# 418A Rieveschl, Cincinnati, OH 45221-0172, USA.
| | - Moriah E Weese-Myers
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Office# 418A Rieveschl, Cincinnati, OH 45221-0172, USA.
| | - Vivek Subedi
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Office# 418A Rieveschl, Cincinnati, OH 45221-0172, USA.
| | - Ashley E Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Office# 418A Rieveschl, Cincinnati, OH 45221-0172, USA.
| |
Collapse
|
11
|
Milne SA, Lasserre P, Corrigan DK. Fabrication of a graphite-paraffin carbon paste electrode and demonstration of its use in electrochemical detection strategies. Analyst 2024; 149:4736-4746. [PMID: 39114971 DOI: 10.1039/d4an00392f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Electrochemical detection methods hold many advantages over their optical counterparts, such as operation in complex sample matrices, low-cost and high volume manufacture and possible equipment miniaturisation. Despite these advantages, the use of electrochemical detection is currently limited in the clinical setting. There is a wide range of potential electrode materials, selected for optimal signal-to-noise ratios and reproducibility when detecting target analytes. The use of carbon paste electrodes (CPEs) for electrochemical detection can be limited by their analytical performance, however they remain very attractive due to their low cost and biocompatibility. This paper presents the fabrication of an easy-to-make and use graphite powder/paraffin wax paste combined with a substrate produced via additive manufacturing and confirms its functionality for both direct and indirect electrochemical measurements. The produced CPEs enable the direct voltammetric detection of hexaammineruthenium(III) chloride and dopamine at an experimental limit of detection (ELoD) of 62.5 μM. The key inflammatory biomarker Interleukin-6 through an enzyme-linked immunosorbant assay (ELISA) was also quantified, yielding a clinically-relevant ELoD of 150 pg ml-1 in 10% human serum. The performance of low-cost and easy-to-use CPEs obtained in 0.5 hours is showcased in this study, demonstrating the platform's potential uses for point-of-need electroanalytical applications.
Collapse
Affiliation(s)
- Stuart A Milne
- University of Strathclyde, Biomedical Engineering, Wolfson Centre, 106 Richmond St, Glasgow G1 1XQ, UK.
| | - Perrine Lasserre
- University of Strathclyde, Pure and Applied Chemistry, Thomas Graham Building, 295 Cathedral St, Glasgow G1 1XL, UK
| | - Damion K Corrigan
- University of Strathclyde, Pure and Applied Chemistry, Thomas Graham Building, 295 Cathedral St, Glasgow G1 1XL, UK
| |
Collapse
|
12
|
Lee JG, Li Y, Kim NJ, Jang HB, Yang CH, Kim HY, Yoon SS, Chang S, Jeong SJ, Kim SC, Sa BS, Lee BH. A synergistic effect of herb and acupuncture on the methamphetamine. Integr Med Res 2024; 13:101052. [PMID: 39219986 PMCID: PMC11364119 DOI: 10.1016/j.imr.2024.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background Herbal medicine Ja-Geum-Jeong (JGJ) has been used for the treatment of detoxification in Eastern Asia. However, the mechanisms involved are not clearly defined. The purpose of the present study was to investigate if herb medication inhibits Methamphetamine (METH)'s reinforcing effect and also examined if a combination of herb medication and acupuncture produces a synergistic effect on METH. Methods Male Sprague-Dawley rats were given acute METH intraperitoneally and the locomotor activity and ultrasonic vocalization (USV) calls were measured. Rats were administered JGJ orally and acupuncture was given at HT7 or SI5. Monosodium glutamate (MSG) and gamma-aminobutyric acid (GABA) agonists were injected into the Central amygdala (CeA) to investigate a possible neuroscientific mechanism. Tyrosine hydroxylase (TH) and fast scan cyclic voltammetry (FSCV) were measured to immunohistochemically and electrically confirm the behavioral data. Results Locomotor activity and USV calls were increased by METH (P < 0.05) and these increases were inhibited by JGJ (P < 0.05). Also, JGJ had no effect on the normal group given saline, and acupuncture at SI5 acupoint, but not at HT7 acupoint, produced a synergistic effect when combined with JGJ (P < 0.05). The JGJ's inhibition was blocked by the inactivation of CeA (P < 0.05), and MSG mimicked JGJ (P < 0.05). TH and FSCV measures showed the same pattern with the behavioral data (P < 0.05). Conclusion Results of the present study suggest that JGJ had inhibitory effects on the METH which was mediated through the activation of CeA and that combination of acupuncture and herb produced synergistic effect.
Collapse
Affiliation(s)
- Jin Gyeom Lee
- Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
- Research Center for Herbal Convergence on Liver Disease, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Yuchi Li
- China Novartis Institutes for BioMedical Research, PR China
| | - Nam Jun Kim
- Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
- Research Center for Herbal Convergence on Liver Disease, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Han Byeol Jang
- Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
- Research Center for Herbal Convergence on Liver Disease, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Chae Ha Yang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong Shoon Yoon
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Suchan Chang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Seon-Ju Jeong
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Sang Chan Kim
- Research Center for Herbal Convergence on Liver Disease, Daegu Haany University, Gyeongsan, Republic of Korea
- Department of Herbal Formula, College of Biomedical Science, Daegu Haany University, Daegu, Republic of Korea
| | - Bok Suk Sa
- Chung Shin Herbal Medicine, Daegu, Republic of Korea
| | - Bong Hyo Lee
- Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
- Research Center for Herbal Convergence on Liver Disease, Daegu Haany University, Gyeongsan, Republic of Korea
| |
Collapse
|
13
|
Zhao Y, Wan J, Li Y. Genetically encoded sensors for in vivo detection of neurochemicals relevant to depression. J Neurochem 2024; 168:1721-1737. [PMID: 38468468 DOI: 10.1111/jnc.16046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/03/2023] [Accepted: 12/29/2023] [Indexed: 03/13/2024]
Abstract
Depressive disorders are a common and debilitating form of mental illness with significant impacts on individuals and society. Despite the high prevalence, the underlying causes and mechanisms of depressive disorders are still poorly understood. Neurochemical systems, including serotonin, norepinephrine, and dopamine, have been implicated in the development and perpetuation of depressive symptoms. Current treatments for depression target these neuromodulator systems, but there is a need for a better understanding of their role in order to develop more effective treatments. Monitoring neurochemical dynamics during depressive symptoms is crucial for gaining a better a understanding of their involvement in depressive disorders. Genetically encoded sensors have emerged recently that offer high spatial-temporal resolution and the ability to monitor neurochemical dynamics in real time. This review explores the neurochemical systems involved in depression and discusses the applications and limitations of current monitoring tools for neurochemical dynamics. It also highlights the potential of genetically encoded sensors for better characterizing neurochemical dynamics in depression-related behaviors. Furthermore, potential improvements to current sensors are discussed in order to meet the requirements of depression research.
Collapse
Affiliation(s)
- Yulin Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
14
|
Gupta B, Kepros B, Landgraf JB, Becker MF, Li W, Purcell EK, Siegenthaler JR. All-Diamond Boron-Doped Microelectrodes for Neurochemical Sensing with Fast-Scan Cyclic Voltammetry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.606919. [PMID: 39211237 PMCID: PMC11360963 DOI: 10.1101/2024.08.07.606919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurochemical sensing with implantable devices has gained remarkable attention over the last few decades. A promising area of this research is the progress of novel electrodes as electrochemical tools for neurotransmitter detection in the brain. The boron-doped diamond (BDD) electrode is one such candidate that previously has been reported for its excellent electrochemical properties, including a wide working potential, superior chemical inertness and mechanical stability, good biocompatibility and resistance to fouling. Meanwhile, limited research has been conducted on the BDD as a microelectrode for neurochemical detection. Our team has developed a freestanding, all diamond microelectrode consisting of a boron-doped polycrystalline diamond core, encapsulated in an insulating polycrystalline diamond shell, with a cleaved planar tip for electrochemical sensing. This all-diamond electrode is advantageous due to its - (1) batch fabrication using wafer technology that eliminates traditional hand fabrication errors and inconsistencies, (2) absence of metal-based wires, or foundations, to improve biocompatibility and flexibility, and (3) sp 3 carbon surface with resistance to biofouling, i.e. adsorption of proteins or unwanted molecules at the electrode surface in a biological environment that impedes overall electrode performance. Here, we provide findings on further in vitro testing and development of the freestanding boron-doped diamond microelectrode (BDDME) for neurotransmitter detection using fast scan cyclic voltammetry (FSCV). In this report, we elaborate on - 1) an updated fabrication scheme and work flow to generate all diamond BDDMEs, 2) slow scan cyclic voltammetry measurements of reference and target analytes to understand basic electrochemical behavior of the electrode, and 3) FSCV characterization of common neurotransmitters, and overall favorability of serotonin (5-HT) detection. The BDDME showed a 2-fold increased FSCV response for 5-HT in comparison to dopamine (DA), with a limit of detection of 0.16 µM for 5-HT and 0.26 µM for DA. These results are intended to expand on the development of the next generation BDDME and guide future in vivo experiments, adding to the growing body of literature on implantable devices for neurochemical sensing.
Collapse
|
15
|
Patel D, Shetty S, Acha C, Pantoja IEM, Zhao A, George D, Gracias DH. Microinstrumentation for Brain Organoids. Adv Healthc Mater 2024; 13:e2302456. [PMID: 38217546 DOI: 10.1002/adhm.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/10/2023] [Indexed: 01/15/2024]
Abstract
Brain organoids are three-dimensional aggregates of self-organized differentiated stem cells that mimic the structure and function of human brain regions. Organoids bridge the gaps between conventional drug screening models such as planar mammalian cell culture, animal studies, and clinical trials. They can revolutionize the fields of developmental biology, neuroscience, toxicology, and computer engineering. Conventional microinstrumentation for conventional cellular engineering, such as planar microfluidic chips; microelectrode arrays (MEAs); and optical, magnetic, and acoustic techniques, has limitations when applied to three-dimensional (3D) organoids, primarily due to their limits with inherently two-dimensional geometry and interfacing. Hence, there is an urgent need to develop new instrumentation compatible with live cell culture techniques and with scalable 3D formats relevant to organoids. This review discusses conventional planar approaches and emerging 3D microinstrumentation necessary for advanced organoid-machine interfaces. Specifically, this article surveys recently developed microinstrumentation, including 3D printed and curved microfluidics, 3D and fast-scan optical techniques, buckling and self-folding MEAs, 3D interfaces for electrochemical measurements, and 3D spatially controllable magnetic and acoustic technologies relevant to two-way information transfer with brain organoids. This article highlights key challenges that must be addressed for robust organoid culture and reliable 3D spatiotemporal information transfer.
Collapse
Affiliation(s)
- Devan Patel
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Saniya Shetty
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chris Acha
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Itzy E Morales Pantoja
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Alice Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Derosh George
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
16
|
Shao Z, Zhao H, Dunham KE, Cao Q, Lavrik NV, Venton BJ. 3D-Printed Carbon Nanoneedle Electrodes for Dopamine Detection in Drosophila. Angew Chem Int Ed Engl 2024; 63:e202405634. [PMID: 38742923 PMCID: PMC11250930 DOI: 10.1002/anie.202405634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
In vivo electrochemistry in small brain regions or synapses requires nanoelectrodes with long straight tips for submicron scale measurements. Nanoelectrodes can be fabricated using a Nanoscribe two-photon printer, but annealed tips curl if they are long and thin. We propose a new pulling-force strategy to fabricate a straight carbon nanoneedle structure. A micron-width bridge is printed between two blocks. The annealed structure shrinks during pyrolysis, and the blocks create a pulling force to form a long, thin, and straight carbon bridge. Parameterization study and COMSOL modeling indicate changes in the block size, bridge size and length affect the pulling force and bridge shrinkage. Electrodes were printed on niobium wires, insulated with aluminum oxide, and the bridge cut with focused ion beam (FIB) to expose the nanoneedle tip. Annealed needle diameters ranged from 400 nm to 5.25 μm and length varied from 50.5 μm to 146 μm. The electrochemical properties are similar to glassy carbon, with good performance for dopamine detection with fast-scan cyclic voltammetry. Nanoelectrodes enable biological applications, such as dopamine detection in a specific Drosophila brain region. Long and thin nanoneedles are generally useful for other applications such as cellular sensing, drug delivery, or gas sensing.
Collapse
Affiliation(s)
- Zijun Shao
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | - He Zhao
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | - Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | - Qun Cao
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | - Nickolay V Lavrik
- Center for Nanophase Materials Sciences, Oak Ridge National Lab, Oak Ridge, TN, 37831, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| |
Collapse
|
17
|
Perillo ML, Gupta B, Siegenthaler JR, Christensen IE, Kepros B, Mitul A, Han M, Rechenberg R, Becker MF, Li W, Purcell EK. Evaluation of In Vitro Serotonin-Induced Electrochemical Fouling Performance of Boron Doped Diamond Microelectrode Using Fast-Scan Cyclic Voltammetry. BIOSENSORS 2024; 14:352. [PMID: 39056628 PMCID: PMC11274679 DOI: 10.3390/bios14070352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Fast-scan cyclic voltammetry (FSCV) is an electrochemical sensing technique that can be used for neurochemical sensing with high spatiotemporal resolution. Carbon fiber microelectrodes (CFMEs) are traditionally used as FSCV sensors. However, CFMEs are prone to electrochemical fouling caused by oxidative byproducts of repeated serotonin (5-HT) exposure, which makes them less suitable as chronic 5-HT sensors. Our team is developing a boron-doped diamond microelectrode (BDDME) that has previously been shown to be relatively resistant to fouling caused by protein adsorption (biofouling). We sought to determine if this BDDME exhibits resistance to electrochemical fouling, which we explored on electrodes fabricated with either femtosecond laser cutting or physical cleaving. We recorded the oxidation current response after 25 repeated injections of 5-HT in a flow-injection cell and compared the current drop from the first with the last injection. The 5-HT responses were compared with dopamine (DA), a neurochemical that is known to produce minimal fouling oxidative byproducts and has a stable repeated response. Physical cleaving of the BDDME yielded a reduction in fouling due to 5-HT compared with the CFME and the femtosecond laser cut BDDME. However, the femtosecond laser cut BDDME exhibited a large increase in sensitivity over the cleaved BDDME. An extended stability analysis was conducted for all device types following 5-HT fouling tests. This analysis demonstrated an improvement in the long-term stability of boron-doped diamond over CFMEs, as well as a diminishing sensitivity of the laser-cut BDDME over time. This work reports the electrochemical fouling performance of the BDDME when it is repeatedly exposed to DA or 5-HT, which informs the development of a chronic, diamond-based electrochemical sensor for long-term neurotransmitter measurements in vivo.
Collapse
Affiliation(s)
- Mason L. Perillo
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA; (M.L.P.); (I.E.C.).; (W.L.)
| | - Bhavna Gupta
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
| | - James R. Siegenthaler
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| | - Isabelle E. Christensen
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA; (M.L.P.); (I.E.C.).; (W.L.)
| | - Brandon Kepros
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
| | - Abu Mitul
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| | - Ming Han
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| | - Robert Rechenberg
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
| | - Michael F. Becker
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
| | - Wen Li
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA; (M.L.P.); (I.E.C.).; (W.L.)
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| | - Erin K. Purcell
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA; (M.L.P.); (I.E.C.).; (W.L.)
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| |
Collapse
|
18
|
Wu B, Castagnola E, McClung CA, Cui XT. PEDOT/CNT Flexible MEAs Reveal New Insights into the Clock Gene's Role in Dopamine Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308212. [PMID: 38430532 PMCID: PMC11251561 DOI: 10.1002/advs.202308212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/26/2024] [Indexed: 03/04/2024]
Abstract
Substantial evidence has shown that the Circadian Locomotor Output Cycles Kaput (Clock) gene is a core transcription factor of circadian rhythms that regulates dopamine (DA) synthesis. To shed light on the mechanism of this interaction, flexible multielectrode arrays (MEAs) are developed that can measure both DA concentrations and electrophysiology chronically. The dual functionality is enabled by conducting polymer PEDOT doped with acid-functionalized carbon nanotubes (CNT). The PEDOT/CNT microelectrode coating maintained stable electrochemical impedance and DA detection by square wave voltammetry for 4 weeks in vitro. When implanted in wild-type (WT) and Clock mutation (MU) mice, MEAs measured tonic DA concentration and extracellular neural activity with high spatial and temporal resolution for 4 weeks. A diurnal change of DA concentration in WT is observed, but not in MU, and a higher basal DA concentration and stronger cocaine-induced DA increase in MU. Meanwhile, striatal neuronal firing rate is found to be positively correlated with DA concentration in both animal groups. These findings offer new insights into DA dynamics in the context of circadian rhythm regulation, and the chronically reliable performance and dual measurement capability of this technology hold great potential for a broad range of neuroscience research.
Collapse
Affiliation(s)
- Bingchen Wu
- Department of BioengineeringUniversity of PittsburghPittsburghPA15213USA
- Center for the Neural Basis of CognitionPittsburghPA15213USA
| | - Elisa Castagnola
- Department of BioengineeringUniversity of PittsburghPittsburghPA15213USA
- Department of Biomedical EngineeringLouisiana Tech UniversityRustonLA71272USA
| | | | - Xinyan Tracy Cui
- Department of BioengineeringUniversity of PittsburghPittsburghPA15213USA
- Center for the Neural Basis of CognitionPittsburghPA15213USA
- McGowan Institute for Regenerative MedicinePittsburghPA15219USA
| |
Collapse
|
19
|
Olaitan GO, Ganesana M, Strohman A, Lynch WJ, Legon W, Jill Venton B. Focused Ultrasound Modulates Dopamine in a Mesolimbic Reward Circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580202. [PMID: 38979318 PMCID: PMC11230179 DOI: 10.1101/2024.02.13.580202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Dopamine is a neurotransmitter that plays a significant role in reward and motivation. Dysfunction in the mesolimbic dopamine pathway has been linked to a variety of psychiatric disorders, including addiction. Low-intensity focused ultrasound (LIFU) has demonstrated effects on brain activity, but how LIFU affects dopamine neurotransmission is not known. Here, we applied three different intensities (6.5, 13, and 26 W/cm 2 I sppa ) of 2-minute LIFU to the prelimbic region (PLC) and measured dopamine in the nucleus accumbens (NAc) core using fast-scan cyclic voltammetry. Two minutes of LIFU sonication at 13 W/cm 2 to the PLC significantly reduced dopamine release by ∼ 50% for up to 2 hours. However, double the intensity (26 W/cm 2 ) resulted in less inhibition (∼30%), and half the intensity (6.5 W/cm 2 ) did not result in any inhibition of dopamine. Anatomical controls applying LIFU to the primary somatosensory cortex did not change NAc core dopamine, and applying LIFU to the PLC did not affect dopamine release in the caudate or NAc shell. Histological evaluations showed no evidence of cell damage or death. Modeling of temperature rise demonstrates a maximum temperature change of 0.5°C with 13 W/cm 2 , suggesting that modulation is not due to thermal mechanisms. These studies show that LIFU at a moderate intensity provides a noninvasive, high spatial resolution means to modulate specific mesolimbic circuits that could be used in future studies to target and repair pathways that are dysfunctional in addiction and other psychiatric diseases.
Collapse
|
20
|
Ostertag BJ, Porshinsky EJ, Nawarathne CP, Ross AE. Surface-Roughened Graphene Oxide Microfibers Enhance Electrochemical Reversibility. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12124-12136. [PMID: 38815131 PMCID: PMC11209849 DOI: 10.1021/acs.langmuir.4c01004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Here, we provide an optimized method for fabricating surface-roughened graphene oxide disk microelectrodes (GFMEs) with enhanced defect density to generate a more suitable electrode surface for dopamine detection with fast-scan cyclic voltammetry (FSCV). FSCV detection, which is often influenced by adsorption-based surface interactions, is commonly impacted by the chemical and geometric structure of the electrode's surface, and graphene oxide is a tunable carbon-based nanomaterial capable of enhancing these two key characteristics. Synthesized GFMEs possess exquisite electronic and mechanical properties. We have optimized an applied inert argon (Ar) plasma treatment to increase defect density, with minimal changes in chemical functionality, for enhanced surface crevices to momentarily trap dopamine during detection. Optimal Ar plasma treatment (100 sccm, 60 s, 100 W) generates crevice depths of 33.4 ± 2.3 nm with high edge plane character enhancing dopamine interfacial interactions. Increases in GFME surface roughness improve electron transfer rates and limit diffusional rates out of the crevices to create nearly reversible dopamine electrochemical redox interactions. The utility of surface-roughened disk GFMEs provides comparable detection sensitivities to traditional cylindrical carbon fiber microelectrodes while improving temporal resolution ten-fold with amplified oxidation current due to dopamine cyclization. Overall, surface-roughened GFMEs enable improved adsorption interactions, momentary trapping, and current amplification, expanding the utility of GO microelectrodes for FSCV detection.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172, USA
| | - Evan J. Porshinsky
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172, USA
| | - Chaminda P. Nawarathne
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172, USA
| | - Ashley E. Ross
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172, USA
| |
Collapse
|
21
|
Driscoll N, Antonini MJ, Cannon TM, Maretich P, Olaitan G, Phi Van VD, Nagao K, Sahasrabudhe A, Vargas E, Hunt S, Hummel M, Mupparaju S, Jasanoff A, Venton J, Anikeeva P. Fiber-based Probes for Electrophysiology, Photometry, Optical and Electrical Stimulation, Drug Delivery, and Fast-Scan Cyclic Voltammetry In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.598004. [PMID: 38895451 PMCID: PMC11185794 DOI: 10.1101/2024.06.07.598004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Recording and modulation of neuronal activity enables the study of brain function in health and disease. While translational neuroscience relies on electrical recording and modulation techniques, mechanistic studies in rodent models leverage genetic precision of optical methods, such as optogenetics and imaging of fluorescent indicators. In addition to electrical signal transduction, neurons produce and receive diverse chemical signals which motivate tools to probe and modulate neurochemistry. Although the past decade has delivered a wealth of technologies for electrophysiology, optogenetics, chemical sensing, and optical recording, combining these modalities within a single platform remains challenging. This work leverages materials selection and convergence fiber drawing to permit neural recording, electrical stimulation, optogenetics, fiber photometry, drug and gene delivery, and voltammetric recording of neurotransmitters within individual fibers. Composed of polymers and non-magnetic carbon-based conductors, these fibers are compatible with magnetic resonance imaging, enabling concurrent stimulation and whole-brain monitoring. Their utility is demonstrated in studies of the mesolimbic reward pathway by simultaneously interfacing with the ventral tegmental area and nucleus accumbens in mice and characterizing the neurophysiological effects of a stimulant drug. This study highlights the potential of these fibers to probe electrical, optical, and chemical signaling across multiple brain regions in both mechanistic and translational studies.
Collapse
Affiliation(s)
| | | | | | - Pema Maretich
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | - Keisuke Nagao
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | | | - Melissa Hummel
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Alan Jasanoff
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jill Venton
- The University of Virginia, Charlottesville, VA 22904
| | | |
Collapse
|
22
|
Alyamni N, Abot JL, Zestos AG. Perspective-Advances in Voltammetric Methods for the Measurement of Biomolecules. ECS SENSORS PLUS 2024; 3:027001. [PMID: 38645638 PMCID: PMC11024638 DOI: 10.1149/2754-2726/ad3c4f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
Voltammetry is a powerful electroanalytical tool that makes fast, real-time measurements of neurotransmitters and other molecules. Electroanalytical methods like cyclic, pulse, and stripping voltammetry are useful for qualitative and quantitative examination. Neurochemical sensing has been enhanced using carbon-based electrodes and waveform modification methods that improve sensitivity and stability of electrode performance. Voltammetry has revolutionized neurochemical monitoring by providing real-time information on neurotransmitter dynamics for neurochemical studies. Selectivity and electrode fouling remain issues for biomolecule detection, but recent advances promise new methods of analysis for other applications to enhance spatiotemporal resolution, sensitivity, selectivity, and other important considerations.
Collapse
Affiliation(s)
- Nadiah Alyamni
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC, 20064, United States of America
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Jandro L. Abot
- Department of Mechanical Engineering, The Catholic University of America, Washington, DC, 20064, United States of America
| | - Alexander G. Zestos
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| |
Collapse
|
23
|
Manring N, Strini M, Koifman G, Xavier J, Smeltz JL, Pathirathna P. Ultrafast Detection of Arsenic Using Carbon-Fiber Microelectrodes and Fast-Scan Cyclic Voltammetry. MICROMACHINES 2024; 15:733. [PMID: 38930703 PMCID: PMC11205817 DOI: 10.3390/mi15060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Arsenic contamination poses a significant public health risk worldwide, with chronic exposure leading to various health issues. Detecting and monitoring arsenic exposure accurately remains challenging, necessitating the development of sensitive detection methods. In this study, we introduce a novel approach using fast-scan cyclic voltammetry (FSCV) coupled with carbon-fiber microelectrodes (CFMs) for the electrochemical detection of As3+. Through an in-depth pH study using tris buffer, we optimized the electrochemical parameters for both acidic and basic media. Our sensor demonstrated high selectivity, distinguishing the As3+ signal from those of As5+ and other potential interferents under ambient conditions. We achieved a limit of detection (LOD) of 0.5 μM (37.46 ppb) and a sensitivity of 2.292 nA/μM for bare CFMs. Microscopic data confirmed the sensor's stability at lower, physiologically relevant concentrations. Additionally, using our previously reported double-bore CFMs, we simultaneously detected As3+-Cu2+ and As3+-Cd2+ in tris buffer, enhancing the LOD of As3+ to 0.2 μM (14.98 ppb). To our knowledge, this is the first study to use CFMs for the rapid and selective detection of As3+ via FSCV. Our sensor's ability to distinguish As3+ from As5+ in a physiologically relevant pH environment showcases its potential for future in vivo studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Pavithra Pathirathna
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, 150 W. University Blvd, Melbourne, FL 32901, USA; (N.M.); (M.S.); (G.K.); (J.X.); (J.L.S.)
| |
Collapse
|
24
|
Jang J, Cho HU, Hwang S, Kwak Y, Kwon H, Heien ML, Bennet KE, Oh Y, Shin H, Lee KH, Jang DP. Understanding the different effects of fouling mechanisms on working and reference electrodes in fast-scan cyclic voltammetry for neurotransmitter detection. Analyst 2024; 149:3008-3016. [PMID: 38606455 PMCID: PMC11648937 DOI: 10.1039/d3an02205f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Fast-scan cyclic voltammetry (FSCV) is a widely used technique for detecting neurotransmitters. However, electrode fouling can negatively impact its accuracy and sensitivity. Fouling refers to the accumulation of unwanted materials on the electrode surface, which can alter its electrochemical properties and reduce its sensitivity and selectivity. Fouling mechanisms can be broad and may include biofouling, the accumulation of biomolecules on the electrode surface, and chemical fouling, the deposition of unwanted chemical species. Despite individual studies discussing fouling effects on either the working electrode or the reference electrode, no comprehensive study has been conducted to compare the overall fouling effects on both electrodes in the context of FSCV. Here, we examined the effects of biofouling and chemical fouling on the carbon fiber micro-electrode (CFME) as the working electrode and the Ag/AgCl reference electrode with FSCV. Both fouling mechanisms significantly decreased the sensitivity and caused peak voltage shifts in the FSCV signal with the CFME, but not with the Ag/AgCl reference electrode. Interestingly, previous studies have reported peak voltage shifts in FSCV signals due to the fouling of Ag/AgCl electrodes after implantation in the brain. We noticed in a previous study that energy-dispersive spectroscopy (EDS) spectra showed increased sulfide ion concentration after implantation. We hypothesized that sulfide ions may be responsible for the peak voltage shift. To test this hypothesis, we added sulfide ions to the buffer solution, which decreased the open circuit potential of the Ag/AgCl electrode and caused a peak voltage shift in the FSCV voltammograms. Also, EDS analysis showed that sulfide ion concentration increased on the surface of the Ag/AgCl electrodes after 3 weeks of chronic implantation, necessitating consideration of sulfide ions as the fouling agent for the reference electrodes. Overall, our study provides important insights into the mechanisms of electrode fouling and its impact on FSCV measurements. These findings could inform the design of FSCV experiments, with the development of new strategies for improving the accuracy and reliability of FSCV measurements in vivo.
Collapse
Affiliation(s)
- Jaehyun Jang
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun-U Cho
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sangmun Hwang
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Youngjong Kwak
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Haeun Kwon
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Michael L Heien
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Kevin E Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Division of Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Dong Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
25
|
Gupta B, Saxena A, Perillo ML, Wade-Kleyn LC, Thompson CH, Purcell EK. Structural, Functional, and Genetic Changes Surrounding Electrodes Implanted in the Brain. Acc Chem Res 2024; 57:1346-1359. [PMID: 38630432 PMCID: PMC11079975 DOI: 10.1021/acs.accounts.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Implantable neurotechnology enables monitoring and stimulating of the brain signals responsible for performing cognitive, motor, and sensory tasks. Electrode arrays implanted in the brain are increasingly used in the clinic to treat a variety of sources of neurological diseases and injuries. However, the implantation of a foreign body typically initiates a tissue response characterized by physical disruption of vasculature and the neuropil as well as the initiation of inflammation and the induction of reactive glial states. Likewise, electrical stimulation can induce damage to the surrounding tissue depending on the intensity and waveform parameters of the applied stimulus. These phenomena, in turn, are likely influenced by the surface chemistry and characteristics of the materials employed, but further information is needed to effectively link the biological responses observed to specific aspects of device design. In order to inform improved design of implantable neurotechnology, we are investigating the basic science principles governing device-tissue integration. We are employing multiple techniques to characterize the structural, functional, and genetic changes that occur in the cells surrounding implanted electrodes. First, we have developed a new "device-in-slice" technique to capture chronically implanted electrodes within thick slices of live rat brain tissue for interrogation with single-cell electrophysiology and two-photon imaging techniques. Our data revealed several new observations of tissue remodeling surrounding devices: (a) there was significant disruption of dendritic arbors in neurons near implants, where losses were driven asymmetrically on the implant-facing side. (b) There was a significant loss of dendritic spine densities in neurons near implants, with a shift toward more immature (nonfunctional) morphologies. (c) There was a reduction in excitatory neurotransmission surrounding implants, as evidenced by a reduction in the frequency of excitatory postsynaptic currents (EPSCs). Lastly, (d) there were changes in the electrophysiological underpinnings of neuronal spiking regularity. In parallel, we initiated new studies to explore changes in gene expression surrounding devices through spatial transcriptomics, which we applied to both recording and stimulating arrays. We found that (a) device implantation is associated with the induction of hundreds of genes associated with neuroinflammation, glial reactivity, oligodendrocyte function, and cellular metabolism and (b) electrical stimulation induces gene expression associated with damage or plasticity in a manner dependent upon the intensity of the applied stimulus. We are currently developing computational analysis tools to distill biomarkers of device-tissue interactions from large transcriptomics data sets. These results improve the current understanding of the biological response to electrodes implanted in the brain while producing new biomarkers for benchmarking the effects of novel electrode designs on responses. As the next generation of neurotechnology is developed, it will be increasingly important to understand the influence of novel materials, surface chemistries, and implant architectures on device performance as well as the relationship with the induction of specific cellular signaling pathways.
Collapse
Affiliation(s)
- Bhavna Gupta
- Neuroscience
Program, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Akash Saxena
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Mason L. Perillo
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Lauren C. Wade-Kleyn
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Cort H. Thompson
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Erin K. Purcell
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Neuroscience
Program, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| |
Collapse
|
26
|
Amiri A, Ravi MJ, Huang SH, Janda DC, Amemiya S. Suppression of Resistive Coupling in Nanogap Electrochemical Cell: Resolution of Dual Pathways for Dopamine Oxidation. SENSORS AND ACTUATORS. B, CHEMICAL 2024; 406:135440. [PMID: 38435378 PMCID: PMC10907013 DOI: 10.1016/j.snb.2024.135440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
A nanogap cell involves two working electrodes separated by a nanometer-wide solution to enable unprecedented electrochemical measurements. The powerful nanogap measurements, however, can be seriously interfered with by resistive coupling between the two electrodes to yield erroneous current responses. Herein, we employ the nanogap cell based on double carbon-fiber microelectrodes to suppress resistive coupling for the assessment of intrinsic current responses. Specifically, we modify a commercial bipotentiostat to compensate the Ohmic potential drop shared by the two electrodes through the common current pathway with a fixed resistance in the solution. Resistive coupling through both non-Faradaic and Faradaic processes is suppressed to eliminate erroneous current responses. Our approach is applied to investigate the mechanism of dopamine oxidation at carbon-fiber microelectrodes as important electrochemical sensors for the crucial neurotransmitter. Resistive coupling is suppressed to manifest the intrinsic current responses based on the oxidation of both adsorbed and non-adsorbed forms of dopamine to the respective forms of dopamine-o-quinone. The simultaneous dual oxidation pathways are observed for the first time and can be mediated through either non-concerted or concerted mechanisms of adsorption-coupled electron transfer. The two mechanisms are not discriminated for the two-electron oxidation of dopamine because it can not be determined whether the intermediate, dopamine semi-quinone, is adsorbed on the electrode surface. Significantly, our approach will be useful to manifest intrinsic current responses without resistive coupling for nanogaps and microgaps, which are too narrow to eliminate the common solution resistance by optimizing the position of a reference electrode.
Collapse
Affiliation(s)
| | | | - Siao-Han Huang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Donald C. Janda
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| |
Collapse
|
27
|
Plačkić A, Neubert TJ, Patel K, Kuhl M, Watanabe K, Taniguchi T, Zurutuza A, Sordan R, Balasubramanian K. Electrochemistry at the Edge of a van der Waals Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306361. [PMID: 38109121 DOI: 10.1002/smll.202306361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/19/2023] [Indexed: 12/19/2023]
Abstract
Artificial van der Waals heterostructures, obtained by stacking two-dimensional (2D) materials, represent a novel platform for investigating physicochemical phenomena and applications. Here, the electrochemistry at the one-dimensional (1D) edge of a graphene sheet, sandwiched between two hexagonal boron nitride (hBN) flakes, is reported. When such an hBN/graphene/hBN heterostructure is immersed in a solution, the basal plane of graphene is encapsulated by hBN, and the graphene edge is exclusively available in the solution. This forms an electrochemical nanoelectrode, enabling the investigation of electron transfer using several redox probes, e.g., ferrocene(di)methanol, hexaammineruthenium, methylene blue, dopamine and ferrocyanide. The low capacitance of the van der Waals edge electrode facilitates cyclic voltammetry at very high scan rates (up to 1000 V s-1), allowing voltammetric detection of redox species down to micromolar concentrations with sub-second time resolution. The nanoband nature of the edge electrode allows operation in water without added electrolyte. Finally, two adjacent edge electrodes are realized in a redox-cycling format. All the above-mentioned phenomena can be investigated at the edge, demonstrating that nanoscale electrochemistry is a new application avenue for van der Waals heterostructures. Such an edge electrode will be useful for studying electron transfer mechanisms and the detection of analyte species in ultralow sample volumes.
Collapse
Affiliation(s)
- Aleksandra Plačkić
- L-NESS, Department of Physics, Politecnico di Milano, Via Anzani 42, Como, 22100, Italy
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1, Novi Sad, 21000, Serbia
| | - Tilmann J Neubert
- School of Analytical Sciences Adlershof (SALSA), IRIS Adlershof & Department of Chemistry, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Kishan Patel
- L-NESS, Department of Physics, Politecnico di Milano, Via Anzani 42, Como, 22100, Italy
| | - Michel Kuhl
- School of Analytical Sciences Adlershof (SALSA), IRIS Adlershof & Department of Chemistry, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Amaia Zurutuza
- Graphenea Semiconductor SLU, Mikeletegi Pasealekua 83, San Sebastián, 20009, Spain
| | - Roman Sordan
- L-NESS, Department of Physics, Politecnico di Milano, Via Anzani 42, Como, 22100, Italy
| | - Kannan Balasubramanian
- School of Analytical Sciences Adlershof (SALSA), IRIS Adlershof & Department of Chemistry, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| |
Collapse
|
28
|
Movassaghi CS, Alcañiz Fillol M, Kishida KT, McCarty G, Sombers LA, Wassum KM, Andrews AM. Maximizing Electrochemical Information: A Perspective on Background-Inclusive Fast Voltammetry. Anal Chem 2024; 96:6097-6105. [PMID: 38597398 PMCID: PMC11044109 DOI: 10.1021/acs.analchem.3c04938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
This perspective encompasses a focused review of the literature leading to a tipping point in electroanalytical chemistry. We tie together the threads of a "revolution" quietly in the making for years through the work of many authors. Long-held misconceptions about the use of background subtraction in fast voltammetry are addressed. We lay out future advantages that accompany background-inclusive voltammetry, particularly when paired with modern machine-learning algorithms for data analysis.
Collapse
Affiliation(s)
- Cameron S. Movassaghi
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Miguel Alcañiz Fillol
- Interuniversity
Research Institute for Molecular Recognition and Technological Development, Universitat Politècnica de València-Universitat
de València, Camino de Vera s/n, Valencia 46022, Spain
| | - Kenneth T. Kishida
- Department
of Translational Neuroscience, Wake Forest
School of Medicine, Winston-Salem, North Carolina 27101, United States
- Department
of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Gregory McCarty
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Leslie A. Sombers
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State
University, Raleigh, North Carolina 27695, United States
| | - Kate M. Wassum
- Department
of Psychology, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Brain Research
Institute, University of California, Los
Angeles, Los Angeles, California 90095, United States
- Integrative
Center for Learning and Memory, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Integrative
Center for Addictive Disorders, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Anne Milasincic Andrews
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Brain Research
Institute, University of California, Los
Angeles, Los Angeles, California 90095, United States
- Department
of Psychiatry and Biobehavioral Science, University of California, Los Angeles, Los Angeles, California 90095, United States
- Hatos Center
for Neuropharmacology, University of California,
Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
29
|
Wang W. Protein-Based Tools for Studying Neuromodulation. ACS Chem Biol 2024; 19:788-797. [PMID: 38581649 PMCID: PMC11129172 DOI: 10.1021/acschembio.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Neuromodulators play crucial roles in regulating neuronal activity and affecting various aspects of brain functions, including learning, memory, cognitive functions, emotional states, and pain modulation. In this Account, we describe our group's efforts in designing sensors and tools for studying neuromodulation. Our lab focuses on developing new classes of integrators that can detect neuromodulators across the whole brain while leaving a mark for further imaging analysis at high spatial resolution. Our lab also designed chemical- and light-dependent protein switches for controlling peptide activity to potentially modulate the endogenous receptors of the neuromodulatory system in order to study the causal effects of selective neuronal pathways.
Collapse
Affiliation(s)
- Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
30
|
Hubber A, Hua C. Chiral Metal-Organic Frameworks with Spectroscopic Methods: Towards Chemical Sensor Devices. Chemistry 2024:e202400071. [PMID: 38570194 DOI: 10.1002/chem.202400071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
Chiral Metal-Organic Frameworks (CMOFs) are a rapidly growing field reflecting their potential as selective and sensitive chemical sensors for chiral analytes. The highly tuneable nature of CMOFs enables the size, shape, and non-covalent interactions to be optimised towards specific analytes to engender strong intermolecular interactions and sensing responses. While CMOFs as chiral chemical sensor devices have been explored with electrochemical methods including differential pulse voltammetry (DPV), bipolar and chemiresistive sensing techniques, the CMOFs as chiral chemical sensors using spectroscopic methods has received significantly less attention. This review examines the synthesis of CMOFs for chemical sensors with spectroscopic methods such as photoluminescence, circular dichroism, and solid-state nuclear magnetic resonance with a view towards their incorporation into chemical sensor devices. Future directions of the field are highlighted for the generation of functional devices.
Collapse
Affiliation(s)
- Angus Hubber
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, 3216, Victoria, Australia
| | - Carol Hua
- School of Chemistry, The University of Melbourne, Parkville, 3010, Victoria, Australia
| |
Collapse
|
31
|
Dunham KE, Venton BJ. Electrochemical and biosensor techniques to monitor neurotransmitter changes with depression. Anal Bioanal Chem 2024; 416:2301-2318. [PMID: 38289354 PMCID: PMC10950978 DOI: 10.1007/s00216-024-05136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/21/2024]
Abstract
Depression is a common mental illness. However, its current treatments, like selective serotonin reuptake inhibitors (SSRIs) and micro-dosing ketamine, are extremely variable between patients and not well understood. Three neurotransmitters: serotonin, histamine, and glutamate, have been proposed to be key mediators of depression. This review focuses on analytical methods to quantify these neurotransmitters to better understand neurological mechanisms of depression and how they are altered during treatment. To quantitatively measure serotonin and histamine, electrochemical techniques such as chronoamperometry and fast-scan cyclic voltammetry (FSCV) have been improved to study how specific molecular targets, like transporters and receptors, change with antidepressants and inflammation. Specifically, these studies show that different SSRIs have unique effects on serotonin reuptake and release. Histamine is normally elevated during stress, and a new inflammation hypothesis of depression links histamine and cytokine release. Electrochemical measurements revealed that stress increases histamine, decreases serotonin, and leads to changes in cytokines, like interleukin-6. Biosensors can also measure non-electroactive neurotransmitters, including glutamate and cytokines. In particular, new genetic sensors have shown how glutamate changes with chronic stress, as well as with ketamine treatment. These techniques have been used to characterize how ketamine changes glutamate and serotonin, and to understand how it is different from SSRIs. This review briefly outlines how these electrochemical techniques work, but primarily highlights how they have been used to understand the mechanisms of depression. Future studies should explore multiplexing techniques and personalized medicine using biomarkers in order to investigate multi-analyte changes to antidepressants.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
32
|
Ostertag BJ, Syeed AJ, Brooke AK, Lapsley KD, Porshinsky EJ, Ross AE. Waste Coffee Ground-Derived Porous Carbon for Neurochemical Detection. ACS Sens 2024; 9:1372-1381. [PMID: 38380643 PMCID: PMC11209848 DOI: 10.1021/acssensors.3c02383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
We present an optimized synthetic method for repurposing coffee waste to create controllable, uniform porous carbon frameworks for biosensor applications to enhance neurotransmitter detection with fast-scan cyclic voltammetry. Harnessing porous carbon structures from biowastes is a common practice for low-cost energy storage applications; however, repurposing biowastes for biosensing applications has not been explored. Waste coffee ground-derived porous carbon was synthesized by chemical activation to form multivoid, hierarchical porous carbon, and this synthesis was specifically optimized for porous uniformity and electrochemical detection. These materials, when modified on carbon-fiber microelectrodes, exhibited high surface roughness and pore distribution, which contributed to significant improvements in electrochemical reversibility and oxidative current for dopamine (3.5 ± 0.4-fold) and other neurochemicals. Capacitive current increases were small, showing evidence of small increases in electroactive surface area. Local trapping of dopamine within the pores led to improved electrochemical reversibility and frequency-independent behavior. Overall, we demonstrate an optimized biowaste-derived porous carbon synthesis for neurotransmitter detection for the first time and show material utility for viable neurotransmitter detection within a tissue matrix. This work supports the notion that controlled surface nanogeometries play a key role in electrochemical detection.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Ayah J. Syeed
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Alexandra K. Brooke
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Kamya D. Lapsley
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Evan J. Porshinsky
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| |
Collapse
|
33
|
Ma P, Chen P, Tilden EI, Aggarwal S, Oldenborg A, Chen Y. Fast and slow: Recording neuromodulator dynamics across both transient and chronic time scales. SCIENCE ADVANCES 2024; 10:eadi0643. [PMID: 38381826 PMCID: PMC10881037 DOI: 10.1126/sciadv.adi0643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Neuromodulators transform animal behaviors. Recent research has demonstrated the importance of both sustained and transient change in neuromodulators, likely due to tonic and phasic neuromodulator release. However, no method could simultaneously record both types of dynamics. Fluorescence lifetime of optical reporters could offer a solution because it allows high temporal resolution and is impervious to sensor expression differences across chronic periods. Nevertheless, no fluorescence lifetime change across the entire classes of neuromodulator sensors was previously known. Unexpectedly, we find that several intensity-based neuromodulator sensors also exhibit fluorescence lifetime responses. Furthermore, we show that lifetime measures in vivo neuromodulator dynamics both with high temporal resolution and with consistency across animals and time. Thus, we report a method that can simultaneously measure neuromodulator change over transient and chronic time scales, promising to reveal the roles of multi-time scale neuromodulator dynamics in diseases, in response to therapies, and across development and aging.
Collapse
Affiliation(s)
- Pingchuan Ma
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Ph.D. Program in Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Peter Chen
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Master’s Program in Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - Elizabeth I. Tilden
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Ph.D. Program in Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Samarth Aggarwal
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Anna Oldenborg
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Yao Chen
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
34
|
Stuber A, Cavaccini A, Manole A, Burdina A, Massoud Y, Patriarchi T, Karayannis T, Nakatsuka N. Interfacing Aptamer-Modified Nanopipettes with Neuronal Media and Ex Vivo Brain Tissue. ACS MEASUREMENT SCIENCE AU 2024; 4:92-103. [PMID: 38404490 PMCID: PMC10885324 DOI: 10.1021/acsmeasuresciau.3c00047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 02/27/2024]
Abstract
Aptamer-functionalized biosensors exhibit high selectivity for monitoring neurotransmitters in complex environments. We translated nanoscale aptamer-modified nanopipette sensors to detect endogenous dopamine release in vitro and ex vivo. These sensors employ quartz nanopipettes with nanoscale pores (ca. 10 nm diameter) that are functionalized with aptamers that enable the selective capture of dopamine through target-specific conformational changes. The dynamic behavior of aptamer structures upon dopamine binding leads to the rearrangement of surface charge within the nanopore, resulting in measurable changes in ionic current. To assess sensor performance in real time, we designed a fluidic platform to characterize the temporal dynamics of nanopipette sensors. We then conducted differential biosensing by deploying control sensors modified with nonspecific DNA alongside dopamine-specific sensors in biological milieu. Our results confirm the functionality of aptamer-modified nanopipettes for direct measurements in undiluted complex fluids, specifically in the culture media of human-induced pluripotent stem cell-derived dopaminergic neurons. Moreover, sensor implantation and repeated measurements in acute brain slices was possible, likely owing to the protected sensing area inside nanoscale DNA-filled orifices, minimizing exposure to nonspecific interferents and preventing clogging. Further, differential recordings of endogenous dopamine released through electrical stimulation in the dorsolateral striatum demonstrate the potential of aptamer-modified nanopipettes for ex vivo recordings with unprecedented spatial resolution and reduced tissue damage.
Collapse
Affiliation(s)
- Annina Stuber
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich CH-8092, Switzerland
| | - Anna Cavaccini
- Laboratory
of Neural Circuit Assembly, Brain Research Institute, University of Zurich, Zurich CH-8057, Switzerland
- Neuroscience
Center Zurich, University and ETH Zurich, Zurich CH-8057, Switzerland
| | - Andreea Manole
- iXCells
Biotechnologies, Inc., San Diego, California 92131, United States
| | - Anna Burdina
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich CH-8092, Switzerland
| | - Yassine Massoud
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich CH-8092, Switzerland
| | - Tommaso Patriarchi
- Neuroscience
Center Zurich, University and ETH Zurich, Zurich CH-8057, Switzerland
- Institute
of Pharmacology and Toxicology, University
of Zurich, Zurich CH-8057, Switzerland
| | - Theofanis Karayannis
- Laboratory
of Neural Circuit Assembly, Brain Research Institute, University of Zurich, Zurich CH-8057, Switzerland
- Neuroscience
Center Zurich, University and ETH Zurich, Zurich CH-8057, Switzerland
| | - Nako Nakatsuka
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich CH-8092, Switzerland
| |
Collapse
|
35
|
Hettiarachchi P, Niyangoda S, Shigemoto A, Solowiej IJ, Burdette SC, Johnson MA. Caged Zn 2+ Photolysis in Zebrafish Whole Brains Reveals Subsecond Modulation of Dopamine Uptake. ACS Chem Neurosci 2024; 15:772-782. [PMID: 38301116 PMCID: PMC11036533 DOI: 10.1021/acschemneuro.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Free, ionic zinc (Zn2+) modulates neurotransmitter dynamics in the brain. However, the sub-s effects of transient concentration changes of Zn2+ on neurotransmitter release and uptake are not well understood. To address this lack of knowledge, we have combined the photolysis of the novel caged Zn2+ compound [Zn(DPAdeCageOMe)]+ with fast scan cyclic voltammetry (FSCV) at carbon fiber microelectrodes in live, whole brain preparations from zebrafish (Danio rerio). After treating the brain with [Zn(DPAdeCageOMe)]+, Zn2+ was released by application of light that was gated through a computer-controlled shutter synchronized with the FSCV measurements and delivered through a 1 mm fiber optic cable. We systematically optimized the photocage concentration and light application parameters, including the total duration and light-to-electrical stimulation delay time. While sub-s Zn2+ application with this method inhibited DA reuptake, assessed by the first-order rate constant (k) and half-life (t1/2), it had no effect on the electrically stimulated DA overflow ([DA]STIM). Increasing the photocage concentration and light duration progressively inhibited uptake, with maximal effects occurring at 100 μM and 800 ms, respectively. Furthermore, uptake was inhibited 200 ms after Zn2+ photorelease, but no measurable effect occurred after 800 ms. We expect that application of this method to the zebrafish whole brain and other preparations will help expand the current knowledge of how Zn2+ affects neurotransmitter release/uptake in select neurological disease states.
Collapse
Affiliation(s)
- Piyanka Hettiarachchi
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Sayuri Niyangoda
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Austin Shigemoto
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609
| | - Isabel J. Solowiej
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Shawn C. Burdette
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609
| | - Michael A. Johnson
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
36
|
Faul EBA, Broussard AM, Rivera DR, Pwint MY, Wu B, Cao Q, Bailey D, Cui XT, Castagnola E. Batch Fabrication of Microelectrode Arrays with Glassy Carbon Microelectrodes and Interconnections for Neurochemical Sensing: Promises and Challenges. MICROMACHINES 2024; 15:277. [PMID: 38399004 PMCID: PMC10892456 DOI: 10.3390/mi15020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Flexible multielectrode arrays with glassy carbon (GC) electrodes and metal interconnection (hybrid MEAs) have shown promising performance in multi-channel neurochemical sensing. A primary challenge faced by hybrid MEAs fabrication is the adhesion of the metal traces with the GC electrodes, as prolonged electrical and mechanical stimulation can lead to adhesion failure. Previous devices with GC electrodes and interconnects made of a homogeneous material (all GC) demonstrated exceptional electrochemical stability but required miniaturization for enhanced tissue integration and chronic electrochemical sensing. In this study, we used two different methods for the fabrication of all GC-MEAs on thin flexible substrates with miniaturized features. The first method, like that previously reported, involves a double pattern-transfer photolithographic process, including transfer-bonding on temporary polymeric support. The second method requires a double-etching process, which uses a 2 µm-thick low stress silicon nitride coating of the Si wafer as the bottom insulator layer for the MEAs, bypassing the pattern-transfer and demonstrating a novel technique with potential advantages. We confirmed the feasibility of the two fabrication processes by verifying the practical conductivity of 3 µm-wide 2 µm-thick GC traces, the GC microelectrode functionality, and their sensing capability for the detection of serotonin using fast scan cyclic voltammetry. Through the exchange and discussion of insights regarding the strengths and limitations of these microfabrication methods, our goal is to propel the advancement of GC-based MEAs for the next generation of neural interface devices.
Collapse
Affiliation(s)
- Emma-Bernadette A. Faul
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA; (E.-B.A.F.); (A.M.B.); (D.R.R.)
| | - Austin M. Broussard
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA; (E.-B.A.F.); (A.M.B.); (D.R.R.)
| | - Daniel R. Rivera
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA; (E.-B.A.F.); (A.M.B.); (D.R.R.)
| | - May Yoon Pwint
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.Y.P.); (B.W.); (Q.C.); (X.T.C.)
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bingchen Wu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.Y.P.); (B.W.); (Q.C.); (X.T.C.)
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Qun Cao
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.Y.P.); (B.W.); (Q.C.); (X.T.C.)
| | - Davis Bailey
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 15213, USA;
| | - X. Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.Y.P.); (B.W.); (Q.C.); (X.T.C.)
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3110, USA
| | - Elisa Castagnola
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA; (E.-B.A.F.); (A.M.B.); (D.R.R.)
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.Y.P.); (B.W.); (Q.C.); (X.T.C.)
| |
Collapse
|
37
|
Park J, Kang S, Lee Y, Choi JW, Oh YS. Continuous long-range measurement of tonic dopamine with advanced FSCV for pharmacodynamic analysis of levodopa-induced dyskinesia in Parkinson's disease. Front Bioeng Biotechnol 2024; 12:1335474. [PMID: 38328444 PMCID: PMC10847580 DOI: 10.3389/fbioe.2024.1335474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Levodopa, a dopamine prodrug, alleviates the motor symptoms of Parkinson's disease (PD), but its chronic use gives rise to levodopa-induced dyskinesia (LID). However, it remains unclear whether levodopa pharmacodynamics is altered during the progressive onset of LID. Using in vivo fast-scan cyclic voltammetry and second-derivative-based background drift removal, we continuously measured tonic dopamine levels using high temporal resolution recording over 1-h. Increases to tonic dopamine levels following acute levodopa administration were slow and marginal within the naïve PD model. However, these levels increased faster and higher in the LID model. Furthermore, we identified a strong positive correlation of dyskinetic behavior with the rate of dopamine increase, but much less with its cumulative level, at each time point. Here, we identified the altered signature of striatal DA dynamics underlying LID in PD using an advanced FSCV technique that demonstrates the long-range dynamics of tonic dopamine following drug administration.
Collapse
Affiliation(s)
- Jeongrak Park
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Seongtak Kang
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Yaebin Lee
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Ji-Woong Choi
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Yong-Seok Oh
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
38
|
Lachance GP, Gauvreau D, Boisselier É, Boukadoum M, Miled A. Breaking Barriers: Exploring Neurotransmitters through In Vivo vs. In Vitro Rivalry. SENSORS (BASEL, SWITZERLAND) 2024; 24:647. [PMID: 38276338 PMCID: PMC11154401 DOI: 10.3390/s24020647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Neurotransmitter analysis plays a pivotal role in diagnosing and managing neurodegenerative diseases, often characterized by disturbances in neurotransmitter systems. However, prevailing methods for quantifying neurotransmitters involve invasive procedures or require bulky imaging equipment, therefore restricting accessibility and posing potential risks to patients. The innovation of compact, in vivo instruments for neurotransmission analysis holds the potential to reshape disease management. This innovation can facilitate non-invasive and uninterrupted monitoring of neurotransmitter levels and their activity. Recent strides in microfabrication have led to the emergence of diminutive instruments that also find applicability in in vitro investigations. By harnessing the synergistic potential of microfluidics, micro-optics, and microelectronics, this nascent realm of research holds substantial promise. This review offers an overarching view of the current neurotransmitter sensing techniques, the advances towards in vitro microsensors tailored for monitoring neurotransmission, and the state-of-the-art fabrication techniques that can be used to fabricate those microsensors.
Collapse
Affiliation(s)
| | - Dominic Gauvreau
- Department Electrical Engineering, Université Laval, Québec, QC G1V 0A6, Canada; (G.P.L.); (D.G.)
| | - Élodie Boisselier
- Department Ophthalmology and Otolaryngology—Head and Neck Surgery, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Mounir Boukadoum
- Department Computer Science, Université du Québec à Montréal, Montréal, QC H2L 2C4, Canada;
| | - Amine Miled
- Department Electrical Engineering, Université Laval, Québec, QC G1V 0A6, Canada; (G.P.L.); (D.G.)
| |
Collapse
|
39
|
Cunha AB, Schuelke C, Mesri A, Ruud SK, Aizenshtadt A, Ferrari G, Heiskanen A, Asif A, Keller SS, Ramos-Moreno T, Kalvøy H, Martínez-Serrano A, Krauss S, Emnéus J, Sampietro M, Martinsen ØG. Development of a Smart Wireless Multisensor Platform for an Optogenetic Brain Implant. SENSORS (BASEL, SWITZERLAND) 2024; 24:575. [PMID: 38257668 PMCID: PMC11154348 DOI: 10.3390/s24020575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Implantable cell replacement therapies promise to completely restore the function of neural structures, possibly changing how we currently perceive the onset of neurodegenerative diseases. One of the major clinical hurdles for the routine implementation of stem cell therapies is poor cell retention and survival, demanding the need to better understand these mechanisms while providing precise and scalable approaches to monitor these cell-based therapies in both pre-clinical and clinical scenarios. This poses significant multidisciplinary challenges regarding planning, defining the methodology and requirements, prototyping and different stages of testing. Aiming toward an optogenetic neural stem cell implant controlled by a smart wireless electronic frontend, we show how an iterative development methodology coupled with a modular design philosophy can mitigate some of these challenges. In this study, we present a miniaturized, wireless-controlled, modular multisensor platform with fully interfaced electronics featuring three different modules: an impedance analyzer, a potentiostat and an optical stimulator. We show the application of the platform for electrical impedance spectroscopy-based cell monitoring, optical stimulation to induce dopamine release from optogenetically modified neurons and a potentiostat for cyclic voltammetry and amperometric detection of dopamine release. The multisensor platform is designed to be used as an opto-electric headstage for future in vivo animal experiments.
Collapse
Affiliation(s)
- André B. Cunha
- Department of Physics, University of Oslo, Sem Sælands vei 24, 0371 Oslo, Norway; (A.B.C.); (C.S.); (S.K.R.)
| | - Christin Schuelke
- Department of Physics, University of Oslo, Sem Sælands vei 24, 0371 Oslo, Norway; (A.B.C.); (C.S.); (S.K.R.)
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, P.O. Box 1110 Blindern, 0317 Oslo, Norway; (A.A.); (S.K.)
| | - Alireza Mesri
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy; (A.M.); (G.F.); (M.S.)
| | - Simen K. Ruud
- Department of Physics, University of Oslo, Sem Sælands vei 24, 0371 Oslo, Norway; (A.B.C.); (C.S.); (S.K.R.)
| | - Aleksandra Aizenshtadt
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, P.O. Box 1110 Blindern, 0317 Oslo, Norway; (A.A.); (S.K.)
| | - Giorgio Ferrari
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy; (A.M.); (G.F.); (M.S.)
| | - Arto Heiskanen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.H.); (A.A.); (J.E.)
| | - Afia Asif
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.H.); (A.A.); (J.E.)
| | - Stephan S. Keller
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Tania Ramos-Moreno
- Lund Stem Cell Center, Division of Neurosurgery, Department of Clinical Sciences, Faculty of Medicine, Lund University, 22184 Lund, Sweden;
| | - Håvard Kalvøy
- Department of Clinical and Biomedical Engineering, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway;
| | - Alberto Martínez-Serrano
- Department of Molecular Neurobiology, Center of Molecular Biology ‘Severo Ochoa’, Universidad Autónoma de Madrid, Calle Nicolás Cabrera 1, 28049 Madrid, Spain;
| | - Stefan Krauss
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, P.O. Box 1110 Blindern, 0317 Oslo, Norway; (A.A.); (S.K.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, 0424 Oslo, Norway
| | - Jenny Emnéus
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.H.); (A.A.); (J.E.)
| | - Marco Sampietro
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy; (A.M.); (G.F.); (M.S.)
| | - Ørjan G. Martinsen
- Department of Physics, University of Oslo, Sem Sælands vei 24, 0371 Oslo, Norway; (A.B.C.); (C.S.); (S.K.R.)
- Department of Clinical and Biomedical Engineering, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway;
| |
Collapse
|
40
|
Hanser SM, Shao Z, Zhao H, Venton BJ. Electrochemical treatment in KOH improves carbon nanomaterial performance to multiple neurochemicals. Analyst 2024; 149:457-466. [PMID: 38087947 PMCID: PMC10788926 DOI: 10.1039/d3an01710a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2024]
Abstract
Carbon-fiber microelectrodes (CFMEs) are primarily used to detect neurotransmitters in vivo with fast-scan cyclic voltammetry (FSCV) but other carbon nanomaterial electrodes are being developed. CFME sensitivity to dopamine is improved by applying a constant 1.5 V vs. Ag/AgCl for 3 minutes while dipped in 1 M KOH, which etches the surface and adds oxygen functional groups. However, KOH etching of other carbon nanomaterials and applications to other neurochemicals have not been investigated. Here, we explored KOH etching of CFMEs and carbon nanotube yarn microelectrodes (CNTYMEs) to characterize sensitivity to dopamine, epinephrine, norepinephrine, serotonin, and 3,4-dihydroxyphenylacetic acid (DOPAC). With CNTYMEs, the potential was applied in KOH for 1 minute because the electrode surface cracked with the longer time. KOH treatment increased electrode sensitivity to each cationic neurotransmitter roughly 2-fold for CFMEs, and 2- to 4-fold for CNTYMEs. KOH treatment decreased the background current of the CFMEs by etching the surface carbon; however, KOH-treatment increased the CNTYME background current because the potential separates individual nanotubes. For DOPAC, the current increase was smaller at CNTYMEs because it is anionic and was repelled by the negative holding potential and did not access the crevices. XPS and Raman spectroscopy showed that KOH treatment changed the CNTYME surface chemistry by increasing defect sites and adding oxide functional groups. KOH-treated CNTYMEs had less fouling to serotonin than normal CNTYMEs. Therefore, KOH treatment activates both CFMEs and CNTYMEs and could be used in biological measurements to increase the sensitivity and decrease fouling for neurochemical measurements.
Collapse
Affiliation(s)
- Samuel M Hanser
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | - Zijun Shao
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | - He Zhao
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
41
|
Weese-Myers ME, Ross AE. Subsecond Codetection of Dopamine and Estradiol at a Modified Sharkfin Waveform. Anal Chem 2024; 96:76-84. [PMID: 38103188 DOI: 10.1021/acs.analchem.3c02967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
17β-Estradiol (E2) is a ubiquitously expressed hormone that is active in a wide range of neuroprotective and regenerative roles throughout the brain. In particular, it is a well-known dopamine (DA) regulator and is responsible for modulating the expression of dopaminergic receptors and transporters. Recent studies point to E2 release occurring on a rapid time scale and having impacts on DA activity within seconds to minutes. As such, tools capable of monitoring the release of both E2 and DA in real time are essential for developing an accurate understanding of their interactive roles in neurotransmission and regulation. Currently, no analytical techniques capable of codetection of both analytes with high sensitivity, spatiotemporal resolution, extended monitoring, and minimal tissue damage exist. We describe a modified waveform using fast-scan cyclic voltammetry that is capable of low nanomolar detection of both DA and E2 on a subsecond time scale. Both analytes have limits of detection at or below 30 nM and high sensitivity: 11.31 ± 0.55 nA/μM for DA and 9.47 ± 0.36 nA/μM for E2. The waveform is validated in a tissue matrix, confirming its viability for measurement in a biologically relevant setting. This is the first method capable of codetection of fluctuations in DA and E2 with the temporal, spatial, and sensitivity requirements necessary for studying real-time neurochemical signaling.
Collapse
Affiliation(s)
- Moriah E Weese-Myers
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Ashley E Ross
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
42
|
Chen J, Ding X, Zhang D. Challenges and strategies faced in the electrochemical biosensing analysis of neurochemicals in vivo: A review. Talanta 2024; 266:124933. [PMID: 37506520 DOI: 10.1016/j.talanta.2023.124933] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Our brain is an intricate neuromodulatory network, and various neurochemicals, including neurotransmitters, neuromodulators, gases, ions, and energy metabolites, play important roles in regulating normal brain function. Abnormal release or imbalance of these substances will lead to various diseases such as Parkinson's and Alzheimer's diseases, therefore, in situ and real-time analysis of neurochemical interactions in pathophysiological conditions is beneficial to facilitate our understanding of brain function. Implantable electrochemical biosensors are capable of monitoring neurochemical signals in real time in extracellular fluid of specific brain regions because they can provide excellent temporal and spatial resolution. However, in vivo electrochemical biosensing analysis mainly faces the following challenges: First, foreign body reactions induced by microelectrode implantation, non-specific adsorption of proteins and redox products, and aggregation of glial cells, which will cause irreversible degradation of performance such as stability and sensitivity of the microsensor and eventually lead to signal loss; Second, various neurochemicals coexist in the complex brain environment, and electroactive substances with similar formal potentials interfere with each other. Therefore, it is a great challenge to design recognition molecules and tailor functional surfaces to develop in vivo electrochemical biosensors with high selectivity. Here, we take the above challenges as a starting point and detail the basic design principles for improving in vivo stability, selectivity and sensitivity of microsensors through some specific functionalized surface strategies as case studies. At the same time, we summarize surface modification strategies for in vivo electrochemical biosensing analysis of some important neurochemicals for researchers' reference. In addition, we also focus on the electrochemical detection of low basal concentrations of neurochemicals in vivo via amperometric waveform techniques, as well as the stability and biocompatibility of reference electrodes during long-term sensing, and provide an outlook on the future direction of in vivo electrochemical neurosensing.
Collapse
Affiliation(s)
- Jiatao Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiuting Ding
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
43
|
Rojas Cabrera JM, Oesterle TS, Rusheen AE, Goyal A, Scheitler KM, Mandybur I, Blaha CD, Bennet KE, Heien ML, Jang DP, Lee KH, Oh Y, Shin H. Techniques for Measurement of Serotonin: Implications in Neuropsychiatric Disorders and Advances in Absolute Value Recording Methods. ACS Chem Neurosci 2023; 14:4264-4273. [PMID: 38019166 PMCID: PMC10739614 DOI: 10.1021/acschemneuro.3c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Serotonin (5-HT) is a monoamine neurotransmitter in the peripheral, enteric, and central nervous systems (CNS). Within the CNS, serotonin is principally involved in mood regulation and reward-seeking behaviors. It is a critical regulator in CNS pathologies such as major depressive disorder, addiction, and schizophrenia. Consequently, in vivo serotonin measurements within the CNS have emerged as one of many promising approaches to investigating the pathogenesis, progression, and treatment of these and other neuropsychiatric conditions. These techniques vary in methods, ranging from analyte sampling with microdialysis to voltammetry. Provided this diversity in approach, inherent differences between techniques are inevitable. These include biosensor size, temporal/spatial resolution, and absolute value measurement capabilities, all of which must be considered to fit the prospective researcher's needs. In this review, we summarize currently available methods for the measurement of serotonin, including novel voltammetric absolute value measurement techniques. We also detail serotonin's role in various neuropsychiatric conditions, highlighting the role of phasic and tonic serotonergic neuronal firing within each where relevant. Lastly, we briefly review the present clinical application of these techniques and discuss the potential of a closed-loop monitoring and neuromodulation system utilizing deep brain stimulation (DBS).
Collapse
Affiliation(s)
- Juan M. Rojas Cabrera
- Medical
Scientist Training Program, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Tyler S. Oesterle
- Department
of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55902, United States
- Robert
D. and Patricia K. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Aaron E. Rusheen
- Medical
Scientist Training Program, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Abhinav Goyal
- Medical
Scientist Training Program, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Kristen M. Scheitler
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Ian Mandybur
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Charles D. Blaha
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Kevin E. Bennet
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
- Division
of Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Michael L. Heien
- Department
of Chemistry and Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Dong Pyo Jang
- Department
of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Kendall H. Lee
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Yoonbae Oh
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Hojin Shin
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
| |
Collapse
|
44
|
Ostertag BJ, Ross AE. Editors' Choice-Review-The Future of Carbon-Based Neurochemical Sensing: A Critical Perspective. ECS SENSORS PLUS 2023; 2:043601. [PMID: 38170109 PMCID: PMC10759280 DOI: 10.1149/2754-2726/ad15a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Carbon-based sensors have remained critical materials for electrochemical detection of neurochemicals, rooted in their inherent biocompatibility and broad potential window. Real-time monitoring using fast-scan cyclic voltammetry has resulted in the rise of minimally invasive carbon fiber microelectrodes as the material of choice for making measurements in tissue, but challenges with carbon fiber's innate properties have limited its applicability to understudied neurochemicals. Here, we provide a critical review of the state of carbon-based real-time neurochemical detection and offer insight into ways we envision addressing these limitations in the future. This piece focuses on three main hinderances of traditional carbon fiber based materials: diminished temporal resolution due to geometric properties and adsorption/desorption properties of the material, poor selectivity/specificity to most neurochemicals, and the inability to tune amorphous carbon surfaces for specific interfacial interactions. Routes to addressing these challenges could lie in methods like computational modeling of single-molecule interfacial interactions, expansion to tunable carbon-based materials, and novel approaches to synthesizing these materials. We hope this critical piece does justice to describing the novel carbon-based materials that have preceded this work, and we hope this review provides useful solutions to innovate carbon-based material development in the future for individualized neurochemical structures.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati, Department of Chemistry, Cincinnati, Ohio 45221-0172, United States of America
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, Cincinnati, Ohio 45221-0172, United States of America
| |
Collapse
|
45
|
Avula AK, Goyal A, Rusheen AE, Yuen J, Dennis WO, Eaker DR, Boesche JB, Blaha CD, Bennet KE, Lee KH, Shin H, Oh Y. Improved circuitry and post-processing for interleaved fast-scan cyclic voltammetry and electrophysiology measurements. FRONTIERS IN SIGNAL PROCESSING 2023; 3:1195800. [PMID: 39554594 PMCID: PMC11567673 DOI: 10.3389/frsip.2023.1195800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The combination of electrophysiology and electrochemistry acquisition methods using a single carbon fiber microelectrode (CFM) in the brain has enabled more extensive analysis of neurochemical release, neural activity, and animal behavior. Predominantly, analog CMOS (Complementary Metal Oxide Semiconductor) switches are used for these interleaved applications to alternate the CFM output between electrophysiology and electrochemistry acquisition circuitry. However, one underlying issue with analog CMOS switches is the introduction of transient voltage artifacts in recorded electrophysiology signals resulting from CMOS charge injection. These injected artifacts attenuate electrophysiology data and delay reliable signal observation after every switch actuation from electrochemistry acquisition. Previously published attempts at interleaved electrophysiology and electrochemistry were able to recover reliable electrophysiology data within approximately 10-50 ms after switch actuation by employing various high-pass filtering methods to mitigate the observed voltage artifacts. However, high-pass filtering of this nature also attenuates valuable portions of the local-field potential (LFP) frequency range, thus limiting the extent of network-level insights that can be derived from in vivo measurements. This paper proposes a solution to overcome the limitation of charge injection artifacts that affect electrophysiological data while preserving important lower-frequency LFP bands. A voltage follower operational amplifier was integrated before the CMOS switch to increase current flow to the switch and dissipate any injected charge. This hardware addition resulted in a 16.98% decrease in electrophysiology acquisition delay compared to circuitry without a voltage follower. Additionally, single-term exponential modeling was implemented in post-processing to characterize and subtract remaining transient voltage artifacts in recorded electrophysiology data. As a result, electrophysiology data was reliably recovered 3.26 ± 0.22 ms after the beginning of the acquisition period (a 60% decrease from previous studies), while also minimizing LFP attenuation. Through these advancements, coupled electrophysiology and electrochemistry measurements can be conducted at higher scan rates while retaining data integrity for a more comprehensive analysis of neural activity and neurochemical release.
Collapse
Affiliation(s)
- Ashwin K. Avula
- Division of Engineering, Mayo Clinic, Rochester, MN, United States
| | - Abhinav Goyal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, United States
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN, United States
| | - Aaron E. Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, United States
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN, United States
| | - Jason Yuen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN, United States
| | - Warren O. Dennis
- Division of Engineering, Mayo Clinic, Rochester, MN, United States
| | - Diane R. Eaker
- Division of Engineering, Mayo Clinic, Rochester, MN, United States
| | | | - Charles D. Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN, United States
| | - Kevin E. Bennet
- Division of Engineering, Mayo Clinic, Rochester, MN, United States
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN, United States
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
46
|
Manring N, Strini M, Smeltz JL, Pathirathna P. Simultaneous detection of neurotransmitters and Cu 2+ using double-bore carbon fiber microelectrodes via fast-scan cyclic voltammetry. RSC Adv 2023; 13:33844-33851. [PMID: 38020012 PMCID: PMC10658548 DOI: 10.1039/d3ra06218j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
There is a great demand to broaden our understanding of the multifactorial complex etiology of neurodegenerative diseases to aid the development of more efficient therapeutics and slow down the progression of neuronal cell death. The role of co-transmission and the effect of environmental factors on such diseases have yet to be explored adequately, mainly due to the lack of a proper analytical tool that can perform simultaneous multi-analyte detection in real time with excellent analytical parameters. In this study, we report a simple fabrication protocol of a double-bore carbon-fiber microelectrode (CFM) capable of performing rapid simultaneous detection of neurotransmitters and Cu2+via fast-scan cyclic voltammetry (FSCV) in Tris buffer. After imaging our CFMs via optical microscopy and scanning electron microscopy to ensure the intact nature of the two electrodes in our electrode composite, we performed a detailed analysis of the performance characteristics of our double-bore CFM in five different analyte mixtures, Cu2+-5HT, Cu2+-DA, Cu2+-AA, 5-HT-DA, and 5-HT-AA in Tris buffer, by applying different analyte-specific FSCV waveforms simultaneously. Calibration curves for each analyte in each mixture were plotted while extracting the analytical parameters such as the limit of detection (LOD), linear range, and sensitivity. We also carried out a control experiment series for the same mixtures with single-bore CFMs by applying one waveform at a time to compare the capabilities of our double-bore CFMs. Interestingly, except for the Cu2+-DA solution, all other combinations showed improved LOD, linear ranges, and sensitivity when detecting simultaneously with double-bore CFMs compared to single-bore CFMs, an excellent finding for developing this sensor for future in vivo applications.
Collapse
Affiliation(s)
- Noel Manring
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology Melbourne FL USA
| | - Miriam Strini
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology Melbourne FL USA
| | - Jessica L Smeltz
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology Melbourne FL USA
| | - Pavithra Pathirathna
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology Melbourne FL USA
| |
Collapse
|
47
|
Brooke AK, Murrow DP, Caldwell KCN, Witt CE, Ross AE. Measuring neuron-regulated immune cell physiology via the alpha-2 adrenergic receptor in an ex vivo murine spleen model. Cell Mol Life Sci 2023; 80:354. [PMID: 37945921 PMCID: PMC11071927 DOI: 10.1007/s00018-023-05012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The communication between the nervous and immune systems plays a crucial role in regulating immune cell function and inflammatory responses. Sympathetic neurons, which innervate the spleen, have been implicated in modulating immune cell activity. The neurotransmitter norepinephrine (NE), released by sympathetic neurons, influences immune cell responses by binding to adrenergic receptors on their surface. The alpha-2 adrenergic receptor (α2AR), expressed predominantly on sympathetic neurons, has received attention due to its autoreceptor function and ability to modulate NE release. In this study, we used fast-scan cyclic voltammetry (FSCV) to provide the first subsecond measurements of NE released in the white pulp region of the spleen and validated it with yohimbine, a known antagonist of α2AR. For further application of FSCV in neuroimmunology, we investigated the extent to which subsecond NE from sympathetic neurons is important for immune cell physiology and cytokine production, focusing on tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), and interleukin-6 (IL-6). Our findings provide insights into the regulatory mechanisms underlying sympathetic-immune interactions and show the significance of using FSCV, a traditional neurochemistry technique, to study these neuroimmune mechanisms.
Collapse
Affiliation(s)
- Alexandra K Brooke
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Daniel P Murrow
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Kaejaren C N Caldwell
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Colby E Witt
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Ashley E Ross
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA.
| |
Collapse
|
48
|
Kim HY, Lee J, Kim HJ, Lee BE, Jeong J, Cho EJ, Jang HJ, Shin KJ, Kim MJ, Chae YC, Lee SE, Myung K, Baik JH, Suh PG, Kim JI. PLCγ1 in dopamine neurons critically regulates striatal dopamine release via VMAT2 and synapsin III. Exp Mol Med 2023; 55:2357-2375. [PMID: 37907739 PMCID: PMC10689754 DOI: 10.1038/s12276-023-01104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 11/02/2023] Open
Abstract
Dopamine neurons are essential for voluntary movement, reward learning, and motivation, and their dysfunction is closely linked to various psychological and neurodegenerative diseases. Hence, understanding the detailed signaling mechanisms that functionally modulate dopamine neurons is crucial for the development of better therapeutic strategies against dopamine-related disorders. Phospholipase Cγ1 (PLCγ1) is a key enzyme in intracellular signaling that regulates diverse neuronal functions in the brain. It was proposed that PLCγ1 is implicated in the development of dopaminergic neurons, while the physiological function of PLCγ1 remains to be determined. In this study, we investigated the physiological role of PLCγ1, one of the key effector enzymes in intracellular signaling, in regulating dopaminergic function in vivo. We found that cell type-specific deletion of PLCγ1 does not adversely affect the development and cellular morphology of midbrain dopamine neurons but does facilitate dopamine release from dopaminergic axon terminals in the striatum. The enhancement of dopamine release was accompanied by increased colocalization of vesicular monoamine transporter 2 (VMAT2) at dopaminergic axon terminals. Notably, dopamine neuron-specific knockout of PLCγ1 also led to heightened expression and colocalization of synapsin III, which controls the trafficking of synaptic vesicles. Furthermore, the knockdown of VMAT2 and synapsin III in dopamine neurons resulted in a significant attenuation of dopamine release, while this attenuation was less severe in PLCγ1 cKO mice. Our findings suggest that PLCγ1 in dopamine neurons could critically modulate dopamine release at axon terminals by directly or indirectly interacting with synaptic machinery, including VMAT2 and synapsin III.
Collapse
Affiliation(s)
- Hye Yun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jieun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyun-Jin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Byeong Eun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaewook Jeong
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eun Jeong Cho
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, 58245, Republic of Korea
| | - Kyeong Jin Shin
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Min Ji Kim
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ja-Hyun Baik
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Pann-Ghill Suh
- Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
49
|
He X, Wang S, Ma C, Xu GR, Ma J, Xie H, Zhu W, Liu H, Wang L, Wang Y. Utilizing Electrochemical Biosensors as an Innovative Platform for the Rapid and On-Site Detection of Animal Viruses. Animals (Basel) 2023; 13:3141. [PMID: 37835747 PMCID: PMC10571726 DOI: 10.3390/ani13193141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Animal viruses are a significant threat to animal health and are easily spread across the globe with the rise of globalization. The limitations in diagnosing and treating animal virus infections have made the transmission of diseases and animal deaths unpredictable. Therefore, early diagnosis of animal virus infections is crucial to prevent the spread of diseases and reduce economic losses. To address the need for rapid diagnosis, electrochemical sensors have emerged as promising tools. Electrochemical methods present numerous benefits, including heightened sensitivity and selectivity, affordability, ease of use, portability, and rapid analysis, making them suitable for real-time virus detection. This paper focuses on the construction of electrochemical biosensors, as well as promising biosensor models, and expounds its advantages in virus detection, which is a promising research direction.
Collapse
Affiliation(s)
- Xun He
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Shan Wang
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Caoyuan Ma
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Guang-Ri Xu
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Jinyou Ma
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Hongbing Xie
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Wei Zhu
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Hongyang Liu
- Shuangliao Animal Disease Control Center, Siping 136400, China;
| | - Lei Wang
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Yimin Wang
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| |
Collapse
|
50
|
Srivastav S, Cui X, Varela RB, Kesby JP, Eyles D. Increasing dopamine synthesis in nigrostriatal circuits increases phasic dopamine release and alters dorsal striatal connectivity: implications for schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:69. [PMID: 37798312 PMCID: PMC10556015 DOI: 10.1038/s41537-023-00397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
One of the most robust neurochemical abnormalities reported in patients with schizophrenia is an increase in dopamine (DA) synthesis and release, restricted to the dorsal striatum (DS). This hyper functionality is strongly associated with psychotic symptoms and progresses in those who later transition to schizophrenia. To understand the implications of this progressive neurobiology on brain function, we have developed a model in rats which we refer to as EDiPs (Enhanced Dopamine in Prodromal schizophrenia). The EDiPs model features a virally mediated increase in dorsal striatal (DS) DA synthesis capacity across puberty and into adulthood. This protocol leads to progressive changes in behaviour and neurochemistry. Our aim in this study was to explore if increased DA synthesis capacity alters the physiology of DA release and DS connectivity. Using fast scan cyclic voltammetry to assess DA release we show that evoked/phasic DA release is increased in the DS of EDiPs rats, whereas tonic/background levels of DA remain unaffected. Using quantitative immunohistochemistry methods to quantify DS synaptic architecture we show a presynaptic marker for DA release sites (Bassoon) was elevated within TH axons specifically within the DS, consistent with the increased phasic DA release in this region. Alongside changes in DA systems, we also show increased density of vesicular glutamate transporter 1 (VGluT1) synapses in the EDiPs DS suggesting changes in cortical connectivity. Our data may prove relevant in understanding the long-term implications for DS function in response to the robust and prolonged increases in DA synthesis uptake and release reported in schizophrenia.
Collapse
Affiliation(s)
- Sunil Srivastav
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia
| | | | - James P Kesby
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia
| | - Darryl Eyles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia.
| |
Collapse
|