1
|
Liang X, Chen H, Zhang R, Xu Z, Zhang G, Xu C, Li Y, Zhang L, Xu FJ. Herbal micelles-loaded ROS-responsive hydrogel with immunomodulation and microenvironment reconstruction for diabetic wound healing. Biomaterials 2025; 317:123076. [PMID: 39805188 DOI: 10.1016/j.biomaterials.2024.123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Persistent inflammation is a major cause of diabetic wounds that are difficult to heal. This is manifested in diabetic wounds with excessive reactive oxygen clusters (ROS), advanced glycation end products (AGE) and other inflammatory factors, and difficulty in polarizing macrophages toward inhibiting inflammation. Berberine is a natural plant molecule that inhibits inflammation; however, its low solubility limits its biological function through cytosis. In this study, we designed F127 micelles to encapsulate berberine with the aim of improving its solubility and bioavailability. Meanwhile, in order to achieve effective drug delivery at the wound site, we designed an injectable ferrocene-cyclodextrin self-assembled oxidation-reactive supramolecular hydrogel drug delivery system. Cellular experiments have shown that the hydrogel can reduce intracellular ROS and AGE production, attenuate cellular damage, promote macrophage polarization toward inhibition of inflammation, and reduce the secretion of inflammatory factors. In an animal model of diabetic mice, this hydrogel dressing reduces the level of inflammation in diabetic wounds, optimizes collagen deposition in diabetic wounds, and ultimately achieves high-quality diabetic wound healing. The work offers a straightforward and effective solution to the challenge of administering hydrophobic anti-inflammatory agents in the context of diabetic wound therapy.
Collapse
Affiliation(s)
- Xiaoyang Liang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Honggui Chen
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhixuan Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Bahndare S, Mathure D, Ranpise H, Salunke M, Awasthi R. Surface-modified liposomal in-situ nasal gel enhances brain targeting of berberine hydrochloride for Alzheimer's therapy: optimization and in vivo studies. J Liposome Res 2024:1-18. [PMID: 39585246 DOI: 10.1080/08982104.2024.2431908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
This work aimed to formulate surface-modified berberine hydrochloride (BER)-loaded liposomes containing in-situ nasal gel for bran targeting. The liposomes were prepared by ethanol-injection method and optimized following a 32 full-factorial design. Size, morphology, zeta potential, ex-vivo permeation, and in-vitro release were estimated. The surface of optimized liposome was modified with ascorbic acid. The size of surface-modified liposomes was bigger (191.4 nm) than the unmodified liposomes (171 nm). Surface-modified liposomes were embedded in in-situ gel using poloxamer and Carbopol 934P. Liposomal in-situ gel showed higher permeation (71.94%) in contrast to the plain gel (46.64%). In-vivo pharmacokinetic examination of payload from liposomal in-situ gel displayed higher concentration in brain (Cmax of 93.50 ng/mL). The liposomal in-situ nasal gel had a higher drug targeting efficiency (138.43%) and a higher drug targeting potential (27.77%) confirming improved brain targeting. In male Wistar rats, the pharmacodynamic parameters (path length and escape latency) were evaluated with trimethyl tin-induced neurodegeneration. Animals treated with BER-loaded in-situ gel significantly decreased escape latency and path length in comparison to the control group. Histopathological assessment showed that the formulated gel was safe for intranasal administration. The developed formulation has the potential to effectively enhance the efficacy of BER in Alzheimer's disease management.
Collapse
Affiliation(s)
- Sejal Bahndare
- Department of Pharmaceutics, Bharati Vidyappeth's Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Dyandevi Mathure
- Department of Pharmaceutics, Bharati Vidyappeth's Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Hemantkumar Ranpise
- Department of Pharmaceutics, RMPs Bhalchandra College of Pharmacy, Pune, India
| | - Malati Salunke
- Department of Pharmacognosy, Bharati Vidyappeth's Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, India
| |
Collapse
|
3
|
Zeng H, Lu H, Yang J, Hu P. An Update on Recent Drug Delivery Systems Targeting Brain Diseases via the Transnasal Pathway. Pharm Res 2024; 41:2121-2141. [PMID: 39477900 DOI: 10.1007/s11095-024-03790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVE To explore the potential of transnasal drug delivery systems (DDS) as an effective means of bypassing the bloodbrain barrier (BBB) for enhanced central nervous system (CNS) targeting, aiming to improve therapeutic outcomes for CNS disorders while reducing systemic side effects. METHODS A review of current and emerging DDS technologies, including polymer nanoparticles, liposomes, and micelles, was conducted to assess their suitability for precision-targeted delivery to the brain through the transnasal route. RESULTS The investigated DDS demonstrate promising capabilities for CNS targeting via the nasal pathway, effectively preserving both the nasal mucosa and CNS integrity. These systems enhance drug precision within neural tissues, potentially improving therapeutic outcomes without harming adjacent tissues. CONCLUSIONS Transnasal DDS offer a promising alternative to traditional delivery methods, with significant potential to advance the treatment of cerebrovascular diseases, neurodegenerative disorders, brain tumors, and psychiatric conditions. This approach represents an evolving frontier in neurotherapeutics, with the potential to transform CNS drug delivery practices.
Collapse
Affiliation(s)
- Huiying Zeng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, Guangdong, P. R. China
- College of Pharmacy, Jinan University, Guangzhou, 511436, Guangdong, P. R. China
| | - Huangjie Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, Guangdong, P. R. China
- College of Pharmacy, Jinan University, Guangzhou, 511436, Guangdong, P. R. China
| | - Jie Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, Guangdong, P. R. China
- College of Pharmacy, Jinan University, Guangzhou, 511436, Guangdong, P. R. China
| | - Ping Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, Guangdong, P. R. China.
- College of Pharmacy, Jinan University, Guangzhou, 511436, Guangdong, P. R. China.
| |
Collapse
|
4
|
Sunhe YX, Zhang YH, Fu RJ, Xu DQ, Tang YP. Neuroprotective effect and preparation methods of berberine. Front Pharmacol 2024; 15:1429050. [PMID: 39309003 PMCID: PMC11412855 DOI: 10.3389/fphar.2024.1429050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Berberine (BBR) is a natural alkaloid, which has played an important role in the field of medicine since its discovery in the late 19th century. However, the low availability of BBR in vivo prevents its full effect. In recent years, a large number of studies confirmed that BBR has a protective effect on the nervous system through various functions, yet the issue of the inability to systematically understand the protection of BBR on the nervous system remains a gap that needs to be addressed. Many existing literature introductions about berberine in neurodegenerative diseases, but the role of berberine in the nervous system goes far beyond these. Different from these literatures, this review is divided into three parts: preparation method, mechanism, and therapeutic effect. Various dosage forms of BBR and their preparation methods are added, in order to provide a reasonable choice of BBR, and help to solve the problem of low bioavailability in treatment. More importantly, we more comprehensively summarize the mechanism of BBR to protect the nervous system, in addition to the treatment of neurodegenerative diseases (anti-oxidative stress, anti-neuroinflammation, regulation of apoptosis), two extra mechanisms of berberine for the protection of the nervous system were also introduced: bidirectional regulation of autophagy and promote angiogenesis. Also, we have clarified the precise mechanism by which BBR has a therapeutic effect not only on neurodegenerative illnesses but also on multiple sclerosis, gliomas, epilepsy, and other neurological conditions. To sum up, we hope that these can evoke more efforts to comprehensively utilize of BBR nervous system, and to promote the application of BBR in nervous system protection.
Collapse
Affiliation(s)
| | | | | | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
5
|
Wang H, Jiang M, Ma S, Hu Y, Zhang X, Zhu H, Zhang J, Wang Y. Formation mechanism, prevention of malignant ascites effusion and reduction of intestinal mucosal irritation of natural microemulsion from Euphorbia lathyris Pulveratum. Biomed Pharmacother 2024; 178:117253. [PMID: 39111084 DOI: 10.1016/j.biopha.2024.117253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/25/2024] Open
Abstract
Malignant ascites effusion (MAE) is a common complication of advanced malignant tumors with limited treatments. Euphorbia lathyris (EL) has a long history of application in patients with edema and ascites. Herein, we reported for the first time a mode in which EL and EL Pulveratum (PEL) spontaneously formed natural microemulsions (ELM and PELM) without the addition of any carriers and excipients, and found that the protein and phospholipid contained in them encapsulated fatty oil and diterpenoid esters through non-covalent interactions. The denaturation and degradation of protein in PELM resulted in stronger binding of diterpenoid esters to the hydrophobic region of protein, which facilitated the sustained and slow release of diterpenoid esters and improved their bioavailability in vivo, thereby retaining the efficacy of preventing MAE while alleviating the irritation of intestinal mucosa. The mechanism by which PELM retained efficacy might be related to increased feces moisture and urine volume, and decreased expression of AVPR2, cAMP, PKA and AQP3 in MAE mice. And its mechanism of reducing intestinal mucosal irritation was related to decreased cell apoptosis, amelioration of oxidative stress, elevation of mitochondrial membrane potential, and up-regulation of Occludin and Claudin-1 expression in IEC-6 cells. This nano-adjuvant-free natural microemulsions may be a promising therapeutic strategy in the field of phytochemistry for promoting the application of natural and efficient nano-aggregates spontaneously formed by medicinal plants in MAE, and provide a new perspective for advancing the development of the fusion of Chinese herbal medicine and nanomedicine and its clinical translation.
Collapse
Affiliation(s)
- Huinan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Mingrui Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Siyuan Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yufeng Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Xinning Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Haiting Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Junli Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yingzi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| |
Collapse
|
6
|
Clemence BF, Xiao L, Yang G. Oral Administration of Berberine Hydrochloride Based on Chitosan/Carboxymethyl-β-Cyclodextrin Hydrogel. Polymers (Basel) 2024; 16:2368. [PMID: 39204588 PMCID: PMC11360765 DOI: 10.3390/polym16162368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, a novel oral formulation of berberine hydrochloride (BBH) hydrogel was successfully synthesized through physical cross-linking using chitosan (CS) and carboxymethyl-β-cyclodextrin (CMCD). The characterization results confirmed the successful synthesis of the CS/CMCD hydrogel and the subsequent loading of BBH into this composite (CS/CMCD/BBH) was effectively accomplished. The BBH was used as a model drug and the resulting hydrogel demonstrated a sustained drug release profile. In addition to its improved solubility and sustained release characteristics, the hydrogel exhibited excellent antibacterial activity against common pathogens such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Candida albicans (C. albicans). Additionally, in vitro studies indicated that the hydrogel was not cytotoxic to NIH3T3 and HaCaT cells, suggesting its safety for biomedical applications. This lack of cytotoxic effects, combined with the mechanical strength, solubility improvements, and antibacterial properties of the hydrogel, positions the CS/CMCD/BBH hydrogel as a promising candidate for the effective oral delivery of BBH. By addressing the solubility and delivery challenges of BBH, this hydrogel offers a viable solution for the oral administration of BBH, with potential applications in various biomedical fields.
Collapse
Affiliation(s)
- Bukatuka Futila Clemence
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Lin Xiao
- School of Biomedical Engineering, Sun Yat-Set University, Shenzhen 518107, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| |
Collapse
|
7
|
Zhai Z, Niu J, Xu L, Xu J. Advanced Application of Polymer Nanocarriers in Delivery of Active Ingredients from Traditional Chinese Medicines. Molecules 2024; 29:3520. [PMID: 39124924 PMCID: PMC11314021 DOI: 10.3390/molecules29153520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Active ingredients from Traditional Chinese Medicines (TCMs) have been a cornerstone of healthcare for millennia, offering a rich source of bioactive compounds with therapeutic potential. However, the clinical application of TCMs is often limited by challenges such as poor solubility, low bioavailability, and variable pharmacokinetics. To address these issues, the development of advanced polymer nanocarriers has emerged as a promising strategy for the delivery of TCMs. This review focuses on the introduction of common active ingredients from TCMs and the recent advancements in the design and application of polymer nanocarriers for enhancing the efficacy and safety of TCMs. We begin by discussing the unique properties of TCMs and the inherent challenges associated with their delivery. We then delve into the types of polymeric nanocarriers, including polymer micelles, polymer vesicles, polymer hydrogels, and polymer drug conjugates, highlighting their application in the delivery of active ingredients from TCMs. The main body of the review presents a comprehensive analysis of the state-of-the-art nanocarrier systems and introduces the impact of these nanocarriers on the solubility, stability, and bioavailability of TCM components. On the basis of this, we provide an outlook on the future directions of polymer nanocarriers in TCM delivery. This review underscores the transformative potential of polymer nanocarriers in revolutionizing TCM delivery, offering a pathway to harness the full therapeutic potential of TCMs while ensuring safety and efficacy in a modern medical context.
Collapse
Affiliation(s)
- Zhiyuan Zhai
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianda Niu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Liguo Xu
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Jinbao Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Galindo AN, Frey Rubio DA, Hettiaratchi MH. Biomaterial strategies for regulating the neuroinflammatory response. MATERIALS ADVANCES 2024; 5:4025-4054. [PMID: 38774837 PMCID: PMC11103561 DOI: 10.1039/d3ma00736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/07/2024] [Indexed: 05/24/2024]
Abstract
Injury and disease in the central nervous system (CNS) can result in a dysregulated inflammatory environment that inhibits the repair of functional tissue. Biomaterials present a promising approach to tackle this complex inhibitory environment and modulate the mechanisms involved in neuroinflammation to halt the progression of secondary injury and promote the repair of functional tissue. In this review, we will cover recent advances in biomaterial strategies, including nanoparticles, hydrogels, implantable scaffolds, and neural probe coatings, that have been used to modulate the innate immune response to injury and disease within the CNS. The stages of inflammation following CNS injury and the main inflammatory contributors involved in common neurodegenerative diseases will be discussed, as understanding the inflammatory response to injury and disease is critical for identifying therapeutic targets and designing effective biomaterial-based treatment strategies. Biomaterials and novel composites will then be discussed with an emphasis on strategies that deliver immunomodulatory agents or utilize cell-material interactions to modulate inflammation and promote functional tissue repair. We will explore the application of these biomaterial-based strategies in the context of nanoparticle- and hydrogel-mediated delivery of small molecule drugs and therapeutic proteins to inflamed nervous tissue, implantation of hydrogels and scaffolds to modulate immune cell behavior and guide axon elongation, and neural probe coatings to mitigate glial scarring and enhance signaling at the tissue-device interface. Finally, we will present a future outlook on the growing role of biomaterial-based strategies for immunomodulation in regenerative medicine and neuroengineering applications in the CNS.
Collapse
Affiliation(s)
- Alycia N Galindo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - David A Frey Rubio
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - Marian H Hettiaratchi
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| |
Collapse
|
9
|
Liu Y, Tan Y, Cheng G, Ni Y, Xie A, Zhu X, Yin C, Zhang Y, Chen T. Customized Intranasal Hydrogel Delivering Methylene Blue Ameliorates Cognitive Dysfunction against Alzheimer's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307081. [PMID: 38395039 DOI: 10.1002/adma.202307081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The accumulation of hyperphosphorylated tau protein aggregates is a key pathogenic event in Alzheimer's disease (AD) and induces mitochondrial dysfunction and reactive oxygen species overproduction. However, the treatment of AD remains challenging owning to the hindrance caused by the blood-brain barrier (BBB) and the complex pathology of AD. Nasal delivery represents an effective means of circumventing the BBB and delivering drugs to the brain. In this study, black phosphorus (BP) is used as a drug carrier, as well as an antioxidant, and loaded with a tau aggregation inhibitor, methylene blue (MB), to obtain BP-MB. For intranasal (IN) delivery, a thermosensitive hydrogel is fabricated by cross-linking carboxymethyl chitosan and aldehyde Pluronic F127 (F127-CHO) micelles. The BP-MB nanocomposite is incorporated into the hydrogel to obtain BP-MB@Gel. BP-MB@Gel could be injected intranasally, providing high nasal mucosal retention and controlled drug release. After IN administration, BP-MB is continuously released and delivered to the brain, exerting synergistic therapeutic effects by suppressing tau neuropathology, restoring mitochondrial function, and alleviating neuroinflammation, thus inducing cognitive improvements in mouse models of AD. These findings highlight a potential strategy for brain-targeted drug delivery in the management of the complex pathologies of AD.
Collapse
Affiliation(s)
- Yujing Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yun Tan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guopan Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Aihua Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaozhen Zhu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chao Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| |
Collapse
|
10
|
Wang M, Ma X, Zong S, Su Y, Su R, Zhang H, Liu Y, Wang C, Li Y. The prescription design and key properties of nasal gel for CNS drug delivery: A review. Eur J Pharm Sci 2024; 192:106623. [PMID: 37890640 DOI: 10.1016/j.ejps.2023.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Central nervous system (CNS) diseases are among the major health problems. However, blood-brain barrier (BBB) makes traditional oral and intravenous delivery of CNS drugs inefficient. The unique direct connection between the nose and the brain makes nasal administration a great potential advantage in CNS drugs delivery. However, nasal mucociliary clearance (NMCC) limits the development of drug delivery systems. Appropriate nasal gel viscosity alleviates NMCC to a certain extent, gels based on gellan gum, chitosan, carbomer, cellulose and poloxamer have been widely reported. However, nasal gel formulation design and key properties for alleviating NMCC have not been clearly discussed. This article summarizes gel formulations of different polymers in existing nasal gel systems, and attempts to provide a basis for researchers to conduct in-depth research on the key characteristics of gel matrix against NMCC.
Collapse
Affiliation(s)
- Miao Wang
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xinyu Ma
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Shiyu Zong
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China; Key Laboratory of TCM Drug Delivery, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China
| | - Yaqiong Su
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an 710069, China
| | - Rui Su
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hong Zhang
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China; Key Laboratory of TCM Drug Delivery, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China
| | - Yang Liu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China; Key Laboratory of TCM Drug Delivery, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China
| | - Chunliu Wang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China; Key Laboratory of TCM Drug Delivery, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China.
| | - Ye Li
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China; Key Laboratory of TCM Drug Delivery, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China.
| |
Collapse
|
11
|
Shen R, Li Z, Wang H, Wang Y, Li X, Yang Q, Fu Y, Li M, Gao LN. Chinese Materia Medica in Treating Depression: The Role of Intestinal Microenvironment. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1927-1955. [PMID: 37930334 DOI: 10.1142/s0192415x23500854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Depression is a highly heterogeneous mental illness. Drug treatment is currently the main therapeutic strategy used in the clinic, but its efficacy is limited by the modulation of a single target, slow onset, and side effects. The gut-brain axis is of increasing interest because intestinal microenvironment disorders increase susceptibility to depression. In turn, depression affects intestinal microenvironment homeostasis by altering intestinal tissue structure, flora abundance and metabolism, hormone secretion, neurotransmitter transmission, and immune balance. Depression falls into the category of "stagnation syndrome" according to Traditional Chinese Medicine (TCM), which further specifies that "the heart governs the spirit and is exterior-interior with the small intestine". However, the exact mechanisms of the means by which the disordered intestinal microenvironment affects depression are still unclear. Here, we present an overview of how the Chinese materia medica (CMM) protects against depression by repairing intestinal microenvironment homeostasis. We review the past five years of research progress in classical antidepressant TCM formulae and single CMMs on regulating the intestinal microenvironment for the treatment of depression. We then analyze and clarify the multitarget functions of CMM in repairing intestinal homeostasis and aim to provide a new theoretical basis for CMM clinical application in the treatment of depression.
Collapse
Affiliation(s)
- Ruhui Shen
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Zhipeng Li
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong 272067, P. R. China
| | - Yongchao Wang
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong 276800, P. R. China
| | - Xiaofang Li
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong 276800, P. R. China
| | - Qian Yang
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Yingjie Fu
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Ming Li
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Li-Na Gao
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong 272067, P. R. China
- Jining Key Laboratory of Depression Prevention and Treatment, Jining Medical University, Jining, Shandong 272067, P. R. China
| |
Collapse
|
12
|
Liu L, Liu M, Xiu J, Zhang B, Hu H, Qiao M, Chen D, Zhang J, Zhao X. Stimuli-responsive nanoparticles delivered by a nasal-brain pathway alleviate depression-like behavior through extensively scavenging ROS. Acta Biomater 2023; 171:451-465. [PMID: 37778483 DOI: 10.1016/j.actbio.2023.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Depression is one of the most common mental diseases, which seriously affects patients' physical and mental health. Emerging evidence has indicated that oxidative stress (OS) is a major cause of neurodegeneration involved in the pathogenesis of depression. Consequently, targeted reactive oxygen species (ROS) elimination is regarded as a promising strategy for efficient depression therapy. In addition, insufficient brain drug delivery is the main obstacle to depression therapy owing to the presence of the blood-brain barrier (BBB). To achieve the goals of bypassing the BBB and promoting antioxidant therapy for depression, a broad-spectrum ROS scavenging NPs was rationally designed through a nasal-brain pathway developed for combined ROS scavenging and brain drug delivery. A hexa-arginine (R6) modified ROS-responsive dextran (DEX) derivate was synthesized for antidepressant olanzapine (Olz) and H2 donor amino borane (AB) loading to prepare Olz/RDPA nanoparticles (NPs). Subsequently, the NPs were dispersed into a thermoresponsive hydrogel system based on poloxamer. In vitro and in vivo results demonstrated that Olz/RDPA in situ thermoresponsive hydrogel system could effectively deliver NPs to the brain via the nasal-brain pathway and alleviate depression-like behaviors through combined ROS depletion and inhibition of 5-HT dysfunction of the oxidative stress-induced. The proposed ROS-scavenging nanotherapeutic would open a new window for depression treatment. STATEMENT OF SIGNIFICANCE: ROS is an innovative therapeutic target involving the pathology of depression whereas targeted delivery of ROS scavenging has not been achieved yet. In the current study, ROS-responsive nanoparticles (Olz/RDPA NPs) were prepared and dispersed in a thermosensitive hydrogel for delivery through the nasal-brain pathway for the treatment of depression. Sufficient ROS depletion and improvement of delivery capacity by the nasal-brain pathway effectively could reverse oxidative stress and alleviate depressive-like behavior. Collectively, these nanoparticles may represent a promising strategy for the treatment of depression.
Collapse
Affiliation(s)
- Lin Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Min Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jingya Xiu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Bowen Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Haiyang Hu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Mingxi Qiao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Dawei Chen
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jiulong Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Xiuli Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
13
|
Feng JH, Chen K, Shen SY, Luo YF, Liu XH, Chen X, Gao W, Tong YR. The composition, pharmacological effects, related mechanisms and drug delivery of alkaloids from Corydalis yanhusuo. Biomed Pharmacother 2023; 167:115511. [PMID: 37729733 DOI: 10.1016/j.biopha.2023.115511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
Corydalis yanhusuo W. T. Wang, also known as yanhusuo, yuanhu, yanhu and xuanhu, is one of the herb components of many Chinese Traditional Medicine prescriptions such as Jin Ling Zi San and Yuanhu-Zhitong priscription. C. yanhusuo was traditionally used to relieve pain and motivate blood and Qi circulation. Now there has been growing interest in pharmacological effects of alkaloids, the main bioactive components of C. yanhusuo. Eighty-four alkaloids isolated from C. yanhusuo are its important bioactive components and can be characterized into protoberberine alkaloids, aporphine alkaloids, opiate alkaloids and others and proper extraction or co-administration methods modulate their contents and efficacy. Alkaloids from C. yanhusuo have various pharmacological effects on the nervous system, cardiovascular system, cancer and others through multiple molecular mechanisms such as modulating neurotransmitters, ion channels, gut microbiota, HPA axis and signaling pathways and are potential treatments for many diseases. Plenty of novel drug delivery methods such as autologous red blood cells, self-microemulsifying drug delivery systems, nanoparticles and others have also been investigated to better exert the effects of alkaloids from C. yanhusuo. This review summarized the alkaloid components of C. yanhusuo, their pharmacological effects and mechanisms, and methods of drug delivery to lay a foundation for future investigations.
Collapse
Affiliation(s)
- Jia-Hua Feng
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Kang Chen
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Si-Yu Shen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yun-Feng Luo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xi-Hong Liu
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xin Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yu-Ru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
14
|
Tian E, Sharma G, Dai C. Neuroprotective Properties of Berberine: Molecular Mechanisms and Clinical Implications. Antioxidants (Basel) 2023; 12:1883. [PMID: 37891961 PMCID: PMC10604532 DOI: 10.3390/antiox12101883] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid natural product, is isolated primarily from Coptis chinensis and other Berberis plants. BBR possesses various bioactivities, including antioxidant, anti-inflammation, anticancer, immune-regulation, and antimicrobial activities. Growing scientific evidence underscores BBR's substantial neuroprotective potential, prompting increased interest and scrutiny. In this comprehensive review, we elucidate the neuroprotective attributes of BBR, delineate the underlying molecular mechanisms, and assess its clinical safety and efficacy. The multifaceted molecular mechanisms responsible for BBR's neuroprotection encompass the attenuation of oxidative stress, mitigation of inflammatory responses, inhibition of apoptotic pathways, facilitation of autophagic processes, and modulation of CYP450 enzyme activities, neurotransmitter levels, and gut microbiota composition. Furthermore, BBR engages numerous signaling pathways, including the PI3K/Akt, NF-κB, AMPK, CREB, Nrf2, and MAPK pathways, to confer its neuroprotective effects. This comprehensive review aims to provide a substantial knowledge base, stimulate broader scientific discourse, and facilitate advancements in the application of BBR for neuroprotection.
Collapse
Affiliation(s)
- Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
15
|
Zhang J, Gu B, Wu S, Liu L, Gao Y, Yao Y, Yang D, Du J, Yang C. M1 Macrophage-Biomimetic Targeted Nanoparticles Containing Oxygen Self-Supplied Enzyme for Enhancing the Chemotherapy. Pharmaceutics 2023; 15:2243. [PMID: 37765212 PMCID: PMC10534656 DOI: 10.3390/pharmaceutics15092243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Tumor hypoxia is considered one of the key causes of the ineffectiveness of various strategies for cancer treatment, and the non-specific effects of chemotherapy drugs on tumor treatment often lead to systemic toxicity. Thus, we designed M1 macrophage-biomimetic-targeted nanoparticles (DOX/CAT@PLGA-M1) which contain oxygen self-supplied enzyme (catalase, CAT) and chemo-therapeutic drug (doxorubicin, DOX). The particle size of DOX/CAT@PLGA-M1 was 202.32 ± 2.27 nm (PDI < 0.3). DOX/CAT@PLGA-M1 exhibited a characteristic core-shell bilayer membrane structure. The CAT activity of DOX/CAT@PLGA-M1 was 1000 (U/mL), which indicated that the formation of NPs did not significantly affect its enzymatic activity. And in vitro drug release showed that the cumulative release rate of DOX/CAT@PLGA-M1 was enhanced from 26.93% to 50.10% in the release medium of hydrogen peroxide, which was attributed to the reaction of CAT in the NPs. DOX/CAT@PLGA-M1 displayed a significantly higher uptake in 4T1 cells, because VCAM-1 in tumor cells interacted with specific integrin (α4 and β1), and thereby achieved tumor sites. And the tumor volume of the DOX/CAT@PLGA-M1 group was significantly reduced (0.22 cm3), which further proved the active targeting effect of the M1 macrophage membrane. Above all, a novel multifunctional nano-therapy was developed which improved tumor hypoxia and obtained tumor targeting activity.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Bing Gu
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Shimiao Wu
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Lin Liu
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (L.L.); (Y.G.)
| | - Ying Gao
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (L.L.); (Y.G.)
| | - Yucen Yao
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Degong Yang
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (L.L.); (Y.G.)
| | - Juan Du
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Chunrong Yang
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (L.L.); (Y.G.)
| |
Collapse
|
16
|
Tran KN, Nguyen NPK, Nguyen LTH, Shin HM, Yang IJ. Screening for Neuroprotective and Rapid Antidepressant-like Effects of 20 Essential Oils. Biomedicines 2023; 11:biomedicines11051248. [PMID: 37238920 DOI: 10.3390/biomedicines11051248] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Depression is a serious psychiatric disorder with high prevalence, and the delayed onset of antidepressant effects remains a limitation in the treatment of depression. This study aimed to screen essential oils that have the potential for rapid-acting antidepressant development. PC12 and BV2 cells were used to identify essential oils with neuroprotective effects at doses of 0.1 and 1 µg/mL. The resulting candidates were treated intranasally (25 mg/kg) to ICR mice, followed by a tail suspension test (TST) and an elevated plus maze (EPM) after 30 min. In each effective essential oil, five main compounds were computationally analyzed, targeting glutamate receptor subunits. As a result, 19 essential oils significantly abolished corticosterone (CORT)-induced cell death and lactate dehydrogenase (LDH) leakage, and 13 reduced lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). From in vivo experiments, six essential oils decreased the immobility time of mice in the TST, in which Chrysanthemum morifolium Ramat. and Myristica fragrans Houtt. also increased time and entries into the open arms of the EPM. Four compounds including atractylon, α-curcumene, α-farnesene, and selina-4(14),7(11)-dien-8-one had an affinity toward GluN1, GluN2B, and Glu2A receptor subunits surpassed that of the reference compound ketamine. Overall, Atractylodes lancea (Thunb.) DC and Chrysanthemum morifolium Ramat essential oils are worthy of further research for fast-acting antidepressants through interactions with glutamate receptors, and their main compounds (atractylon, α-curcumene, α-farnesene, and selina-4(14),7(11)-dien-8-one) are predicted to underlie the fast-acting effect.
Collapse
Affiliation(s)
- Khoa Nguyen Tran
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Nhi Phuc Khanh Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Heung-Mook Shin
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
17
|
Antunes JL, Amado J, Veiga F, Paiva-Santos AC, Pires PC. Nanosystems, Drug Molecule Functionalization and Intranasal Delivery: An Update on the Most Promising Strategies for Increasing the Therapeutic Efficacy of Antidepressant and Anxiolytic Drugs. Pharmaceutics 2023; 15:998. [PMID: 36986859 PMCID: PMC10054777 DOI: 10.3390/pharmaceutics15030998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Depression and anxiety are high incidence and debilitating psychiatric disorders, usually treated by antidepressant or anxiolytic drug administration, respectively. Nevertheless, treatment is usually given through the oral route, but the low permeability of the blood-brain barrier reduces the amount of drug that will be able to reach it, thus consequently reducing the therapeutic efficacy. Which is why it is imperative to find new solutions to make these treatments more effective, safer, and faster. To overcome this obstacle, three main strategies have been used to improve brain drug targeting: the intranasal route of administration, which allows the drug to be directly transported to the brain by neuronal pathways, bypassing the blood-brain barrier and avoiding the hepatic and gastrointestinal metabolism; the use of nanosystems for drug encapsulation, including polymeric and lipidic nanoparticles, nanometric emulsions, and nanogels; and drug molecule functionalization by ligand attachment, such as peptides and polymers. Pharmacokinetic and pharmacodynamic in vivo studies' results have shown that intranasal administration can be more efficient in brain targeting than other administration routes, and that the use of nanoformulations and drug functionalization can be quite advantageous in increasing brain-drug bioavailability. These strategies could be the key to future improved therapies for depressive and anxiety disorders.
Collapse
Affiliation(s)
- Jéssica L. Antunes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana Amado
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
18
|
Gut microbiota-SCFAs-brain axis associated with the antidepressant activity of berberine in CUMS rats. J Affect Disord 2023; 325:141-150. [PMID: 36610597 DOI: 10.1016/j.jad.2022.12.166] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND The anti-depressant effect of berberine (BBR) has been widely reported. However, the underlying mechanism remains unclear. The microbiota-gut-brain (MGB) axis plays a key role in the pathogenesis of depression. Therefore, we aimed to explore the anti-depressant mechanisms of BBR involving the association of the gut microbiota, neurotransmitters, BDNF, and SCFAs in chronic unpredictable mild stress (CUMS)-induced depressive rats. METHODS The antidepressant effects of BBR were detected by open-field test, 1 % sucrose preference test and body weight test in CUMS-induced depressive rats. 16S rDNA sequencing was performed to identify the change of gut microbiota. The concentrations of fecal SCFAs were analyzed by GC-MS targeted metabolomics. At the same time, neurotransmitters and BDNF expression were measured by enzyme linked immunosorbent assay (ELISA). RESULTS BBR improved depression-like behaviors in CUMS rats by increasing the expression of serotonin (5-HT), norepinephrine (NE), dopamine (DA), and BDNF in the hippocampus. BBR regulates Firmicutes, Bacteroidetes, and Lachnospiraceae in depressive rats, resulting in the alteration of the synthesis and metabolism of SCFAs, including acetic, propanoic, and isovaleric acids. LIMITATIONS Direct evidence that BBR improves depressive behaviors via gut microbiota-SCFAs-brain axis is lacking, and only male rats were investigated in the present study. CONCLUSION The anti-depressant mechanism of BBR is related to the regulation of the MGB axis via modulating the gut microbiota-SCFAs-monoamine neurotransmitters/BDNF.
Collapse
|
19
|
Khoshandam A, Imenshahidi M, Hosseinzadeh H. Pharmacokinetic of berberine, the main constituent of Berberis vulgaris L.: A comprehensive review. Phytother Res 2022; 36:4063-4079. [PMID: 36221815 DOI: 10.1002/ptr.7589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022]
Abstract
Barberry (Berberis vulgaris L.) is a medicinal plant and its main constituent is an isoquinoline alkaloid named berberine that has multiple pharmacological effects such as antioxidant, anti-microbial, antiinflammatory, anticancer, anti-diabetes, anti-dyslipidemia, and anti-obesity. However, it has restricted clinical uses due to its very poor solubility and bioavailability (less than 1%). It undergoes demethylenation, reduction, and cleavage of the dioxymethylene group in the first phase of metabolism. Its phase two reactions include glucuronidation, sulfation, and methylation. The liver is the main site for berberine distribution. Berberine could excrete in feces, urine, and bile. Fecal excretion of berberine (11-23%) is higher than urinary and biliary excretion routes. However, a major berberine metabolite is excreted in urine greater than in feces. Concomitant administration of berberine with other drugs such as metformin, cyclosporine A, digoxin, etc. may result in important interactions. Thus, in this review, we gathered and dissected any related animal and human research articles regarding the pharmacokinetic parameters of berberine including bioavailability, metabolism, distribution, excretion, and drug-drug interactions. Also, we discussed and gathered various animal and human studies regarding the developed products of berberine with better bioavailability and consequently, better therapeutic effects.
Collapse
Affiliation(s)
- Arian Khoshandam
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Application of Intranasal Administration in the Delivery of Antidepressant Active Ingredients. Pharmaceutics 2022; 14:pharmaceutics14102070. [PMID: 36297505 PMCID: PMC9611373 DOI: 10.3390/pharmaceutics14102070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
As a mental disease in modern society, depression shows an increasing occurrence, with low cure rate and high recurrence rate. It has become the most disabling disease in the world. At present, the treatment of depression is mainly based on drug therapy combined with psychological therapy, physical therapy, and other adjuvant therapy methods. Antidepressants are primarily administered peripherally (oral and intravenous) and have a slow onset of action. Antidepressant active ingredients, such as neuropeptides, natural active ingredients, and some chemical agents, are limited by factors such as the blood–brain barrier (BBB), first-pass metabolism, and extensive adverse effects caused by systemic administration. The potential anatomical link between the non-invasive nose–brain pathway and the lesion site of depression may provide a more attractive option for the delivery of antidepressant active ingredients. The purpose of this article is to describe the specific link between intranasal administration and depression, the challenges of intranasal administration, as well as studies of intranasal administration of antidepressant active ingredients.
Collapse
|
21
|
Corazza E, di Cagno MP, Bauer-Brandl A, Abruzzo A, Cerchiara T, Bigucci F, Luppi B. Drug delivery to the brain: In situ gelling formulation enhances carbamazepine diffusion through nasal mucosa models with mucin. Eur J Pharm Sci 2022; 179:106294. [PMID: 36116696 DOI: 10.1016/j.ejps.2022.106294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
Abstract
The objective of this work was to optimize a thermosensitive in situ gelling formulation to improve intranasal and nose-to-brain delivery of the antiepileptic drug carbamazepine (CBZ). A preliminary procedure of vehicles obtained just mixing different fractions of poloxamer 407 (P407) and poloxamer 188 (P188) revealed preparations with phase transition temperatures, times to gelation and pH values suitable for nasal delivery. Subsequently, the mucoadhesive properties of the most promising formulations were tuned by adding hydroxypropylmethylcellulose types of different viscosity grades, and the effect of the adhesive polymers was evaluated by testing in vitro time and strength of mucoadhesion on specimens of sheep nasal mucosa. The formulation that showed the greatest mucoadhesive potential in vitro, with a time and force of mucoadhesion equal to 1746,75 s and 3.66 × 10-4 N, respectively, was that composed of 22% P407, 5% P188 and 0.8% HPMC low-viscous and it was further investigated for its ability to increase drug solubility and to control the release of the drug. Lastly, the capability of the candidate vehicle to ensure drug permeation across the biomimetic membrane Permeapad®, an artificial phospholipid-based barrier with a stratified architecture, and the same barrier enriched with a mucin layer was verified. The final formulation was characterized by a pH value of 6.0, underwent gelation at 32.33°C in 37.85 s, thus showing all the features required by in situ gelling thermosensitive preparations designed for nasal delivery and, more notably, it conserved the ability to favor drug permeation in the presence of mucin. These findings suggest that the optimized gelling system could be a promising and easy to realize strategy to improve CBZ delivery to the brain exploiting both a direct and indirect pathway.
Collapse
Affiliation(s)
- Elisa Corazza
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Massimiliano Pio di Cagno
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Sælands vei 3, Oslo 0371, Norway.
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Angela Abruzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Teresa Cerchiara
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Federica Bigucci
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| |
Collapse
|
22
|
Zhu WQ, Wu HY, Sun ZH, Guo Y, Ge TT, Li BJ, Li X, Cui RJ. Current Evidence and Future Directions of Berberine Intervention in Depression. Front Pharmacol 2022; 13:824420. [PMID: 35677435 PMCID: PMC9168319 DOI: 10.3389/fphar.2022.824420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/01/2022] [Indexed: 12/27/2022] Open
Abstract
A major type of serious mood disorder, depression is currently a widespread and easily overlooked psychological illness. With the low side effects of natural products in the treatment of diseases becoming the pursuit of new antidepressants, natural Chinese medicine products have been paid more and more attention for their unique efficacy in improving depression. In a view from the current study, the positive antidepressant effects of berberine are encouraging. There is a lot of work that needs to be done to accurately elucidate the efficacy and mechanism of berberine in depression. In this review, the relevant literature reports on the treatment of depression and anxiety by berberine are updated, and the potential pharmacological mechanism of berberine in relieving depression has also been discussed.
Collapse
Affiliation(s)
- Wen-Qian Zhu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Hui-Ying Wu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Zhi-Hui Sun
- Department of Pharmacy, The Eastern Division of First Hospital of Jilin University, Changchun, China
| | - Yi Guo
- Department of Breast Surgery, The Affiliated Hospital Changchun University of Chinese Medicine, Changchun, China
| | - Tong-Tong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bing-Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xin Li, ; Ran-Ji Cui,
| | - Ran-Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xin Li, ; Ran-Ji Cui,
| |
Collapse
|
23
|
Bibak B, Shakeri F, Keshavarzi Z, Mollazadeh H, Javid H, Jalili-Nik M, Sathyapalan T, Afshari AR, Sahebkar A. Anticancer mechanisms of Berberine: a good choice for glioblastoma multiforme therapy. Curr Med Chem 2022; 29:4507-4528. [PMID: 35209812 DOI: 10.2174/0929867329666220224112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
The most typical malignant brain tumor, glioblastoma multiforme (GBM), seems to have a grim outcome, despite the intensive multi-modality interventions. Literature suggests that biologically active phytomolecules may exert anticancer properties by regulating several signaling pathways. Berberine, an isoquinoline alkaloid, has various pharmacological applications to combat severe diseases like cancer. Mechanistically, Berberine inhibits cell proliferation and invasion, suppresses tumor angiogenesis, and induces cell apoptosis. The effect of the antitumoral effect of Berberine in GBM is increasingly recognized. This review sheds new light on the regulatory signaling mechanisms of Berberine in various cancer, proposing its potential role as a therapeutic agent for GBM. .
Collapse
Affiliation(s)
- Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hossein Javid
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Yang Y, Li F, Yan M, Chen S, Cai D, Liu X, Han N, Yuan Z, Lu J, Zhang Y, Ma Q, Wang P, Lei H. Revealing the Toxicity-Enhancing Essence of Glycyrrhiza on Genkwa Flos Based on Ultra-high-performance Liquid Chromatography Coupled With Quadrupole-Orbitrap High-Resolution Mass Spectrometry and Self-Assembled Supramolecular Technology. Front Chem 2022; 9:740952. [PMID: 35004606 PMCID: PMC8733466 DOI: 10.3389/fchem.2021.740952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Researchers often focus on the mechanisms of synergistic agents, a few explore drug combinations that enhance toxicity, while few have studied the internal mechanism of compatibility enhancement in chemical level. Herein, we present a comprehensive analysis based on ultra-high-performance liquid chromatography coupled with quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) and a self-assembled supramolecular strategy, which reveals the toxicity-enhancing essence of glycyrrhizic acid originated in licorice when combined with Genkwa Flos. Through this method, we discovered the toxicity was enhanced through the formation of a supramolecular complex from Genkwa Flos/glycyrrhizic acid. The morphology and size distribution of the self-assembled nanoparticles were characterized by scanning electron microscopy and dynamic light scattering Furthermore, a total of 58 constituents (eight diterpenoids, 35 flavonoids, five phenylpropanoids, four nucleosides, two amino acids, and four other compounds) consisted from the supramolecular complex were identified through accurate-mass measurements in full-scan MS/data-dependent MS/MS mode. Based on the hydrophobic interaction of glycyrrhizic acid with yuanhuacine (one of main ingredients from Genkwa Flos), the supramolecular self-assembly mechanism was revealed with proton nuclear magnetic resonance (1H-NMR) and NOESY 2D NMR. The toxicity of Genkwa Flos and Genkwa Flos/glycyrrhizic acid supramolecular complex were compared through in vitro studies on L-02 cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay; and 4',6-diamidino-2-phenylindole (DAPI) staining was performed to further confirm the enhancement inhibition of Genkwa Flos/glycyrrhizic acid supramolecular complex than Genkwa Flos. This study provides fundamental scientific evidence of the formation of a self-assembled phytochemical supramolecular when Genkwa Flos and glycyrrhizic acid are combined, enabling to understand their clinical incompatibility and contraindication.
Collapse
Affiliation(s)
- Yuqin Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Feifei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mengmeng Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Desheng Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojing Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Nana Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhihua Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jihui Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yaozhi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Penglong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haimin Lei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
25
|
Patel RB, Rao HR, Thakkar DV, Patel MR. Comprehending the potential of metallic, lipid, and polymer-based nanocarriers for treatment and management of depression. Neurochem Int 2021; 153:105259. [PMID: 34942308 DOI: 10.1016/j.neuint.2021.105259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022]
Abstract
The World Health Organization (WHO) ranked depression as the third leading cause of global burden of disease in 2004, and it is predicted to overtake it and move to first place by 2030. It is a mental disorder that causes significant changes in the mood and day-to-day activity of an individual. Various approaches already exist for treating depression but, none of them are completely successful in treating depression. At present, discovering a new medication or delivery mechanism that can manage depression safely and efficiently is a huge challenge. Conventional formulations used in the management of depression have drawbacks like limited penetration, frequent dosing, toxicity, patient compliance concerns as well as brain barriers which are a big hurdle for antidepressant drugs to reach the brain through conventional formulations. Nano-based formulations are gaining popularity as one of the possibilities to overcome the limitations of conventional formulations by reducing the dose and dosing frequency, increasing the efficacy as well as proving it to be safe and effective means of treating depression. This review targets the neurochemistry and pathophysiological concerns of depression, strategies and problems of conventional therapies, and also recent advances in the metallic, lipid, and polymer-based nanoformulations for a variety of antidepressants. A detailed discussion of the expediency of various nanoformulations like liposomes, nanostructured lipid carriers, solid lipid nanoparticles, ethosomes, nanocapsules, dendrimer, gold and silver nanoparticles are addressed in the current review. In essence, nanoformulations hold great promises for the treatment of depression as they provide a platform with high penetration potential, targeted transmission, and improved protection and efficacy.
Collapse
Affiliation(s)
- Rashmin B Patel
- Department of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT - Campus, Changa, 388421, Anand, Gujarat, India
| | - Hiteshree R Rao
- Department of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT - Campus, Changa, 388421, Anand, Gujarat, India
| | - Dinesh V Thakkar
- Department of Pharmaceutical Chemistry, A.R. College of Pharmacy & G. H. Patel Institute of Pharmacy, Vallabh Vidya Nagar, 388120, Anand, Gujarat, India
| | - Mrunali R Patel
- Department of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT - Campus, Changa, 388421, Anand, Gujarat, India.
| |
Collapse
|
26
|
Goel H, Kalra V, Verma SK, Dubey SK, Tiwary AK. Convolutions in the rendition of nose to brain therapeutics from bench to bedside: Feats & fallacies. J Control Release 2021; 341:782-811. [PMID: 34906605 DOI: 10.1016/j.jconrel.2021.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Brain, a subtle organ of multifarious nature presents plethora of physiological, metabolic and bio-chemical convolutions that impede the delivery of biomolecules and thereby resulting in truncated therapeutic outcome in pathological conditions of central nervous system (CNS). The absolute bottleneck in the therapeutic management of such devastating CNS ailments is the BBB. Another pitfall is the lack of efficient technological platforms (due to high cost and low approval rates) as well as limited clinical trials (due to failures of neuro‑leads in late-stage pipelines) for CNS disorders which has become a literal brain drain with poorest success rates compared to other therapeutic areas, owing to time consuming processes, tremendous convolutions and conceivable adverse effects. With the advent of intranasal delivery (via direct N2B or indirect nose to blood to brain), several novel drug delivery carriers viz. unmodified or surface modified nanoparticle based carriers, lipid based colloidal nanocarriers and drysolid/liquid/semisolid nanoformulations or delivery platforms have been designed as a means to deliver therapeutic agents (small and large molecules, peptides and proteins, genes) to brain, bypassing BBB for disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, schizophrenia and CNS malignancies primarily glioblastomas. Intranasal application offers drug delivery through both direct and indirect pathways for the peripherally administered psychopharmacological agents to CNS. This route could also be exploited for the repurposing of conventional drugs for new therapeutic uses. The limited clinical translation of intranasal formulations has been primarily due to existence of barriers of mucociliary clearance in the nasal cavity, enzyme degradation and low permeability of the nasal epithelium. The present review literature aims to decipher the new paradigms of nano therapeutic systems employed for specific N2B drug delivery of CNS drugs through in silico complexation studies using rationally chosen mucoadhesive polymers (exhibiting unique physicochemical properties of nanocarrier's i.e. surface modification, prolonging retention time in the nasal cavity, improving penetration ability, and promoting brain specific delivery with biorecognitive ligands) via molecular docking simulations. Further, the review intends to delineate the feats and fallacies associated with N2B delivery approaches by understanding the physiological/anatomical considerations via decoding the intranasal drug delivery pathways or critical factors such as rationale and mechanism of excipients, affecting the permeability of CNS drugs through nasal mucosa as well as better efficacy in terms of brain targeting, brain bioavailability and time to reach the brain. Additionally, extensive emphasis has also been laid on the innovative formulations under preclinical investigation along with their assessment by means of in vitro /ex vivo/in vivo N2B models and current characterization techniques predisposing an efficient intranasal delivery of therapeutics. A critical appraisal of novel technologies, intranasal products or medical devices available commercially has also been presented. Finally, it could be warranted that more reminiscent pharmacokinetic/pharmacodynamic relationships or validated computational models are mandated to obtain effective screening of molecular architecture of drug-polymer-mucin complexes for clinical translation of N2B therapeutic systems from bench to bedside.
Collapse
Affiliation(s)
- Honey Goel
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India.
| | - Vinni Kalra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | | | - Ashok Kumar Tiwary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
27
|
Abdelkader H, Fathalla Z, Seyfoddin A, Farahani M, Thrimawithana T, Allahham A, Alani AWG, Al-Kinani AA, Alany RG. Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: Inserts, patches, wafers, and implants. Adv Drug Deliv Rev 2021; 177:113957. [PMID: 34481032 DOI: 10.1016/j.addr.2021.113957] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/13/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023]
Abstract
Non-oral long-acting drug delivery systems (LADDS) encompass a range of technologies for precisely delivering drug molecules into target tissues either through the systemic circulation or via localized injections for treating chronic diseases like diabetes, cancer, and brain disorders as well as for age-related eye diseases. LADDS have been shown to prolong drug release from 24 h up to 3 years depending on characteristics of the drug and delivery system. LADDS can offer potentially safer, more effective, and patient friendly treatment options compared to more invasive modes of drug administration such as repeated injections or minor surgical intervention. Whilst there is no single technology or definition that can comprehensively embrace LADDS; for the purposes of this review, these systems include solid implants, inserts, transdermal patches, wafers and in situ forming delivery systems. This review covers common chronic illnesses, where candidate drugs have been incorporated into LADDS, examples of marketed long-acting pharmaceuticals, as well as newly emerging technologies, used in the fabrication of LADDS.
Collapse
Affiliation(s)
- Hamdy Abdelkader
- Pharmaceutics Department, Faculty of Pharmacy, Minia University, Minia, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, New Minia City, Minia, Egypt
| | - Zeinab Fathalla
- Pharmaceutics Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Ali Seyfoddin
- Drug Delivery Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, New Zealand
| | - Mojtaba Farahani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Thilini Thrimawithana
- Discipline of Pharmacy, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ayman Allahham
- Discipline of Pharmacy, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Adam W G Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Moody Avenue, RLSB, Portland, OR, United States; Biomedical Engineering Department, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, OR, United States; Knight Cancer Institute, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, OR, United States
| | - Ali A Al-Kinani
- Drug Discovery, Delivery and Patient Care Theme (DDDPC), Faculty of Science, Engineering and Computing, Kingston University London, Penrhyn Road, Kingston upon Thames, UK.
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care Theme (DDDPC), Faculty of Science, Engineering and Computing, Kingston University London, Penrhyn Road, Kingston upon Thames, UK; School of Pharmacy, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
28
|
Rassu G, Sorrenti M, Catenacci L, Pavan B, Ferraro L, Gavini E, Bonferoni MC, Giunchedi P, Dalpiaz A. Versatile Nasal Application of Cyclodextrins: Excipients and/or Actives? Pharmaceutics 2021; 13:pharmaceutics13081180. [PMID: 34452141 PMCID: PMC8401481 DOI: 10.3390/pharmaceutics13081180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
Cyclodextrins (CDs) are oligosaccharides widely used in the pharmaceutical field. In this review, a detailed examination of the literature of the last two decades has been made to understand the role of CDs in nasal drug delivery systems. In nasal formulations, CDs are used as pharmaceutical excipients, as solubilizers and absorption promoters, and as active ingredients due to their several biological activities (antiviral, antiparasitic, anti-atherosclerotic, and neuroprotective). The use of CDs in nasal formulations allowed obtaining versatile drug delivery systems intended for local and systemic effects, as well as for nose-to-brain transport of drugs. In vitro and in vivo models currently employed are suitable to analyze the effects of CDs in nasal formulations. Therefore, CDs are versatile pharmaceutical materials, and due to the continual synthesis of new CDs derivatives, the research on the new nasal applications is an interesting field evolving in the coming years, to which Italian research will still contribute.
Collapse
Affiliation(s)
- Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy; (G.R.); (E.G.)
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.S.); (L.C.); (M.C.B.)
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.S.); (L.C.); (M.C.B.)
| | - Barbara Pavan
- Department of Neuroscience and Rehabilitation—Section of Physiology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy;
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy;
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy; (G.R.); (E.G.)
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.S.); (L.C.); (M.C.B.)
| | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy; (G.R.); (E.G.)
- Correspondence: ; Tel.: +39-079228754
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy;
| |
Collapse
|
29
|
Xu D, Qiu C, Wang Y, Qiao T, Cui YL. Intranasal co-delivery of berberine and evodiamine by self-assembled thermosensitive in-situ hydrogels for improving depressive disorder. Int J Pharm 2021; 603:120667. [PMID: 33933642 DOI: 10.1016/j.ijpharm.2021.120667] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022]
Abstract
The orally administrated antidepressants not only caused side effects such as dizziness, diarrhea, and drug resistance, but also worked slowly. Therefore, new antidepressants and preparations derived from natural medicines play an important role in the study of antidepressant drugs. It was reported that the two components of Zuojin pill, berberine (BBR) and evodiamine (EVO), were used in combination to improve depressive disorder. In our study, a self-assembled thermosensitive in-situ hydrogel was prepared to achieve sustained co-delivery of BBR and EVO. The preparation process of hydrogel consists of two steps, namely, the inclusion of the drugs and thermosensitive self-assembly of the hydrogel. In vitro experimental results indicated that the prepared hydrogel showed a good thermosensitive property under physiological temperature. The hydrogel had a slow and controlled release behavior for BBR and EVO, according with first-order equation. In vivo experimental results indicated that compared to intragastric administration of drug solution, the intranasal administration of hydrogel increased bioavailability of BBR and EVO, approximately 135 and 112 folds, respectively. The hydrogel at a low dose significantly reversed behavioral despair of the mice, improved depressive symptom of rats, and treated depressive disorder by regulating the abnormal levels of monoamine neurotransmitters (including 5-hydroxytryptamine, noradrenalin and dopamine) metabolism and related metabolic pathways such as purine, citrate cycle, scorbate and aldarate, butanoate, vitamin B6, and pyrimidine metabolism. Therefore, as a drug co-delivery system, the intranasally administrated hydrogels with a good release and high bioavailability provides a non-invasive therapeutic strategy for the clinical treatment of depression, which attains antidepressant effects by regulation of the monoamine neurotransmitters metabolism and related metabolic pathways.
Collapse
Affiliation(s)
- Dong Xu
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Chao Qiu
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yue Wang
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Tao Qiao
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
30
|
Yu Y, Cheng Y, Tong J, Zhang L, Wei Y, Tian M. Recent advances in thermo-sensitive hydrogels for drug delivery. J Mater Chem B 2021; 9:2979-2992. [DOI: 10.1039/d0tb02877k] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thermo-sensitive hydrogels based on different polymers have been broadly used in the pharmaceutical fields. In this review, the state-of-the-art thermo-sensitive hydrogels for drug delivery are elaborated
Collapse
Affiliation(s)
- Yibin Yu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yi Cheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Junye Tong
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Lei Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yen Wei
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University
- Beijing 100084
- China
| | - Mei Tian
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou
- Zhejiang, 310009
- China
| |
Collapse
|