1
|
Rodrigues CF, Correia IJ, Moreira AF. Red blood cell membrane-camouflaged gold-core silica shell nanorods for cancer drug delivery and photothermal therapy. Int J Pharm 2024; 655:124007. [PMID: 38493844 DOI: 10.1016/j.ijpharm.2024.124007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Gold core mesoporous silica shell (AuMSS) nanorods are multifunctional nanomedicines that can act simultaneously as photothermal, drug delivery, and bioimaging agents. Nevertheless, it is reported that once administrated, nanoparticles can be coated with blood proteins, forming a protein corona, that directly impacts on nanomedicines' circulation time, biodistribution, and therapeutic performance. Therefore, it become crucial to develop novel alternatives to improve nanoparticles' half-life in the bloodstream. In this work, Polyethylenimine (PEI) and Red blood cells (RBC)-derived membranes were combined for the first time to functionalize AuMSS nanorods and simultaneously load acridine orange (AO). The obtained results revealed that the RBC-derived membranes promoted the neutralization of the AuMSS' surface charge and consequently improved the colloidal stability and biocompatibility of the nanocarriers. Indeed, the in vitro data revealed that PEI/RBC-derived membranes' functionalization also improved the nanoparticles' cellular internalization and was capable of mitigating the hemolytic effects of AuMSS and AuMSS/PEI nanorods. In turn, the combinatorial chemo-photothermal therapy mediated by AuMSS/PEI/RBC_AO nanorods was able to completely eliminate HeLa cells, contrasting with the less efficient standalone therapies. Such data reinforce the potential of AuMSS nanomaterials to act simultaneously as photothermal and chemotherapeutic agents.
Collapse
Affiliation(s)
- Carolina F Rodrigues
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã, Portugal.
| | - André F Moreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CPIRN-UDI/IPG - Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal.
| |
Collapse
|
2
|
Jiang H, Sun J, Liu F, Zhao Y, Chen X, Dai C, Wen Z. Bi 2S 3/Ti 3C 2-TPP nano-heterostructures induced by near-infrared for photodynamic therapy combined with photothermal therapy on hypoxic tumors. J Nanobiotechnology 2024; 22:123. [PMID: 38504272 PMCID: PMC10953153 DOI: 10.1186/s12951-024-02391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) efficacy of bismuth sulfide (Bi2S3) semiconductor has been severely restricted by its electron-hole pairs (e--h+) separation inefficiency and oxygen (O2) deficiency in tumors, which greatly hinders reactive oxygen species (ROS) generation and further clinical application of Bi2S3 nanoparticles (NPs) in biomedicine. RESULTS Herein, novel Bi2S3/titanium carbide (Ti3C2) two-dimensional nano-heterostructures (NHs) are designed to realize multimode PDT of synchronous O2 self-supply and ROS generation combined with highly efficient photothermal tumor elimination for hypoxic tumor therapy. Bi2S3/Ti3C2 NHs were synthesized via the in situ synthesis method starting from Ti3C2 nanosheets (NSs), a classical type of MXene nanostructure. Compared to simple Bi2S3 NPs, Bi2S3/Ti3C2 NHs significantly extend the absorption to the near-infrared (NIR) region and enhance the photocatalytic activity owing to the improved photogenerated carrier separation, where the hole on the valence band (VB) of Bi2S3 can react with water to supply O2 for the electron on the Ti3C2 NSs to generate ·O2- and ·OH through electron transfer. Furthermore, they also achieve 1O2 generation through energy transfer due to O2 self-supply. After the modification of triphenylphosphium bromide (TPP) on Bi2S3/Ti3C2 NHs, systematic in vitro and in vivo evaluations were conducted, revealing that the synergistic-therapeutic outcome of this nanoplatform enables complete eradication of the U251 tumors without recurrence by NIR laser irradiation, and it can be used for computed tomography (CT) imaging because of the strong X-ray attenuation ability. CONCLUSION This work expands the phototherapeutic effect of Bi2S3-based nanoplatforms, providing a new strategy for hypoxic tumor theranostics.
Collapse
Affiliation(s)
- Hanwen Jiang
- Department of Neurology, Brain Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
- Department of Cardiology, Cardiac Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Jingxian Sun
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, Heilongjiang Province, 150001, China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266005, China
| | - Fucong Liu
- Department of Neurology, Brain Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Yuanjiao Zhao
- Department of Neurology, Brain Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Xin Chen
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, Heilongjiang Province, 150001, China
| | - Changsong Dai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhaohui Wen
- Department of Neurology, Brain Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China.
| |
Collapse
|
3
|
Deinavizadeh M, Kiasat AR, Shafiei M, Sabaeian M, Mirzajani R, Zahraei SM, Khalili F, Shao M, Wu A, Makvandi P, Hooshmand N. Synergistic chemo-photothermal therapy using gold nanorods supported on thiol-functionalized mesoporous silica for lung cancer treatment. Sci Rep 2024; 14:4373. [PMID: 38388553 PMCID: PMC10884026 DOI: 10.1038/s41598-024-54778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Cancer therapy necessitates the development of novel and effective treatment modalities to combat the complexity of this disease. In this project, we propose a synergistic approach by combining chemo-photothermal treatment using gold nanorods (AuNRs) supported on thiol-functionalized mesoporous silica, offering a promising solution for enhanced lung cancer therapy. To begin, mesoporous MCM-41 was synthesized using a surfactant-templated sol-gel method, chosen for its desirable porous structure, excellent biocompatibility, and non-toxic properties. Further, thiol-functionalized MCM-41 was achieved through a simple grafting process, enabling the subsequent synthesis of AuNRs supported on thiol-functionalized MCM-41 (AuNR@S-MCM-41) via a gold-thiol interaction. The nanocomposite was then loaded with the anticancer drug doxorubicin (DOX), resulting in AuNR@S-MCM-41-DOX. Remarkably, the nanocomposite exhibited pH/NIR dual-responsive drug release behaviors, facilitating targeted drug delivery. In addition, it demonstrated exceptional biocompatibility and efficient internalization into A549 lung cancer cells. Notably, the combined photothermal-chemo therapy by AuNR@S-MCM-41-DOX exhibited superior efficacy in killing cancer cells compared to single chemo- or photothermal therapies. This study showcases the potential of the AuNR@S-MCM-41-DOX nanocomposite as a promising candidate for combined chemo-photothermal therapy in lung cancer treatment. The innovative integration of gold nanorods, thiol-functionalized mesoporous silica, and pH/NIR dual-responsive drug release provides a comprehensive and effective therapeutic approach for improved outcomes in lung cancer therapy. Future advancements based on this strategy hold promise for addressing the challenges posed by cancer and transforming patient care.
Collapse
Affiliation(s)
- Maryam Deinavizadeh
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Reza Kiasat
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
- Petroleum Geology and Geochemistry Research Center (PGGRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mohammad Shafiei
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Sabaeian
- Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Center for Research On Laser and Plasma, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Roya Mirzajani
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Fateme Khalili
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Minmin Shao
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Pooyan Makvandi
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140401, Punjab, India.
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Saveetha University, Chennai, 600077, India.
| | - Nasrin Hooshmand
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
4
|
Li R, Zhao Y, Liu T, Li Y, Wan C, Gao R, Liu C, Li X, Li B. Nano-drug delivery system targeting FAP for the combined treatment of oral leukoplakia. Drug Deliv Transl Res 2024; 14:247-265. [PMID: 37526880 DOI: 10.1007/s13346-023-01397-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Oral leukoplakia (OLK) has received much attention due to its potential risk of malignant transformation. Studies have shown that when drug therapy is combined with photothermal therapy (PTT), not only can the cytotoxicity of the drug be enhanced, but also the heat energy can be used to kill the lesion cells, so we can combine drug therapy with PTT to enhance the therapeutic effect on OLK. However, with certain drawbacks due to its lack of targeting, fibroblast activating protein (FAP) has become an attractive target for OLK combination therapy. In this study, we used NGO-PEG loaded with FAP-targeting peptide (F-TP) and celecoxib (CXB) to construct a nano-drug delivery system CGPF for targeting OLK with high FAP expression and confirmed the biocompatibility and therapeutic efficacy of CGPF by in vitro and in vivo experiments. Overall, the novel nano-drug delivery system CGPF proposed in this study showed a very significant potential for the combination therapy of OLK.
Collapse
Affiliation(s)
- Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
| | - Yingjiao Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Tiantian Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Yanwei Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Chaoqiong Wan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Ruifang Gao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Chen Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Xianqi Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, 399-0781, Japan
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| |
Collapse
|
5
|
Gallo J, Villasante A. Recent Advances in Biomimetic Nanocarrier-Based Photothermal Therapy for Cancer Treatment. Int J Mol Sci 2023; 24:15484. [PMID: 37895165 PMCID: PMC10607206 DOI: 10.3390/ijms242015484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Nanomedicine presents innovative solutions for cancer treatment, including photothermal therapy (PTT). PTT centers on the design of photoactivatable nanoparticles capable of absorbing non-toxic near-infrared light, generating heat within target cells to induce cell death. The successful transition from benchside to bedside application of PTT critically depends on the core properties of nanoparticles responsible for converting light into heat and the surface properties for precise cell-specific targeting. Precisely targeting the intended cells remains a primary challenge in PTT. In recent years, a groundbreaking approach has emerged to address this challenge by functionalizing nanocarriers and enhancing cell targeting. This strategy involves the creation of biomimetic nanoparticles that combine desired biocompatibility properties with the immune evasion mechanisms of natural materials. This review comprehensively outlines various strategies for designing biomimetic photoactivatable nanocarriers for PTT, with a primary focus on its application in cancer therapy. Additionally, we shed light on the hurdles involved in translating PTT from research to clinical practice, along with an overview of current clinical applications.
Collapse
Affiliation(s)
- Juan Gallo
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal;
| | - Aranzazu Villasante
- Nanobioengineering Lab, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
6
|
Lima-Sousa R, Alves CG, Melo BL, Costa FJP, Nave M, Moreira AF, Mendonça AG, Correia IJ, de Melo-Diogo D. Injectable hydrogels for the delivery of nanomaterials for cancer combinatorial photothermal therapy. Biomater Sci 2023; 11:6082-6108. [PMID: 37539702 DOI: 10.1039/d3bm00845b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Progress in the nanotechnology field has led to the development of a new class of materials capable of producing a temperature increase triggered by near infrared light. These photothermal nanostructures have been extensively explored in the ablation of cancer cells. Nevertheless, the available data in the literature have exposed that systemically administered nanomaterials have a poor tumor-homing capacity, hindering their full therapeutic potential. This paradigm shift has propelled the development of new injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy. These hydrogels can be assembled at the tumor site after injection (in situ forming) or can undergo a gel-sol-gel transition during injection (shear-thinning/self-healing). Besides incorporating photothermal nanostructures, these injectable hydrogels can also incorporate or be combined with other agents, paving the way for an improved therapeutic outcome. This review analyses the application of injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy as well as their combination with photodynamic-, chemo-, immuno- and radio-therapies.
Collapse
Affiliation(s)
- Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Francisco J P Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Micaela Nave
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - António G Mendonça
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
- Departamento de Química, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
7
|
Jo G, Park Y, Park MH, Hyun H. Near-Infrared Fluorescent Hydroxyapatite Nanoparticles for Targeted Photothermal Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15051374. [PMID: 37242617 DOI: 10.3390/pharmaceutics15051374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Near-infrared (NIR) fluorophores have attracted great attention due to their excellent optical and photothermal properties. Among them, a bone-targeted NIR fluorophore (named P800SO3) contains two phosphonate groups, which play important roles in binding with hydroxyapatite (HAP) as the main mineral component of bones. In this study, biocompatible and NIR fluorescent HAP nanoparticles functionalized with P800SO3 and polyethylene glycol (PEG) were readily prepared for tumor-targeted imaging and photothermal therapy (PTT). The PEGylated HAP nanoparticle (HAP800-PEG) demonstrated improved tumor targetability with high tumor-to-background ratios (TBR). Moreover, the HAP800-PEG also showed excellent photothermal properties, and the temperature of tumor tissue reached 52.3 °C under NIR laser irradiation, which could completely ablate the tumor tissue without recurrence. Therefore, this new type of HAP nanoparticle has great potential as a biocompatible and effective phototheranostic material, which enables the use of P800SO3 for targeted photothermal cancer treatment.
Collapse
Affiliation(s)
- Gayoung Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Yoonbin Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| | - Min Ho Park
- Department of Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| |
Collapse
|
8
|
Jacquemin L, Song Z, Le Breton N, Nishina Y, Choua S, Reina G, Bianco A. Mechanisms of Radical Formation on Chemically Modified Graphene Oxide under Near Infrared Irradiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207229. [PMID: 36670336 DOI: 10.1002/smll.202207229] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
In this work, the mechanisms of radical generation on different functionalized graphene oxide (GO) conjugates under near-infrared (NIR) light irradiation are investigated. The GO conjugates are designed to understand how chemical functionalization can influence the generation of radicals. Both pristine and functionalized GO are irradiated by a NIR laser, and the production of different reactive oxygen species (ROS) is investigated using fluorimetry and electron paramagnetic resonance to describe the type of radicals present on the surface of GO. The mechanism of ROS formation involves a charge transfer from the material to the oxygen present in the media, via the production of superoxide and singlet oxygen. Cytotoxicity and effects of ROS generation are then evaluated using breast cancer cells, evidencing a concentration dependent cell death associated to the heat and ROS. The study provides new hints to understand the photogeneration of radicals on the surface of GO upon near infrared irradiation, as well as, to assess the impact on these radicals in the context of a combined drug delivery system and phototherapeutic approach. These discoveries open the way for a better control of phototherapy-based treatments employing graphene-based materials.
Collapse
Affiliation(s)
- Lucas Jacquemin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Nolwenn Le Breton
- Institute of Chemistry, UMR 7177, University of Strasbourg, Strasbourg, 67000, France
| | - Yuta Nishina
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Sylvie Choua
- Institute of Chemistry, UMR 7177, University of Strasbourg, Strasbourg, 67000, France
| | - Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| |
Collapse
|
9
|
Alves CG, Lima-Sousa R, Melo BL, Ferreira P, Moreira AF, Correia IJ, Melo-Diogo DD. Poly(2-ethyl-2-oxazoline)-IR780 conjugate nanoparticles for breast cancer phototherapy. Nanomedicine (Lond) 2022; 17:2057-2072. [PMID: 36803049 DOI: 10.2217/nnm-2022-0218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Aims: To address the limitations of IR780 by preparing hydrophilic polymer-IR780 conjugates and to employ these conjugates in the assembly of nanoparticles (NPs) intended for cancer photothermal therapy. Materials & methods: The cyclohexenyl ring of IR780 was conjugated for the first time with thiol-terminated poly(2-ethyl-2-oxazoline) (PEtOx). This novel poly(2-ethyl-2-oxazoline)-IR780 (PEtOx-IR) conjugate was combined with D-α-tocopheryl succinate (TOS), leading to the assembly of mixed NPs (PEtOx-IR/TOS NPs). Results: PEtOx-IR/TOS NPs displayed optimal colloidal stability as well as cytocompatibility in healthy cells at doses within the therapeutic range. In turn, the combination of PEtOx-IR/TOS NPs and near-infrared light reduced heterotypic breast cancer spheroid viability to just 15%. Conclusion: PEtOx-IR/TOS NPs are promising agents for breast cancer photothermal therapy.
Collapse
Affiliation(s)
- Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D Henrique, Covilhã, 6200-506, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D Henrique, Covilhã, 6200-506, Portugal
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D Henrique, Covilhã, 6200-506, Portugal
| | - Paula Ferreira
- CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, Coimbra, 3030-790, Portugal
- Department of Chemical & Biological Engineering, Coimbra Institute of Engineering (ISEC), Rua Pedro Nunes, Coimbra, 3030-199, Portugal
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D Henrique, Covilhã, 6200-506, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D Henrique, Covilhã, 6200-506, Portugal
- CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, Coimbra, 3030-790, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D Henrique, Covilhã, 6200-506, Portugal
| |
Collapse
|
10
|
Jiang W, Chen D, Xie Z, Zhang Y, Hu B, Kang J, Cao Y, Xiang M. Exploring the Size Effect of Graphene Oxide on Crystallization Kinetics and Barrier Properties of Poly(lactic acid). ACS OMEGA 2022; 7:37315-37327. [PMID: 36312364 PMCID: PMC9609058 DOI: 10.1021/acsomega.2c03830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Two different sizes of graphene oxide/poly(lactic acid) composites were prepared by the solution flocculation method, and the effect of the size effect of graphene oxide on the crystallization, barrier, and mechanical properties of poly(lactic acid) was investigated by various characterization methods. The results of the crystallization behavior test show that the size change of graphene oxide has little effect on the nucleation effect of poly(lactic acid). Increasing the size of graphene oxide can promote the crystal growth, so as to improve the crystallization ability of poly(lactic acid). The test results of mechanical properties and barrier properties show that increasing the size of graphene oxide can provide a larger interfacial surface area and transmit stress more effectively, which can greatly improve the modulus of poly(lactic acid). At the same time, because of this, the diffusion path of gas molecules in poly(lactic acid) can be longer and more tortuous, so as to improve the barrier performance of poly(lactic acid).
Collapse
Affiliation(s)
- Weijiao Jiang
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu610065, China
| | - Dandan Chen
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu610065, China
| | - Zhihui Xie
- Dongfang
Electric Machinery Co., Ltd., Deyang618000, China
| | - Yue Zhang
- Dongfang
Electric Machinery Co., Ltd., Deyang618000, China
| | - Bo Hu
- Dongfang
Electric Machinery Co., Ltd., Deyang618000, China
| | - Jian Kang
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu610065, China
| | - Ya Cao
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu610065, China
| | - Ming Xiang
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu610065, China
| |
Collapse
|
11
|
Xiong X, Wang L, He S, Guan S, Li D, Zhang M, Qu X. Vacancy defect-promoted nanomaterials for efficient phototherapy and phototherapy-based multimodal Synergistic Therapy. Front Bioeng Biotechnol 2022; 10:972837. [PMID: 36091444 PMCID: PMC9452887 DOI: 10.3389/fbioe.2022.972837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Phototherapy and multimodal synergistic phototherapy (including synergistic photothermal and photodynamic therapy as well as combined phototherapy and other therapies) are promising to achieve accurate diagnosis and efficient treatment for tumor, providing a novel opportunity to overcome cancer. Notably, various nanomaterials have made significant contributions to phototherapy through both improving therapeutic efficiency and reducing side effects. The most key factor affecting the performance of phototherapeutic nanomaterials is their microstructure which in principle determines their physicochemical properties and the resulting phototherapeutic efficiency. Vacancy defects ubiquitously existing in phototherapeutic nanomaterials have a great influence on their microstructure, and constructing and regulating vacancy defect in phototherapeutic nanomaterials is an essential and effective strategy for modulating their microstructure and improving their phototherapeutic efficacy. Thus, this inspires growing research interest in vacancy engineering strategies and vacancy-engineered nanomaterials for phototherapy. In this review, we summarize the understanding, construction, and application of vacancy defects in phototherapeutic nanomaterials. Starting from the perspective of defect chemistry and engineering, we also review the types, structural features, and properties of vacancy defects in phototherapeutic nanomaterials. Finally, we focus on the representative vacancy defective nanomaterials recently developed through vacancy engineering for phototherapy, and discuss the significant influence and role of vacancy defects on phototherapy and multimodal synergistic phototherapy. Therefore, we sincerely hope that this review can provide a profound understanding and inspiration for the design of advanced phototherapeutic nanomaterials, and significantly promote the development of the efficient therapies against tumor.
Collapse
Affiliation(s)
- Xinyu Xiong
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Li Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shan He
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- *Correspondence: Shan He, ; Shanyue Guan, ; Mingming Zhang,
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Shan He, ; Shanyue Guan, ; Mingming Zhang,
| | - Dawei Li
- Senior Orthopeadics Department, The Forth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mingming Zhang
- PLA Strategic Support Force Characteristic Medical Center, Beijing, China
- *Correspondence: Shan He, ; Shanyue Guan, ; Mingming Zhang,
| | - Xiaozhong Qu
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Zhu S, Liu Y, Gu Z, Zhao Y. Research trends in biomedical applications of two-dimensional nanomaterials over the last decade - A bibliometric analysis. Adv Drug Deliv Rev 2022; 188:114420. [PMID: 35835354 DOI: 10.1016/j.addr.2022.114420] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/01/2022]
Abstract
Two-dimensional (2D) nanomaterials with versatile properties have been widely applied in the field of biomedicine. Despite various studies having reviewed the development of biomedical 2D nanomaterials, there is a lack of a study that objectively summarizes and analyzes the research trend of this important field. Here, we employ a series of bibliometric methods to identify the development of the 2D nanomaterial-related biomedical field during the past 10 years from a holistic point of view. First, the annual publication/citation growth, country/institute/author distribution, referenced sources, and research hotspots are identified. Thereafter, based on the objectively identified research hotspots, the contributions of 2D nanomaterials to the various biomedical subfields, including those of biosensing, imaging/therapy, antibacterial treatment, and tissue engineering are carefully explored, by considering the intrinsic properties of the nanomaterials. Finally, prospects and challenges have been discussed to shed light on the future development and clinical translation of 2D nanomaterials. This review provides a novel perspective to identify and further promote the development of 2D nanomaterials in biomedical research.
Collapse
Affiliation(s)
- Shuang Zhu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaping Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China; The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230001, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Guo S, Song Z, Ji DK, Reina G, Fauny JD, Nishina Y, Ménard-Moyon C, Bianco A. Combined Photothermal and Photodynamic Therapy for Cancer Treatment Using a Multifunctional Graphene Oxide. Pharmaceutics 2022; 14:1365. [PMID: 35890259 PMCID: PMC9318106 DOI: 10.3390/pharmaceutics14071365] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Graphene oxide (GO) is one of the most studied nanomaterials in many fields, including the biomedical field. Most of the nanomaterials developed for drug delivery and phototherapies are based on noncovalent approaches that lead to an unspecific release of physisorbed molecules in complex biological environments. Therefore, preparing covalently functionalized GO using straightforward and versatile methods is highly valuable. Phototherapies, including photothermal therapy (PTT) and photodynamic therapy (PDT), have shown great potential as effective therapeutic approaches against cancer. To overcome the limits of a single method, the combination of PTT and PDT can lead to a combined effect with a higher therapeutic efficiency. In this work, we prepare a folic acid (FA) and chlorin e6 (Ce6) double-functionalized GO for combined targeted PTT/PDT. This conjugate can penetrate rapidly into cancer cells and macrophages. A combined effect of PTT and PDT is observed, leading to a higher killing efficiency toward different types of cells involved in cancer and other diseases. Our work provides a simple protocol to prepare multifunctional platforms for the treatment of various diseases.
Collapse
Affiliation(s)
- Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| | - Ding-Kun Ji
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| | - Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| | - Jean-Daniel Fauny
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| | - Yuta Nishina
- Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan;
- Research Core for Interdisciplinary Sciences, Okayama University, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| |
Collapse
|
14
|
Ding X, Hu Y, Cheng H, Zhang X, Lu L, Gao S, Cheng C, Wang L, Qian X, Zhang C, Chai R, Gao X, Huang Z. Graphene Substrates Promote the Differentiation of Inner Ear Lgr5+ Progenitor Cells Into Hair Cells. Front Bioeng Biotechnol 2022; 10:927248. [PMID: 35814013 PMCID: PMC9256972 DOI: 10.3389/fbioe.2022.927248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/03/2022] [Indexed: 12/03/2022] Open
Abstract
The ideal treatment for sensory hearing loss is to regenerate inner ear hair cells (HCs) through stem cell therapy, thereby restoring the function and structure of the cochlea. Previous studies have found that Lgr5+ supporting cells (SCs) in the inner ear can regenerate HCs, thus being considered inner ear progenitor cells. In addition to traditional biochemical factors, physical factors such as electrical conductivity also play a crucial role in the regulation of stem cell proliferation and differentiation. In this study, the graphene substrates were used to culture Lgr5+ progenitor cells and investigated their regulatory effects on cells. It was demonstrated that the graphene substrates displayed great cytocompatibility for Lgr5+ progenitors and promoted their sphere-forming ability. Moreover, more Myosin7a+ cells were found on the graphene substrates compared with tissue culture polystyrene (TCPS). These results suggest that graphene is an efficient interface that can promote the differentiation of Lgr5+ progenitors into HCs, which is great significance for its future application in combination with Lgr5+ cells to regenerate HCs in the inner ear.
Collapse
Affiliation(s)
- Xiaoqiong Ding
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical College of Nanjing Medical University, Nanjing, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yangnan Hu
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Hong Cheng
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Xiaoli Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ling Lu
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Song Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Cheng Cheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lifen Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaoyun Qian
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Chen Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Renjie Chai
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- *Correspondence: Renjie Chai, ; Xia Gao, ; Zhichun Huang,
| | - Xia Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical College of Nanjing Medical University, Nanjing, China
- *Correspondence: Renjie Chai, ; Xia Gao, ; Zhichun Huang,
| | - Zhichun Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China
- *Correspondence: Renjie Chai, ; Xia Gao, ; Zhichun Huang,
| |
Collapse
|
15
|
Li A, Wang S, Zhang Z, Xu N, Ling G, Zhang P. Poly-l-lysine derivative-coated black phosphorus as a nanoplatform for photothermal chemotherapy to enhance anti-tumor efficiency. J Mater Chem B 2022; 10:5191-5202. [PMID: 35726778 DOI: 10.1039/d1tb02456f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Severe systemic toxicity and side effects are major obstacles to the success of chemotherapy for tumors. Regardless of the choice of chemotherapy drugs, the safety of drug delivery materials is crucial, and therefore, there have been various efforts to improve the therapeutic effect and the biological safety of drug delivery systems (DDSs). In this study, a dual stimulus-response DDS (PLL-SS@DOX-BP) was constructed based on the biomaterials of black phosphorus (BP) nanosheets and poly-l-lysine (PLL) to enhance the treatment of doxorubicin hydrochloride (DOX) for breast cancer. The PLL derivative was nano-coated on the surface of drug-loaded BP nanosheets, and it prevented premature leakage of the drug and maintained the stability of the DDS. The introduced disulfide bonds and photothermal agent BP enabled the redox and near-infrared responsive drug release of the DDS, and the coated PLL derivative on the nanocarrier decreased premature leakage of the drug before the DDS reached the tumor tissues. The in vitro and in vivo experiments showed that the combination of biomaterial (PLL) and photothermal material (BP nanosheets) exhibited excellent biological safety and remarkable drug delivery capacity. Moreover, the pharmacodynamic studies indicated that PLL-SS@DOX-BP is a powerful vehicle for photothermal therapy in combination with chemotherapy. Compared with chemotherapy alone, the developed DDS displayed enhanced anti-tumor efficiency with decreased systemic toxicity, and thus, it has the potential to be a promising anti-tumor treatment strategy.
Collapse
Affiliation(s)
- Anning Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, P. R. China.
| | - Siqi Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, P. R. China.
| | - Zhiqiang Zhang
- School of Pharmacy, Xiamen Medical College, Xiamen, 361023, P. R. China.
| | - Na Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, P. R. China.
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, P. R. China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, P. R. China.
| |
Collapse
|
16
|
Ouyang J, Xie A, Zhou J, Liu R, Wang L, Liu H, Kong N, Tao W. Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem Soc Rev 2022; 51:4996-5041. [PMID: 35616098 DOI: 10.1039/d1cs01148k] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traditional treatments such as chemotherapy and surgery usually cause severe side effects and excruciating pain. The emergence of nanomedicines and minimally invasive therapies (MITs) has brought hope to patients with malignant diseases. Especially, minimally invasive nanomedicines (MINs), which combine the advantages of nanomedicines and MITs, can effectively target pathological cells/tissues/organs to improve the bioavailability of drugs, minimize side effects and achieve painless treatment with a small incision or no incision, thereby acquiring good therapeutic effects. In this review, we provide a comprehensive review of the research status and challenges of MINs, which generally refers to the medical applications of nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Additionally, we also discuss their combined application in various fields including cancers, cardiovascular diseases, tissue engineering, neuro-functional diseases, and infectious diseases. The prospects, and potential bench-to-bedside translation of MINs are also presented in this review. We expect that this review can inspire the broad interest for a wide range of readers working in the fields of interdisciplinary subjects including (but not limited to) chemistry, nanomedicine, bioengineering, nanotechnology, materials science, pharmacology, and biomedicine.
Collapse
Affiliation(s)
- Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Angel Xie
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Runcong Liu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong 519000, China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haijun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Cao L, Wu Y, Shan Y, Tan B, Liao J. A Review: Potential Application and Outlook of Photothermal Therapy in Oral Cancer Treatment. Biomed Mater 2022; 17. [PMID: 35235924 DOI: 10.1088/1748-605x/ac5a23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/02/2022] [Indexed: 11/11/2022]
Abstract
As one of the most common malignant tumors, oral cancer threatens people's health worldwide. However, traditional therapies, including surgery, radiotherapy, and chemotherapy can't meet the requirement of cancer cure. Photothermal therapy (PTT) has attracted widespread attentions for its advantages of the noninvasive process, few side effects, and promising tumor ablation. Up to now, three types of photothermal agents (PTAs) have been widely employed in oral cancer therapies, which involve metallic materials, carbon-based materials, and organic materials. Previous research mainly introduced hybrid materials due to benefits from the synergistic effect of multiple functions. In this review, we present the advancement of each type PTAs for oral cancer treatment in recent years. In each part, we introduce the properties and synthesis of each PTA, summarize the current studies, and analyze their potential applications. Furthermore, we discuss the status quo and the deficiencies hindering the clinical application of PTT, based on which gives the perspective of its future developing directions.
Collapse
Affiliation(s)
- Liren Cao
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| | - Yongzhi Wu
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| | - Yue Shan
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| | - Bowen Tan
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| | - Jinfeng Liao
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| |
Collapse
|
18
|
Carvalho AF, Kulyk B, Fernandes AJS, Fortunato E, Costa FM. A Review on the Applications of Graphene in Mechanical Transduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101326. [PMID: 34288155 DOI: 10.1002/adma.202101326] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/26/2021] [Indexed: 05/26/2023]
Abstract
A pressing need to develop low-cost, environmentally friendly, and sensitive sensors has arisen with the advent of the always-connected paradigm of the internet-of-things (IoT). In particular, mechanical sensors have been widely studied in recent years for applications ranging from health monitoring, through mechanical biosignals, to structure integrity analysis. On the other hand, innovative ways to implement mechanical actuation have also been the focus of intense research in an attempt to close the circle of human-machine interaction, and move toward applications in flexible electronics. Due to its potential scalability, disposability, and outstanding properties, graphene has been thoroughly studied in the field of mechanical transduction. The applications of graphene in mechanical transduction are reviewed here. An overview of sensor and actuator applications is provided, covering different transduction mechanisms such as piezoresistivity, capacitive sensing, optically interrogated displacement, piezoelectricity, triboelectricity, electrostatic actuation, chemomechanical and thermomechanical actuation, as well as thermoacoustic emission. A critical review of the main approaches is presented within the scope of a wider discussion on the future of this so-called wonder material in the field of mechanical transduction.
Collapse
Affiliation(s)
- Alexandre F Carvalho
- I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Bohdan Kulyk
- I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal
| | | | - Elvira Fortunato
- I3N/CENIMAT, Materials Science Department, Faculty of Sciences and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica, 2829-516, Portugal
| | - Florinda M Costa
- I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
19
|
Wu J, Wang M, Pan Y, Pang Y, Tang Y, Song C, Zhu J, Zhang X, Huang Q. Synthesis of manganese-oxide and palladium nanoparticles co-decorated polypyrrole/graphene oxide (MnO 2@Pd@PPy/GO) nanocomposites for anti-cancer treatment. RSC Adv 2022; 12:23786-23795. [PMID: 36093248 PMCID: PMC9394591 DOI: 10.1039/d2ra03860a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Design and fabrication of novel multifunctional nanomaterials as novel “theranostic nanoagents”with high efficiency and low side effects is important for cancer treatment. Herein, we synthesized manganese-oxide and palladium nanoparticle-co-decorated polypyrrole/graphene oxide (MnO2@Pd@PPy/GO) nanocomposites, which could be used as a novel “theranostic nanoagent” for cancer treatment. Various spectroscopic and microscopic characterizations of the synthesized MnO2@Pd@PPy/GO nanocomposites suggest that the nanocomposites are assembled sequentially by graphene oxide, polypyrrole, palladium nanoparticles and manganese-oxide nanoplates. Further research revealed that the nanocomposites had excellent photothermal conversion performance (reached near 50 °C after 10 min of irradiation), pH responsive enzymatic-like catalytic activity and enhanced magnetic resonance imaging (MRI) performance (r1 = 7.74 mM−1 s−1 at pH 5.0 and glutathione (GSH)). Cell experiments also testified that combined cancer treatment (the viability of cancer cells is 30%) with photothermal therapy (PTT, the viability of cancer cells is 91% only with irradiation) and chemodynamic therapy (CDT, the viability of cancer cells is 74.7% only with nanocomposites) guided by MRI was achieved when the as-prepared nanocomposites were employed as theranostic nanoagents. This work could provide some new ideas for the controllable synthesis and application of multicomponent nanomaterials. Manganese-oxide and palladium nanoparticle-co-decorated polypyrrole/graphene oxide (MnO2@Pd@PPy/GO) nanoenzyme composites were synthesized, and could be as a novel “theranostic nanoagent” for cancer treatment due to excellent performance.![]()
Collapse
Affiliation(s)
- Jiarui Wu
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Meng Wang
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China
| | - Yuanjie Pan
- School of Pharmacy, Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China
| | - Yipeng Pang
- School of Life Science, Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China
| | - Yanyan Tang
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Chang Song
- School of Pharmacy, Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China
| | - Jiahui Zhu
- School of Life Science, Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China
| | - Xian Zhang
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qingli Huang
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China
| |
Collapse
|
20
|
F Rodrigues C, Fernandes N, de Melo-Diogo D, Ferreira P, J Correia I, F Moreira A. HA/PEI-coated acridine orange-loaded gold-core silica shell nanorods for cancer-targeted photothermal and chemotherapy. Nanomedicine (Lond) 2021; 16:2569-2586. [PMID: 34854343 DOI: 10.2217/nnm-2021-0270] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aims: To develop a tumor-targeted chemo-photothermal nanomedicine through the functionalization of acridine orange (AO)-loaded gold-core mesoporous silica shell (AuMSS) nanorods with polyethylenimine (PEI) and hyaluronic acid (HA). Methods: Functionalization of the AuMSS nanorods was achieved through the chemical linkage of PEI followed by electrostatic adsorption of HA. Results: HA functionalization improved AuMSS' cytocompatibility by decreasing blood hemolysis, and PEI-HA inclusion promoted a controlled and sustained AO release. In vitro assays revealed that HA functionalization increased the internalization of nanoparticles by human negroid cervix epithelioid carcinoma cancer (HeLa) cells, and the combinatorial treatment mediated by AuMSS/PEI/HA_AO nanorods presented an enhanced effect, with >95% of cellular death. Conclusion: AuMSS/PEI/HA_AO formulations can act as tumor-targeted chemo-photothermal nanomedicines for the combinatorial therapy of cervical cancer.
Collapse
Affiliation(s)
- Carolina F Rodrigues
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Natanael Fernandes
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Paula Ferreira
- CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790, Coimbra, Portugal
| | - Ilídio J Correia
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790, Coimbra, Portugal
| | - André F Moreira
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| |
Collapse
|
21
|
Zarebkohan A, Ghafoori A, Bani F, Rasta SH, Abbasi E, Salehi R, Milani M. Photothermal ablation of pathogenic bacteria by chensinin-1b modified gold nanoparticles. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Gonçalves ASC, Rodrigues CF, Fernandes N, de Melo-Diogo D, Ferreira P, Moreira AF, Correia IJ. IR780 loaded gelatin-PEG coated gold core silica shell nanorods for cancer-targeted photothermal/photodynamic therapy. Biotechnol Bioeng 2021; 119:644-656. [PMID: 34841513 DOI: 10.1002/bit.27996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/10/2021] [Accepted: 09/19/2021] [Indexed: 01/17/2023]
Abstract
Gold core silica shell (AuMSS) nanorods present excellent physicochemical properties that allow their application as photothermal and drug delivery agents. Herein, AuMSS nanorods were dual-functionalized with Polyethylene glycol methyl ether (PEG-CH3 ) and Gelatin (GEL) to enhance both the colloidal stability and uptake by HeLa cancer cells. Additionally, the AuMSS nanorods were combined for the first time with IR780 (a heptamethine cyanine molecule) and its photothermal and photodynamic capacities were determined. The obtained results reveal that the encapsulation of IR780 (65 µg per AuMSS mg) increases the photothermal conversion efficiency of AuMSS nanorods by 10%, and this enhanced heat generation was maintained even after three irradiation cycles with a NIR (808 nm) laser. Moreover, the IR780-loaded AuMSS/T-PEG-CH3 /T-GEL presented ≈2-times higher uptake in HeLa cells, when compared to the non-coated counterparts, and successfully mediated the light-triggered generation of reactive oxygen species. Overall, the combination of photodynamic and photothermal therapy mediated by IR780-loaded AuMSS/T-PEG-CH3 /T-GEL nanorods effectively promoted the ablation of HeLa cancer cells.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Carolina F Rodrigues
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Natanael Fernandes
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Paula Ferreira
- CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Coimbra, Portugal
| | - André F Moreira
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.,CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
23
|
Pallavicini P, Chirico G, Taglietti A. Harvesting Light To Produce Heat: Photothermal Nanoparticles for Technological Applications and Biomedical Devices. Chemistry 2021; 27:15361-15374. [PMID: 34406677 PMCID: PMC8597085 DOI: 10.1002/chem.202102123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 12/17/2022]
Abstract
The photothermal properties of nanoparticles (NPs), that is, their ability to convert absorbed light into heat, have been studied since the end of the last century, mainly on gold NPs. In the new millennium, these studies have developed into a burst of research dedicated to the photothermal ablation of tumors. However, beside this strictly medical theme, research has also flourished in the connected areas of photothermal antibacterial surface coatings, gels and polymers, of photothermal surfaces for cell stimulation, as well as in purely technological areas that do not involve medical biotechnology. These include the direct conversion of solar light into heat, a more efficient sun-powered generation of steam and the use of inkjet-printed patterns of photothermal NPs for anticounterfeit printing based on temperature reading, to cite but a few. After an analysis of the photothermal effect (PTE) and its mechanism, this minireview briefly considers the antitumor-therapy theme and takes an in-depth look at all the other technological and biomedical applications of the PTE, paying particular attention to photothermal materials whose NPs have joined those based on Au.
Collapse
Affiliation(s)
| | - Giuseppe Chirico
- Department of Physics “G. Occhialini”Università Milano Bicoccap.zza della Scienza 3XX100MilanoItaly
| | - Angelo Taglietti
- Department of ChemistryUniversità degli Studi di Paviav. Taramelli 1227100PaviaItaly
| |
Collapse
|
24
|
Ma B, Bianco A. Recent Advances in 2D Material-Mediated Immuno-Combined Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102557. [PMID: 34510729 DOI: 10.1002/smll.202102557] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/28/2021] [Indexed: 06/13/2023]
Abstract
In the last years, cancer immunotherapy has started to attract a lot of attention, becoming one of the alternatives in the clinical treatment of cancer. Indeed, one of the advantages of immunotherapy is that both primary and distant tumors can be efficiently eradicated through a triggered immune response. Due to their large specific surface area and unique physicochemical properties, 2D materials have become popular in cancer immunotherapy, especially as efficient drug carriers. They have been also exploited as photothermal platforms, chemodynamic agents, and photosensitizers to further enhance the efficacy of the therapy. In this review, the focus is on the recent development of 2D materials as new tools to combine immunotherapy with chemotherapy, photothermal therapy, photodynamic therapy, chemodynamic therapy, radiotherapy, and radiodynamic therapy. These innovative synergistic approaches intend to go beyond the classical strategies based on a simple delivery function of immune modulators by nanomaterials. Furthermore, the effects of the 2D materials themselves and their surface properties (e.g., chemical modification and protein corona formation) on the induction of an immune response will be also discussed.
Collapse
Affiliation(s)
- Baojin Ma
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, 250012, China
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| |
Collapse
|
25
|
Lima-Sousa R, Alves CG, Melo BL, Moreira AF, Mendonça AG, Correia IJ, de Melo-Diogo D. Poly(2-ethyl-2-oxazoline) functionalized reduced graphene oxide: Optimization of the reduction process using dopamine and application in cancer photothermal therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112468. [PMID: 34702543 DOI: 10.1016/j.msec.2021.112468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/10/2021] [Accepted: 09/26/2021] [Indexed: 01/22/2023]
Abstract
The high near infrared (NIR) absorption displayed by reduced graphene oxide (rGO) nanostructures renders them a great potential for application in cancer photothermal therapy. However, the production of this material often relies on the use of hydrazine as a reductant, leading to poor biocompatibility and environmental-related issues. In addition, to improve rGO colloidal stability, this material has been functionalized with poly(ethylene glycol). However, recent studies have reported the immunogenicity of poly(ethylene glycol)-based coatings. In this work, the production of rGO, by using dopamine as the reducing agent, was optimized considering the size distribution and NIR absorption of the attained materials. The obtained results unveiled that the rGO produced by using a 1:5 graphene oxide:dopamine weight ratio and a reaction time of 4 h (termed as DOPA-rGO) displayed the highest NIR absorption while retaining its nanometric size distribution. Subsequently, the DOPA-rGO was functionalized with thiol-terminated poly(2-ethyl-2-oxazoline) (P-DOPA-rGO), revealing suitable physicochemical features, colloidal stability and cytocompatibility. When irradiated with NIR light, the P-DOPA-rGO could produce a temperature increase (ΔT) of 36 °C (75 μg/mL; 808 nm, 1.7 W/cm2, 5 min). The photothermal therapy mediated by P-DOPA-rGO was capable of ablating breast cancer cells monolayers (viability < 3%) and could reduce heterotypic breast cancer spheroids' viability to just 30%. Overall, P-DOPA-rGO holds a great potential for application in breast cancer photothermal therapy.
Collapse
Affiliation(s)
- Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - António G Mendonça
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; Departamento de Química, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
26
|
Kim D, Jo G, Chae Y, Subramani S, Lee BY, Kim EJ, Ji MK, Sim U, Hyun H. Bioinspired Camellia japonica carbon dots with high near-infrared absorbance for efficient photothermal cancer therapy. NANOSCALE 2021; 13:14426-14434. [PMID: 34473179 DOI: 10.1039/d1nr03999g] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since carbon dots (CDs) exhibit excellent biocompatibility, low cytotoxicity, near-infrared (NIR) absorbance, and superior photostability, many types of CDs are considered as powerful candidates for photothermal therapy (PTT) applications. However, the development of a desirable CD is still difficult due to insufficient photothermal conversion, thus resulting in the use of high laser power densities at a high dose of CDs for the PTT effect. Herein, bioinspired sulfur-doped CDs (S-CDs) with strong NIR absorbance were prepared from Camellia japonica flowers via a facile hydrothermal method for enhancing the photothermal conversion efficiency. The as-prepared S-CDs exhibited various advantages including cost-effective preparation, good water-solubility, high biocompatibility, intense NIR absorption, and excellent photothermal effect with robust photostability. Most importantly, the optimal low dose of S-CDs (45 μg mL-1) successfully led to efficient PTT performance with a high photothermal conversion efficiency (55.4%) under moderate laser power (808 nm, 1.1 W cm-2) for safe and effective cancer therapy.
Collapse
Affiliation(s)
- Dohun Kim
- Department of Materials Science & Engineering, Engineering Research Center, Chonnam National University, Gwangju 61186, South Korea.
- Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, South Korea
- Future Energy Engineering Convergence, College of AI Convergence, Chonnam National University, Gwangju 61186, South Korea
| | - Gayoung Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, South Korea.
| | - Yujin Chae
- Department of Materials Science & Engineering, Engineering Research Center, Chonnam National University, Gwangju 61186, South Korea.
- Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, South Korea
- Future Energy Engineering Convergence, College of AI Convergence, Chonnam National University, Gwangju 61186, South Korea
| | - Surendran Subramani
- Department of Materials Science & Engineering, Engineering Research Center, Chonnam National University, Gwangju 61186, South Korea.
- Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, South Korea
- Future Energy Engineering Convergence, College of AI Convergence, Chonnam National University, Gwangju 61186, South Korea
| | - Bo Young Lee
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, South Korea.
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, South Korea
| | - Eun Jeong Kim
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, South Korea.
| | - Min-Kyung Ji
- Department of Materials Science & Engineering, Engineering Research Center, Chonnam National University, Gwangju 61186, South Korea.
- Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, South Korea
- Future Energy Engineering Convergence, College of AI Convergence, Chonnam National University, Gwangju 61186, South Korea
| | - Uk Sim
- Department of Materials Science & Engineering, Engineering Research Center, Chonnam National University, Gwangju 61186, South Korea.
- Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, South Korea
- Future Energy Engineering Convergence, College of AI Convergence, Chonnam National University, Gwangju 61186, South Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, South Korea.
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, South Korea
| |
Collapse
|
27
|
|
28
|
Sattari S, Adeli M, Beyranvand S, Nemati M. Functionalized Graphene Platforms for Anticancer Drug Delivery. Int J Nanomedicine 2021; 16:5955-5980. [PMID: 34511900 PMCID: PMC8416335 DOI: 10.2147/ijn.s249712] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
Two-dimensional nanomaterials are emerging as promising candidates for a wide range of biomedical applications including tissue engineering, biosensing, pathogen incapacitation, wound healing, and gene and drug delivery. Graphene, due to its high surface area, photothermal property, high loading capacity, and efficient cellular uptake, is at the forefront of these materials and plays a key role in this multidisciplinary research field. Poor water dispersibility and low functionality of graphene, however, hamper its hybridization into new nanostructures for future nanomedicine. Functionalization of graphene, either by covalent or non-covalent methods, is the most useful strategy to improve its dispersion in water and functionality as well as processability into new materials and devices. In this review, recent advances in functionalization of graphene derivatives by different (macro)molecules for future biomedical applications are reported and explained. In particular, hydrophilic functionalization of graphene and graphene oxide (GO) to improve their water dispersibility and physicochemical properties is discussed. We have focused on the anticancer drug delivery of polyfunctional graphene sheets.
Collapse
Affiliation(s)
- Shabnam Sattari
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Siamak Beyranvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Mohammad Nemati
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| |
Collapse
|
29
|
Ristic B, Harhaji-Trajkovic L, Bosnjak M, Dakic I, Mijatovic S, Trajkovic V. Modulation of Cancer Cell Autophagic Responses by Graphene-Based Nanomaterials: Molecular Mechanisms and Therapeutic Implications. Cancers (Basel) 2021; 13:cancers13164145. [PMID: 34439299 PMCID: PMC8392723 DOI: 10.3390/cancers13164145] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Graphene-based nanomaterials (GNM) are one-to-several carbon atom-thick flakes of graphite with at least one lateral dimension <100 nm. The unique electronic structure, high surface-to-volume ratio, and relatively low toxicity make GNM potentially useful in cancer treatment. GNM such as graphene, graphene oxide, graphene quantum dots, and graphene nanofibers are able to induce autophagy in cancer cells. During autophagy the cell digests its own components in organelles called lysosomes, which can either kill cancer cells or promote their survival, as well as influence the immune response against the tumor. However, a deeper understanding of GNM-autophagy interaction at the mechanistic and functional level is needed before these findings could be exploited to increase GNM effectiveness as cancer therapeutics and drug delivery systems. In this review, we analyze molecular mechanisms of GNM-mediated autophagy modulation and its possible implications for the use of GNM in cancer therapy. Abstract Graphene-based nanomaterials (GNM) are plausible candidates for cancer therapeutics and drug delivery systems. Pure graphene and graphene oxide nanoparticles, as well as graphene quantum dots and graphene nanofibers, were all able to trigger autophagy in cancer cells through both transcriptional and post-transcriptional mechanisms involving oxidative/endoplasmic reticulum stress, AMP-activated protein kinase, mechanistic target of rapamycin, mitogen-activated protein kinase, and Toll-like receptor signaling. This was often coupled with lysosomal dysfunction and subsequent blockade of autophagic flux, which additionally increased the accumulation of autophagy mediators that participated in apoptotic, necrotic, or necroptotic death of cancer cells and influenced the immune response against the tumor. In this review, we analyze molecular mechanisms and structure–activity relationships of GNM-mediated autophagy modulation, its consequences for cancer cell survival/death and anti-tumor immune response, and the possible implications for the use of GNM in cancer therapy.
Collapse
Affiliation(s)
- Biljana Ristic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (B.R.); (I.D.)
| | - Ljubica Harhaji-Trajkovic
- Department of Neurophysiology, Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia;
| | - Mihajlo Bosnjak
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ivana Dakic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (B.R.); (I.D.)
| | - Srdjan Mijatovic
- Clinic for Emergency Surgery, Clinical Centre of Serbia, 11000 Belgrade, Serbia;
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (B.R.); (I.D.)
- Correspondence:
| |
Collapse
|
30
|
Wang Q, Zhu X, Wu Z, Sun T, Huang W, Wang Z, Ding X, Jiang C, Li F. Theranostic nanoparticles enabling the release of phosphorylated gemcitabine for advanced pancreatic cancer therapy. J Mater Chem B 2021; 8:2410-2417. [PMID: 32100811 DOI: 10.1039/d0tb00017e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gemcitabine (GEM) has been the recommended first-line drug for patients with pancreatic ductal adenocarcinoma cancer (PDAC) for the last twenty years. However, GEM-based treatment has failed in many patients because of the drug resistance acquired during tumorigenesis and development. To override resistance to GEM in pancreatic cancer, we developed a visualisable, photothermally controlled, drug release nanosystem (VPNS). This nanosystem has NaLuF4:Nd@NaLuF4 nanoparticles as the luminescent core, octabutoxyphthalocyanine palladium(ii) (PdPc) as the photothermal agent, and phosphorylated gemcitabine (pGEM) as the chemodrug. pGEM, one of the active forms of GEM, can circumvent the insufficient activation of GEM in cancer cell metabolism. The NaLuF4:Nd@NaLuF4 nanoparticles were employed to visualise the tumor lesion in vivo by their near-infrared luminescence. The near-infrared light-triggered photothermal effect from PdPc could trigger the release of pGEM loaded in a thermally responsive ligand and simultaneously enable photothermal cancer treatment. This work presents an effective method that suppresses the growth of tumour cells with dual-mode treatment and enables the improved treatment of orthotopic nude mice afflicted with pancreatic cancer.
Collapse
Affiliation(s)
- Qingbing Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai 200025, China and Institute of Biomedical Sciences, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Xingjun Zhu
- Institute of Biomedical Sciences, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Zhiyuan Wu
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai 200025, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Wei Huang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai 200025, China
| | - Zhongmin Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai 200025, China
| | - Xiaoyi Ding
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai 200025, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Fuyou Li
- Institute of Biomedical Sciences, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
31
|
Lin H, Song Z, Bianco A. How macrophages respond to two-dimensional materials: a critical overview focusing on toxicity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:333-356. [PMID: 33760696 DOI: 10.1080/03601234.2021.1885262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With wider use of graphene-based materials and other two-dimensional (2 D) materials in various fields, including electronics, composites, biomedicine, etc., 2 D materials can trigger undesired effects at cellular, tissue and organ level. Macrophages can be found in many organs. They are one of the most important cells in the immune system and they are relevant in the study of nanomaterials as they phagocytose them. Nanomaterials have multi-faceted effects on phagocytic immune cells like macrophages, showing signs of inflammation in the form of pro-inflammatory cytokine or reactive oxidation species production, or upregulation of activation markers due to the presence of these foreign bodies. This review is catered to researchers interested in the potential impact and toxicity of 2 D materials, particularly in macrophages, focusing on few-layer graphene, graphene oxide, graphene quantum dots, as well as other promising 2 D materials containing molybdenum, manganese, boron, phosphorus and tungsten. We describe applications relevant to the growing area of 2 D materials research, and the possible risks of ions and molecules used in the production of these promising 2 D materials, or those produced by the degradation and dissolution of 2 D materials.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| |
Collapse
|
32
|
Dash BS, Jose G, Lu YJ, Chen JP. Functionalized Reduced Graphene Oxide as a Versatile Tool for Cancer Therapy. Int J Mol Sci 2021; 22:2989. [PMID: 33804239 PMCID: PMC8000837 DOI: 10.3390/ijms22062989] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is one of the deadliest diseases in human history with extremely poor prognosis. Although many traditional therapeutic modalities-such as surgery, chemotherapy, and radiation therapy-have proved to be successful in inhibiting the growth of tumor cells, their side effects may vastly limited the actual benefits and patient acceptance. In this context, a nanomedicine approach for cancer therapy using functionalized nanomaterial has been gaining ground recently. Considering the ability to carry various anticancer drugs and to act as a photothermal agent, the use of carbon-based nanomaterials for cancer therapy has advanced rapidly. Within those nanomaterials, reduced graphene oxide (rGO), a graphene family 2D carbon nanomaterial, emerged as a good candidate for cancer photothermal therapy due to its excellent photothermal conversion in the near infrared range, large specific surface area for drug loading, as well as functional groups for functionalization with molecules such as photosensitizers, siRNA, ligands, etc. By unique design, multifunctional nanosystems could be designed based on rGO, which are endowed with promising temperature/pH-dependent drug/gene delivery abilities for multimodal cancer therapy. This could be further augmented by additional advantages offered by functionalized rGO, such as high biocompatibility, targeted delivery, and enhanced photothermal effects. Herewith, we first provide an overview of the most effective reducing agents for rGO synthesis via chemical reduction. This was followed by in-depth review of application of functionalized rGO in different cancer treatment modalities such as chemotherapy, photothermal therapy and/or photodynamic therapy, gene therapy, chemotherapy/phototherapy, and photothermal/immunotherapy.
Collapse
Affiliation(s)
- Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (G.J.)
| | - Gils Jose
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (G.J.)
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan;
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (G.J.)
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
33
|
Li K, Lu M, Xia X, Huang Y. Recent advances in photothermal and RNA interfering synergistic therapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Jovito BL, Paterno LG, Sales MJA, Gross MA, Silva LP, de Souza P, Báo SN. Graphene Oxide/Zinc Oxide Nanocomposite Displaying Selective Toxicity to Glioblastoma Cell Lines. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Bárbara L. Jovito
- Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
- Graduate Program in Animal Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | | | - Maria J. A. Sales
- Institute of Chemistry, University of Brasilia, Brasilia 70910-900, Brazil
| | - Marcos A. Gross
- Institute of Chemistry, University of Brasilia, Brasilia 70910-900, Brazil
| | - Luciano P. Silva
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, Brazil
| | - Paulo de Souza
- Institute of Physics, University of Brasilia, Brasilia 70910-900, Brazil
| | - Sônia N. Báo
- Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| |
Collapse
|
35
|
Abareshi A, Arshadi Pirlar M, Houshiar M. Experimental and theoretical investigation of the photothermal effect in gold nanorods. NEW J CHEM 2021. [DOI: 10.1039/d0nj04580b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, gold nanorods (GNRs) were synthesized using a seed-mediated route and their photothermal properties were investigated experimentally as well as theoretically.
Collapse
Affiliation(s)
- Afsaneh Abareshi
- Department of Physics
- Shahid Beheshti University
- Tehran 1983969411
- Iran
| | | | | |
Collapse
|
36
|
Jiang C, Zhao H, Xiao H, Wang Y, Liu L, Chen H, Shen C, Zhu H, Liu Q. Recent advances in graphene-family nanomaterials for effective drug delivery and phototherapy. Expert Opin Drug Deliv 2020; 18:119-138. [PMID: 32729733 DOI: 10.1080/17425247.2020.1798400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Owing to the unique properties of graphene, including large specific surface area, excellent thermal conductivity, and optical absorption, graphene-family nanomaterials (GFNs) have attracted extensive attention in biomedical applications, particularly in drug delivery and phototherapy. AREAS COVERED In this review, we point out several challenges involved in the clinical application of GFNs. Then, we provide an overview of the most recent publications about GFNs in biomedical applications, including diverse strategies for improving the biocompatibility, specific targeting and stimuli-responsiveness of GFNs for drug delivery, codelivery of drug and gene, photothermal therapy, photodynamic therapy, and multimodal combination therapy. EXPERT OPINION Although the application of GFNs is still in the preclinical stage, rational modification of GFNs with functional elements or making full use of GFNs-based multimodal combination therapy might show great potential in biomedicine for clinical application.
Collapse
Affiliation(s)
- Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Haiyue Zhao
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Haiyan Xiao
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Huoji Chen
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Hongxia Zhu
- Combining Traditional Chinese and Western Medicine Hospital, Southern Medical University , 510315, Guangzhou, P. R. China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| |
Collapse
|
37
|
Ghamkhari A, Abbaspour-Ravasjani S, Talebi M, Hamishehkar H, Hamblin MR. Development of a graphene oxide-poly lactide nanocomposite as a Smart Drug Delivery System. Int J Biol Macromol 2020; 169:521-531. [PMID: 33340628 DOI: 10.1016/j.ijbiomac.2020.12.084] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/29/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
In this study, a nanoscale graphene oxide polymer composite drug delivery system was synthesized and investigated for possible oral delivery of doxorubicin. A doxorubicin-loaded nanocomposite composed of graphene oxide/poly(2-hydroxyethylmethacrylate)-g-poly(lactide)-b-polyethyleneglycol-b-poly(2-hydroxyethylmethacrylate)-g-poly(lactide) GO/(PHEMA-g-PLA)-b-PEG-b-(PHEMA-g-PLA) was synthesized via reversible addition fragmentation chain (RAFT) and ring open polymerization (ROP). The GO/(PHEMA-g-PLA)-b-PEG-b- (PHEMA-g-PLA) nanocomposites was characterized by scanning electron microscopy (FE-SEM), thermogravimetry (TG), ultraviolet-visible (UV-Vis) spectroscopy, and dynamic light scattering (DLS). Doxorubicin was successfully loaded into the nanocomposite with a small particle size of 51 nm and an encapsulation efficiency (EE) of 82% ±1.12%. The results showed that DOX was attached to the graphene surface via hydrophobic interactions and π-π stacking. DOX release took place under neutral and acidic conditions, reaching 24.7% and 41.2% respectively after 72 h. Cytotoxicity experiments on 4T1 murine breast cancer cells demonstrated the antitumor activity of the DOX@GO nanocomposite. Biocompatibility, cell uptake, DAPI staining, Annexin V/PI double staining, intracellular reactive oxygen species (ROS) assay, and scratch healing assay were measured. The DOX@graphene nanocomposite system could be promising for breast cancer therapy.
Collapse
Affiliation(s)
- Aliyeh Ghamkhari
- Institute of Polymeric Materials, Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| | | | - Mehdi Talebi
- Hematology and Oncology Research Center, Department of Applied Cell Sciences, School of Advance Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa.
| |
Collapse
|
38
|
Han Q, Lau JW, Do TC, Zhang Z, Xing B. Near-Infrared Light Brightens Bacterial Disinfection: Recent Progress and Perspectives. ACS APPLIED BIO MATERIALS 2020; 4:3937-3961. [DOI: 10.1021/acsabm.0c01341] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qinyu Han
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jun Wei Lau
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Thang Cong Do
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhijun Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637549, Singapore
| |
Collapse
|
39
|
Cheng Y, Bao D, Chen X, Wu Y, Wei Y, Wu Z, Li F, Piao JG. Microwave-triggered/HSP-targeted gold nano-system for triple-negative breast cancer photothermal therapy. Int J Pharm 2020; 593:120162. [PMID: 33307159 DOI: 10.1016/j.ijpharm.2020.120162] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Due to the lack of effective therapeutic targets and the passive delivery of a limited quantity of nanoparticles to the tumors, the photothermal conversion agents used in photothermal therapy (PTT) have not been effective in treating triple-negative breast cancer (TNBC). As a result, there is a need to improve the tumor-targeting ability of these photothermal conversion agents. To address this, a microwave-triggered heat shock protein (HSP)-targeted gold nano-system (cmHSP-AuNC), with a gold nanocage (AuNC) as a photothermal conversion agent and anti-HSP monoclonal antibody (cmHSP) as a targeting ligand, was fabricated. cmHSP-AuNC was characterized based on morphology, particle size, zeta potentials, absorption spectrum, and photothermal conversion ability. The expression of HSP70 in 4T1 cells after microwave irradiation was verified by western blotting, and the optimal treatment conditions to achieve the highest expression were determined. Both in vitro and in vivo results indicated that the induction through microwave irradiation could effectively activate the HSP70 overexpression in TNBC, thereby significantly improving the targeting ability, tumor accumulation and anti-tumor efficacy of cmHSP-AuNC. This study proposes a promising strategy for improving the targeting ability and therapeutic efficacy of PTT.
Collapse
Affiliation(s)
- Ying Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dandan Bao
- Department of Dermatology & Cosmetology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Xiaojie Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yajun Wu
- Pharmacy Department, Zhejiang Hospital, Hangzhou 310013, China
| | - Yinghui Wei
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhibing Wu
- Department of Oncology, Zhejiang Hospital, Hangzhou 310013, China.
| | - Fanzhu Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Ji-Gang Piao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
40
|
Lima-Sousa R, de Melo-Diogo D, Alves CG, Cabral CS, Miguel SP, Mendonça AG, Correia IJ. Injectable in situ forming thermo-responsive graphene based hydrogels for cancer chemo-photothermal therapy and NIR light-enhanced antibacterial applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111294. [DOI: 10.1016/j.msec.2020.111294] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 02/01/2023]
|
41
|
Wen H, Tamarov K, Happonen E, Lehto V, Xu W. Inorganic Nanomaterials for Photothermal‐Based Cancer Theranostics. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Huang Wen
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Konstantin Tamarov
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Emilia Happonen
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Vesa‐Pekka Lehto
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Wujun Xu
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| |
Collapse
|
42
|
Mó I, Alves CG, de Melo-Diogo D, Lima-Sousa R, Correia IJ. Assessing the Combinatorial Chemo-Photothermal Therapy Mediated by Sulfobetaine Methacrylate-Functionalized Nanoparticles in 2D and 3D In Vitro Cancer Models. Biotechnol J 2020; 15:e2000219. [PMID: 33063471 DOI: 10.1002/biot.202000219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Combinatorial cancer therapies mediated by nanomaterials can potentially overcome the limitations of conventional treatments. These therapies are generally investigated using 2D in vitro cancer models, leading to an inaccurate screening. Recently, 3D in vitro spheroids have emerged in the preclinical testing stage of nanomedicines due to their ability to mimic key features of the in vivo solid tumors. Investigate the chemo-photothermal therapy mediated by Doxorubicin and IR780 loaded sulfobetaine methacrylate functionalized nanoparticles, for the first time, using monolayers of cancer cells and spheroids. In the 2D cancer models, the nanomaterials' mediated photothermal therapy, chemotherapy, and chemo-photothermal therapy reduced cancer cells' viability to about 58%, 29%, and 1%, respectively. Interestingly, when the nanomaterials' mediated photothermal therapy is tested on 3D spheroids, no cytotoxic effect is noticed. In contrast, the nanostructures' induced chemotherapy decreased spheroids' viability to 42%. On the other hand, nanomaterials' mediated chemo-photothermal therapy diminished spheroids' viability to 16%, being the most promising therapeutic modality. These results demonstrate the importance of using 3D spheroids during the in vitro screening of single/combinatorial therapies mediated by nanomaterials.
Collapse
Affiliation(s)
- Inês Mó
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal.,CIEPQPF - Departamento de Engenharia Química, Rua Sílvio Lima, Universidade de Coimbra, Coimbra, 3030-790, Portugal
| |
Collapse
|
43
|
Nikazar S, Barani M, Rahdar A, Zoghi M, Kyzas GZ. Photo‐ and Magnetothermally Responsive Nanomaterials for Therapy, Controlled Drug Delivery and Imaging Applications. ChemistrySelect 2020. [DOI: 10.1002/slct.202002978] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sohrab Nikazar
- Chemical Engineering Faculty Engineering College, University of Tehran Tehran P.O. Box:14155-6455 Iran
| | - Mahmood Barani
- Department of Chemistry Shahid Bahonar University of Kerman Kerman Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of science University of Zabol 538-98615 Zabol Iran
| | - Maryam Zoghi
- Chemical Engineering Faculty Engineering College, University of Tehran Tehran P.O. Box:14155-6455 Iran
| | - George Z. Kyzas
- Department of Chemistry International Hellenic University Kavala 65404 Greece
| |
Collapse
|
44
|
Gonçalves ASC, Rodrigues CF, Moreira AF, Correia IJ. Strategies to improve the photothermal capacity of gold-based nanomedicines. Acta Biomater 2020; 116:105-137. [PMID: 32911109 DOI: 10.1016/j.actbio.2020.09.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
The plasmonic photothermal properties of gold nanoparticles have been widely explored in the biomedical field to mediate a photothermal effect in response to the irradiation with an external light source. Particularly, in cancer therapy, the physicochemical properties of gold-based nanomaterials allow them to efficiently accumulate in the tumor tissue and then mediate the light-triggered thermal destruction of cancer cells with high spatial-temporal control. Nevertheless, the gold nanomaterials can be produced with different shapes, sizes, and organizations such as nanospheres, nanorods, nanocages, nanoshells, and nanoclusters. These gold nanostructures will present different plasmonic photothermal properties that can impact cancer thermal ablation. This review analyses the application of gold-based nanomaterials in cancer photothermal therapy, emphasizing the main parameters that affect its light-to-heat conversion efficiency and consequently the photothermal potential. The different shapes/organizations (clusters, shells, rods, stars, cages) of gold nanomaterials and the parameters that can be fine-tuned to improve the photothermal capacity are presented. Moreover, the gold nanostructures combination with other materials (e.g. silica, graphene, and iron oxide) or small molecules (e.g. indocyanine green and IR780) to improve the nanomaterials photothermal capacity is also overviewed.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Carolina F Rodrigues
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - André F Moreira
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Ilídio J Correia
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CIEPQF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| |
Collapse
|
45
|
Huang Y, Zeng G, Xin Q, Yang J, Zeng C, Tang K, Yang S, Tang X. Carbon nanoparticles suspension injection for photothermal therapy of xenografted human thyroid carcinoma
in vivo. MedComm (Beijing) 2020; 1:202-210. [PMID: 34766118 PMCID: PMC8491229 DOI: 10.1002/mco2.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022] Open
Abstract
Due to the unique structure, carbon nanomaterials could convert near‐infrared (NIR) light into heat efficiently in tumor ablation using photothermal therapy (PTT). Carbon nanoparticles suspension injection (CNSI) is a commercial imaging reagent for lymph node mapping. CNSI has similar structural characteristics to other carbon nanomaterials, and thus, might be applied as photothermal agent. Herein, we evaluated the photothermal conversion ability and therapeutic effects of CNSI on thyroid carcinoma. CNSI was composed by carbon nanoparticle cores and polyvinylpyrrolidone K30 as the dispersion reagent. CNSI absorbed NIR light efficiently following the Lambert‐Beer law. The temperature of CNSI dispersion increased quickly under the NIR irradiation. CNSI killed the TCP‐1 thyroid carcinoma cells under 808 nm laser irradiation at 0.5 W/cm2, while CNSI or NIR irradiation treatment alone did not demonstrate this effect. Temperature increases were observed in tumor injected with CNSI under NIR irradiation. After three irradiation treatments, the tumor growth was completely blocked and the disruption of cellular structure was observed. When the tumor temperatures reached 53°C during treatment, the tumors did not recur within the observation period of 3 months. Our results suggested that CNSI might be used for PTT through “off label” use to benefit the patients immediately.
Collapse
Affiliation(s)
- Yuanfang Huang
- Sichuan Enray Pharmaceutical Sciences Company Chengdu P. R. China
| | - Guangfu Zeng
- Sichuan Enray Pharmaceutical Sciences Company Chengdu P. R. China
| | - Qian Xin
- Sichuan Enray Pharmaceutical Sciences Company Chengdu P. R. China
| | - Jinmei Yang
- Sichuan Enray Pharmaceutical Sciences Company Chengdu P. R. China
| | - Cheng Zeng
- Sichuan Enray Pharmaceutical Sciences Company Chengdu P. R. China
| | - Kexin Tang
- College of Chemistry and Environment Protection Engineering Southwest Minzu University Chengdu P. R. China
| | - Sheng‐Tao Yang
- College of Chemistry and Environment Protection Engineering Southwest Minzu University Chengdu P. R. China
| | - Xiaohai Tang
- Sichuan Enray Pharmaceutical Sciences Company Chengdu P. R. China
| |
Collapse
|
46
|
Zhao Y, Chen BQ, Kankala RK, Wang SB, Chen AZ. Recent Advances in Combination of Copper Chalcogenide-Based Photothermal and Reactive Oxygen Species-Related Therapies. ACS Biomater Sci Eng 2020; 6:4799-4815. [DOI: 10.1021/acsbiomaterials.0c00830] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yi Zhao
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Biao-Qi Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| |
Collapse
|
47
|
Strojny B, Jaworski S, Misiewicz-Krzemińska I, Isidro I, Rojas EA, Gutiérrez NC, Grodzik M, Koczoń P, Chwalibog A, Sawosz E. Effect of Graphene Family Materials on Multiple Myeloma and Non-Hodgkin's Lymphoma Cell Lines. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3420. [PMID: 32756412 PMCID: PMC7436021 DOI: 10.3390/ma13153420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022]
Abstract
The interest around the graphene family of materials is constantly growing due to their potential application in biomedical fields. The effect of graphene and its derivatives on cells varies amongst studies depending on the cell and tissue type. Since the toxicity against non-adherent cell lines has barely been studied, we investigated the effect of graphene and two different graphene oxides against four multiple myeloma cell lines, namely KMS-12-BM, H929, U226, and MM.1S, as well as two non-Hodgkin lymphoma cells lines, namely KARPAS299 and DOHH-2. We performed two types of viability assays, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide conversion) and ATP (adenosine triphosphate detection), flow cytometry analysis of apoptosis induction and cell cycle, cell morphology, and direct interaction analysis using two approaches-visualization of living cells by two different systems, and visualization of fixed and dyed cells. Our results revealed that graphene and graphene oxides exhibit low to moderate cytotoxicity against cells, despite visible interaction between the cells and graphene oxide. This creates possibilities for the application of the selected graphene materials for drug delivery systems or theragnostics in hematological malignancies; however, further detailed studies are necessary to explain the nature of interactions between the cells and the materials.
Collapse
Affiliation(s)
- Barbara Strojny
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (S.J.); (M.G.); (E.S.)
| | - Sławomir Jaworski
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (S.J.); (M.G.); (E.S.)
| | - Irena Misiewicz-Krzemińska
- Hematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.M.-K.); (I.I.); (E.A.R.); (N.C.G.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Isabel Isidro
- Hematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.M.-K.); (I.I.); (E.A.R.); (N.C.G.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Elizabeta A. Rojas
- Hematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.M.-K.); (I.I.); (E.A.R.); (N.C.G.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Norma C. Gutiérrez
- Hematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.M.-K.); (I.I.); (E.A.R.); (N.C.G.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Marta Grodzik
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (S.J.); (M.G.); (E.S.)
| | - Piotr Koczoń
- Department of Chemistry, Institute of Food Science, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870 Frederiksberg, Denmark;
| | - Ewa Sawosz
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (S.J.); (M.G.); (E.S.)
| |
Collapse
|
48
|
Innocenzi P, Stagi L. Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem Sci 2020; 11:6606-6622. [PMID: 33033592 PMCID: PMC7499860 DOI: 10.1039/d0sc02658a] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/13/2020] [Indexed: 12/19/2022] Open
Abstract
The appearance of new and lethal viruses and their potential threat urgently requires innovative antiviral systems. In addition to the most common and proven pharmacological methods, nanomaterials can represent alternative resources to fight viruses at different stages of infection, by selective action or in a broad spectrum. A fundamental requirement is non-toxicity. However, biocompatible nanomaterials have very often little or no antiviral activity, preventing their practical use. Carbon-based nanomaterials have displayed encouraging results and can present the required mix of biocompatibility and antiviral properties. In the present review, the main candidates for future carbon nanometric antiviral systems, namely graphene, carbon dots and fullerenes, have been critically analysed. In general, different carbon nanostructures allow several strategies to be applied. Some of the materials have peculiar antiviral properties, such as singlet oxygen emission, or the capacity to interfere with virus enzymes. In other cases, nanomaterials have been used as a platform for functional molecules able to capture and inhibit viral activity. The use of carbon-based biocompatible nanomaterials as antivirals is still an almost unexplored field, while the published results show promising prospects.
Collapse
Affiliation(s)
- Plinio Innocenzi
- Department of Chemistry and Pharmacy , Laboratory of Materials Science and Nanotechnology , CR-INSTM , University of Sassari , via Vienna 2 , Sassari , 07100 , Italy . ;
| | - Luigi Stagi
- Department of Chemistry and Pharmacy , Laboratory of Materials Science and Nanotechnology , CR-INSTM , University of Sassari , via Vienna 2 , Sassari , 07100 , Italy . ;
| |
Collapse
|
49
|
Palmieri V, Spirito MD, Papi M. Graphene-based scaffolds for tissue engineering and photothermal therapy. Nanomedicine (Lond) 2020; 15:1411-1417. [DOI: 10.2217/nnm-2020-0050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Researchers have been creating 3D replicas of damaged tissues for millions of patients by using innovative biomaterials. While these scaffolds have regenerative properties, it would be beneficial if they could be utilized for local therapies, such as for cancer treatment. This report discusses the main advances in graphene scaffold design for near-infrared (NIR) photothermal therapy (PTT). NIR-PTT is a promising alternative for cancer cell killing, mediated by an increase of temperature due to NIR light-absorbers delivered to the tumor proximity. Graphene is a bidimensional material largely exploited in nanomedicine for its unique properties, such as high growth factor loading, which induces cell differentiation and its capacity to absorb NIR light. Here we cover aspects of future research in multifunctional graphene implants for cancer therapy and tissue regeneration.
Collapse
Affiliation(s)
- Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Roma, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Roma, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Roma, Italy
| |
Collapse
|
50
|
Al-Kasasbeh R, Brady AJ, Courtenay AJ, Larrañeta E, McCrudden MTC, O'Kane D, Liggett S, Donnelly RF. Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches. Drug Deliv Transl Res 2020; 10:690-705. [PMID: 32103450 PMCID: PMC7228965 DOI: 10.1007/s13346-020-00727-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hydrogel-forming microneedle array patches (MAPs) have been proposed as viable clinical tools for patient monitoring purposes, providing an alternative to traditional methods of sample acquisition, such as venepuncture and intradermal sampling. They are also undergoing investigation in the management of non-melanoma skin cancers. In contrast to drug or vaccine delivery, when only a small number of MAP applications would be required, hydrogel MAPs utilised for sampling purposes or for tumour eradication would necessitate regular, repeat applications. Therefore, the current study was designed to address one of the key translational aspects of MAP development, namely patient safety. We demonstrate, for the first time in human volunteers, that repeat MAP application and wear does not lead to prolonged skin reactions or prolonged disruption of skin barrier function. Importantly, concentrations of specific systemic biomarkers of inflammation (C-reactive protein (CRP); tumour necrosis factor-α (TNF-α)); infection (interleukin-1β (IL-1β); allergy (immunoglobulin E (IgE)) and immunity (immunoglobulin G (IgG)) were all recorded over the course of this fixed study period. No biomarker concentrations above the normal, documented adult ranges were recorded over the course of the study, indicating that no systemic reactions had been initiated in volunteers. Building upon the results of this study, which serve to highlight the safety of our hydrogel MAP, we are actively working towards CE marking of our MAP technology as a medical device.
Collapse
Affiliation(s)
- Rehan Al-Kasasbeh
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Aaron J Brady
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
- Belfast Health and Social Care Trust, Belfast City Hospital, 51 Lisburn Road, Belfast, BT9 7AB, UK
| | - Aaron J Courtenay
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | | - Donal O'Kane
- Belfast Health and Social Care Trust, Royal Victoria Hospital, 274 Grosvenor Road, Belfast, BT12 6BA, UK
| | - Stephen Liggett
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|