1
|
Li N, Li X, Li J, Li Y, Zhang T. An AND-Gate Photoacoustic Probe for Cys and H 2S Precise Photoacoustic Sensing in Localized Tumors. Anal Chem 2024; 96:7342-7347. [PMID: 38683890 DOI: 10.1021/acs.analchem.4c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Photoacoustic (PA) tomography has shown many promising aspects in noninvasive and precise imaging of deep-localized biomarkers. However, these traditional single-locked PA probes always face challenges in precise PA imaging with high specificity. Here, we report a novel AND-gate photoacoustic probe, BAE, to improve tumor imaging accuracy via the combination of two tumor-associated biomarkers, cysteine (Cys) and hydrogen sulfide (H2S). Only when Cys and H2S are concurrently introduced into the detection system does the absorption of BAE red-shift from the initial 680 to 810 nm, thereby showing a 5.29-fold enhancement in its PA signal at 810 nm. The good specificity of BAE is proven, since an obvious PA signal could be observed only in the solution containing both Cys and H2S and was not affected by other reactive sulfur species. After being taken up by tumors with the assistance of a nanomicelle, the AND-gate PA probe BAE was applied for dynamic real-time monitoring of Cys and H2S in vivo, achieving precise identification of tumors. This AND-gate PA probe provides a potential technical tool for precise sensing analysis of deep-seated diseases.
Collapse
Affiliation(s)
- Nan Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Xipeng Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Jiajun Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Ye Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
2
|
Fu Q, Yang X, Wang M, Zhu K, Wang Y, Song J. Activatable Probes for Ratiometric Imaging of Endogenous Biomarkers In Vivo. ACS NANO 2024; 18:3916-3968. [PMID: 38258800 DOI: 10.1021/acsnano.3c10659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dynamic variations in the concentration and abnormal distribution of endogenous biomarkers are strongly associated with multiple physiological and pathological states. Therefore, it is crucial to design imaging systems capable of real-time detection of dynamic changes in biomarkers for the accurate diagnosis and effective treatment of diseases. Recently, ratiometric imaging has emerged as a widely used technique for sensing and imaging of biomarkers due to its advantage of circumventing the limitations inherent to conventional intensity-dependent signal readout methods while also providing built-in self-calibration for signal correction. Here, the recent progress of ratiometric probes and their applications in sensing and imaging of biomarkers are outlined. Ratiometric probes are classified according to their imaging mechanisms, and ratiometric photoacoustic imaging, ratiometric optical imaging including photoluminescence imaging and self-luminescence imaging, ratiometric magnetic resonance imaging, and dual-modal ratiometric imaging are discussed. The applications of ratiometric probes in the sensing and imaging of biomarkers such as pH, reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), gas molecules, enzymes, metal ions, and hypoxia are discussed in detail. Additionally, this Review presents an overview of challenges faced in this field along with future research directions.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Wang S, Fu Q, Su L, Wu Y, Zhu K, Yang DC, Yang XZ, Weng XL, Liu JY, Song J. Self-Reporting Molecular Prodrug for In Situ Quantitative Sensing of Drug Release by Ratiometric Photoacoustic Imaging. ACS Sens 2023; 8:4737-4746. [PMID: 38008917 DOI: 10.1021/acssensors.3c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Understanding the pharmacokinetics of prodrugs in vivo necessitates quantitative, noninvasive, and real-time monitoring of drug release, despite its difficulty. Ratiometric photoacoustic (PA) imaging, a promising deep tissue imaging technology with a unique capacity for self-calibration, can aid in solving this problem. Here, for the first time, a methylamino-substituted Aza-BODIPY (BDP-N) and the chemotherapeutic drug camptothecin (CPT) are joined via a disulfide chain to produce the molecular theranostic prodrug (BSC) for real-time tumor mapping and quantitative visualization of intratumoral drug release using ratiometric PA imaging. Intact BSC has an extremely low toxicity, with a maximum absorption at ∼720 nm; however, endogenous glutathione (GSH), which is overexpressed in tumors, will cleave the disulfide bond and liberate CPT (with full toxicity) and BDP-N. This is accompanied by a significant redshift in absorption at ∼800 nm, resulting in the PA800/PA720 ratio. In vitro, a linear relationship is successfully established between PA800/PA720 values and CPT release rates, and subsequent experiments demonstrate that this relationship can also be applied to the quantitative detection of intratumoral CPT release in vivo. Notably, the novel ratiometric strategy eliminates nonresponsive interference and amplifies the multiples of the signal response to significantly improve the imaging contrast and detection precision. Therefore, this research offers a viable alternative for the design of molecular theranostic agents for the clinical diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) and National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Qinrui Fu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, P. R. China
| | - Lichao Su
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) and National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ying Wu
- State laboratory of Chemical Source Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| | - Kang Zhu
- State laboratory of Chemical Source Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| | - De-Chao Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) and National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xiao-Zhen Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) and National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xiao-Lu Weng
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) and National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jian-Yong Liu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) and National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jibin Song
- State laboratory of Chemical Source Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| |
Collapse
|
4
|
Cai W, Chen X, Xie L, Yu Y, Liu G, Fan C, Pu S. Development of europium(III) complex fluorescent probe for hydrogen sulfide detection and its application in water samples. LUMINESCENCE 2023. [PMID: 37975337 DOI: 10.1002/bio.4628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
Hydrogen sulfide (H2 S) is a crucial endogenous signaling component in organisms that is involved in redox homeostasis and numerous biological processes. Modern medical research has confirmed that hydrogen sulfide plays an important role in the pathogenesis of many diseases. Herein, a fluorescent probe Eu(ttbd)3 abt based on europium(III) complex was designed and synthesized for the detection of H2 S. Eu(ttbd)3 abt exhibited significant quenching for H2 S at long emission wavelength (625 nm), with rapid detection ability (less than 2 min), high sensitivity [limit of detection (LOD) = 0.41 μM], and massive Stokes shift (300 nm). Additionally, this probe showed superior selectivity for H2 S despite the presence of other possible interference species such as biothiols. Furthermore, the probe Eu(ttbd)3 abt was successfully applied to detect H2 S in water samples.
Collapse
Affiliation(s)
- Wenjuan Cai
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaoxia Chen
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Ling Xie
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yanhong Yu
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Shouzhi Pu
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, China
| |
Collapse
|
5
|
Kumar V, Sakla R, Sharma N, Kanika, Khan R, Jose DA. Liposome Based Near-Infrared Sensors for the Selective Detection of Hydrogen Sulfide. Chempluschem 2023; 88:e202300243. [PMID: 37530569 DOI: 10.1002/cplu.202300243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/03/2023]
Abstract
Cyanine dye-based new amphiphilic compound NIR-Amp has been synthesised. NIR-Amp was embedded with phospholipids DOPC and DPPC to form liposomes based nanoscale chemical sensors NIR-Lip1 and NIR-Lip2. Here, two different phospholipids were used to demonstrate the influence of lipid structure, composition and fluidity on sensing of nanosensors. Both the probes show NIR absorption maximum at 790 nm and emission maximum at 815 nm. H2 S-triggered thiolation resulted a remarkable change in color from green to pale yellow. A decrease in UV-Vis absorption and emission in the NIR region was observed only with H2 S. NIR-Lip1 and NIR-Lip2 are highly selective for H2 S with a LOD of 0.57 μM and 1.24 μM, respectively. It was observed that in a solid-like gel state, NIR-Lip1 is slightly more sensitive towards H2 S than fluid-like NIR-Lip2. The H2 S sensing mechanism was confirmed by ESI-mass and infrared (IR) spectroscopic analysis. Based on the high sensitivity and selectivity, NIR-Lip1 was employed to detect H2 S in vegetable samples. Further, the probes are found to be non-toxic and established for H2 S fluorescence imaging in live cells.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra, 136119, Haryan, India
| | - Rahul Sakla
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra, 136119, Haryan, India
- Department Chemical Biology Unit, Institute of Nano Science and Technology (INST), Mohali, Punjab, 140306, India
| | - Nancy Sharma
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra, 136119, Haryan, India
| | - Kanika
- Department Chemical Biology Unit, Institute of Nano Science and Technology (INST), Mohali, Punjab, 140306, India
| | - Rehan Khan
- Department Chemical Biology Unit, Institute of Nano Science and Technology (INST), Mohali, Punjab, 140306, India
| | - D Amilan Jose
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra, 136119, Haryan, India
| |
Collapse
|
6
|
Gu QS, Yang ZC, Chao JJ, Li L, Mao GJ, Xu F, Li CY. Tumor-Targeting Probe for Dual-Modal Imaging of Cysteine In Vivo. Anal Chem 2023; 95:12478-12486. [PMID: 37555783 DOI: 10.1021/acs.analchem.3c02134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Cysteine (Cys) is a crucial biological thiol that has a vital function in preserving redox homeostasis in organisms. Studies have shown that Cys is closely related to the development of cancer. Thus, it is necessary to design an efficient method to detect Cys for an effective cancer diagnosis. In this work, a novel tumor-targeting probe (Bio-Cy-S) for dual-modal (NIR fluorescence and photoacoustic) Cys detection is designed. The probe exhibits high selectivity and sensitivity toward Cys. After reaction with Cys, both NIR fluorescence and photoacoustic signals are activated. Bio-Cy-S has been applied for the dual-modal detection of Cys levels in living cells, and it can be used to distinguish normal cells from cancer cells by different Cys levels. In addition, the probe is capable of facilitating dual-modal imaging for monitoring changes in Cys levels in tumor-bearing mice. More importantly, the excellent tumor-targeting ability of the probe greatly improves the signal-to-noise ratio of imaging. To the best of our knowledge, this is the first Cys probe to combine targeting and dual-modal imaging performance for cancer diagnosis.
Collapse
Affiliation(s)
- Qing-Song Gu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Zhi-Chao Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Jing-Jing Chao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Li Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Fen Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
7
|
Wang M, Gu X, Chen J, Yang X, Cheng P, Xu K. A novel near-infrared colorimetric-fluorescent probe for hydrogen sulfide and application in bioimaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Wang J, Zhang W, Cao W, Liu K, Su S, Ma J, Li X. Selective synthesis of α- and β-glycosides of N-acetyl galactosamine using rare earth metal triflates. Front Chem 2022; 10:1029911. [DOI: 10.3389/fchem.2022.1029911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Structures containing galactose and GalNAc residues are specifically recognized by asialoglycoprotein receptors, allowing them to selectively internalize by hepatocytes for drug-targeting delivery. However, methods for direct synthesis of GalNAc glycosides are still challenging due to the poor participating group of 2-acetamido. Here, we develop a facile strategy to synthesize various GalNAc glycosides by employing a series of rare earth metal triflates, and the results demonstrate that both α-glycosides and β-glycosides of GalNAc can be obtained by conducting with Hf(OTf)4 and Sc(OTf)3, respectively. These applicable results indicate that any interested GalNAc-containing substrates could be prepared by this simple strategy.
Collapse
|
9
|
Wu R, Chen Z, Huo H, Chen L, Su L, Zhang X, Wu Y, Yao Z, Xiao S, Du W, Song J. Ratiometric Detection of H 2S in Liver Injury by Activated Two-Wavelength Photoacoustic Imaging. Anal Chem 2022; 94:10797-10804. [PMID: 35829734 DOI: 10.1021/acs.analchem.2c01571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metformin is commonly used for clinical treatment of type-2 diabetes, but long-term or overdose intake of metformin usually causes selective upregulation of H2S level in the liver, resulting in liver injury. Therefore, tracking the changes of H2S content in the liver would contribute to the prevention and diagnosis of liver injury. However, in the literature, there are few reports on ratiometric PA molecular probes for H2S detection in drug-induced liver injury (DILI). Accordingly, here we developed a H2S-activated ratiometric PA probe, namely BDP-H2S, based Aza-BODIPY dye for detecting the H2S upregulation of metformin-induced liver injury. Due to the intramolecular charge transfer (ICT) effect, BDP-H2S exhibited a strong PA signal at 770 nm. Following the response to H2S, its ICT effect was recovered which showed a decrement of PA770 and an enhancement of PA840. The ratiometric PA signal (PA840/PA770) showed excellent H2S selectivity response with a low limit of detection (0.59 μM). Bioimaging experiments demonstrated that the probe has been successfully used for ratiometric PA imaging of H2S in cells and metformin-induced liver injury in mice. Overall, the designed probe emerges as a powerful tool for noninvasive and accurate imaging of H2S level and tracking its distribution and variation in liver in-real time.
Collapse
Affiliation(s)
- Rongrong Wu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhongxiang Chen
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Hongqi Huo
- Department of Nuclear Medicine, Han Dan Central Hospital, Handan, Hebei 056001, P. R. China
| | - Lanlan Chen
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Lichao Su
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xuan Zhang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ying Wu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhicun Yao
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Shenggan Xiao
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Wei Du
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jibin Song
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
10
|
A hydrogen sulphide-responsive and depleting nanoplatform for cancer photodynamic therapy. Nat Commun 2022; 13:1685. [PMID: 35354794 PMCID: PMC8967875 DOI: 10.1038/s41467-022-29284-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Hydrogen sulfide (H2S) as an important biological gasotransmitter plays a pivotal role in many physiological and pathological processes. The sensitive and quantitative detection of H2S level is therefore crucial for precise diagnosis and prognosis evaluation of various diseases but remains a huge challenge due to the lack of accurate and reliable analytical methods in vivo. In this work, we report a smart, H2S-responsive and depleting nanoplatform (ZNNPs) for quantitative and real-time imaging of endogenous H2S for early diagnosis and treatment of H2S-associated diseases. We show that ZNNPs exhibit unexpected NIR conversion (F1070 → F720) and ratiometric photoacoustic (PA680/PA900) signal responsiveness towards H2S, allowing for sensitive and quantitative visualization of H2S in acute hepatotoxicity, cerebral hemorrhage model as well as colorectal tumors in living mice. ZNNPs@FA simultaneously scavenges the mitochondrial H2S in tumors leading to significant ATP reduction and severe mitochondrial damage, together with the activated photodynamic effect, resulting in efficient suppression of colorectal tumor growth in mice. We believe that this platform may provide a powerful tool for studying the vital impacts of H2S in related diseases.
Collapse
|
11
|
Liu Y, Teng L, Yin B, Meng H, Yin X, Huan S, Song G, Zhang XB. Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chem Rev 2022; 122:6850-6918. [PMID: 35234464 DOI: 10.1021/acs.chemrev.1c00875] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photoacoustic (PA) imaging technology, a three-dimensional hybrid imaging modality that integrates the advantage of optical and acoustic imaging, has great application prospects in molecular imaging due to its high imaging depth and resolution. To endow PA imaging with the ability for real-time molecular visualization and precise biomedical diagnosis, numerous activatable molecular PA probes which can specifically alter their PA intensities upon reacting with the targets or biological events of interest have been developed. This review highlights the recent developments of activatable PA probes for precise biomedical applications including molecular detection of the biotargets and imaging of the biological events. First, the generation mechanism of PA signals will be given, followed by a brief introduction to contrast agents used for PA probe design. Then we will particularly summarize the general design principles for the alteration of PA signals and activatable strategies for developing precise PA probes. Furthermore, we will give a detailed discussion of activatable PA probes in molecular detection and biomedical imaging applications in living systems. At last, the current challenges and outlooks of future PA probes will be discussed. We hope that this review will stimulate new ideas to explore the potentials of activatable PA probes for precise biomedical applications in the future.
Collapse
Affiliation(s)
- Yongchao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lili Teng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Baoli Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hongmin Meng
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
12
|
Niu H, Mi X, Hua X, Zhang Y, Zhai Y, Qin F, Ye Y, Zhao Y. A bifunctional fluorescent probe based on "AND logic" for the simultaneous recognition of H 2S/HNO and its bioimaging applications. Anal Chim Acta 2022; 1192:339341. [PMID: 35057948 DOI: 10.1016/j.aca.2021.339341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 12/21/2022]
Abstract
The reaction of NO and H2S to form HNO is a classical pathway in physiological conditions. The reported single recognition-type fluorescent probes are difficult to track precisely the relationships of H2S and HNO. It is necessary to develop a bifunctional fluorescence probe (NJA) for monitoring simultaneously the production of endogenous HNO and H2S. Using 7-Nitrobenzofurazan (NBD) and 2-(diphenylphosphine) benzoate as recognition sites, the obatined NJA can detect specifically HS- and HNO. The detection limit of HS- and HNO are 0.46 μM and 1.42 μM, respectively. Based on the dual recognition sites and input signals of the probe, a molecular "AND" logic gate was established to detect successfully H2S and HNO in MCF-7 cells. NJA based on "AND logic" provided a simple and robust tool for monitoring the production of endogenous HNO correlative with H2S and NO in living cells.
Collapse
Affiliation(s)
- Huawei Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471000, China.
| | - Xintong Mi
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Xinting Hua
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yuanyuan Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yaping Zhai
- Institute of Ophthalmology, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Fangyuan Qin
- Institute of Ophthalmology, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 450052, China
| |
Collapse
|
13
|
Gao Z, Zhang L, Liu H, Yan M, Lu S, Lian H, Zhang P, Zhu J, Jin M. A novel rhodol-based fluorescence turn-on probe for selective hydrogen sulfide detection in environment water and living cells. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Ma D, Hou S, Bae C, Pham TC, Lee S, Zhou X. Aza-BODIPY based probe for photoacoustic imaging of ONOO− in vivo. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Rathnamalala CSL, Pino NW, Herring BS, Hooper M, Gwaltney SR, Chan J, Scott CN. Thienylpiperidine Donor NIR Xanthene-Based Dye for Photoacoustic Imaging. Org Lett 2021; 23:7640-7644. [PMID: 34550707 DOI: 10.1021/acs.orglett.1c02862] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Few xanthene-based near-infrared (NIR) photoacoustic (PA) dyes with absorbance >800 nm exist. As accessibility to these dyes requires long and tedious synthetic steps, we designed a NIR dye (XanthCR-880) with thienylpiperidine donors and a xanthene acceptor that is accessible in 3-4 synthetic steps. The dye boasts a strong PA signal at 880 nm with good biological compatibility and photostability, yields multiplexed imaging with an aza-BODIPY reference dye, and is detected at a depth of 4 cm.
Collapse
Affiliation(s)
| | - Nicholas W Pino
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Bailey S Herring
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Mattea Hooper
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Steven R Gwaltney
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Jefferson Chan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Colleen N Scott
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
16
|
Kong F, Wang X, Bai J, Li X, Yang C, Li Y, Xu K, Tang B. A "double-locked" probe for the detection of hydrogen sulfide in a viscous system. Chem Commun (Camb) 2021; 57:6604-6607. [PMID: 34114576 DOI: 10.1039/d1cc01819a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel "double-locked" probe, DCO-H2S-V, was prepared for detecting hydrogen sulfide in a highly viscous system. Experiments demonstrated that only when H2S and a high viscosity environment coexist in a cell, can the probe be activated effectively and emit fluorescence. This has been successfully used for detecting the changes in viscosity and H2S in a Parkinson's disease model, PC-12 cells treated with glutamate.
Collapse
Affiliation(s)
- Fanpeng Kong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Xiaoxiu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Jundong Bai
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Xiao Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Chao Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Ying Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Kehau Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| |
Collapse
|
17
|
Gardner SH, Brady CJ, Keeton C, Yadav AK, Mallojjala SC, Lucero MY, Su S, Yu Z, Hirschi JS, Mirica LM, Chan J. A General Approach to Convert Hemicyanine Dyes into Highly Optimized Photoacoustic Scaffolds for Analyte Sensing*. Angew Chem Int Ed Engl 2021; 60:18860-18866. [PMID: 34089556 PMCID: PMC8550804 DOI: 10.1002/anie.202105905] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Indexed: 12/19/2022]
Abstract
Most photoacoustic (PA) imaging agents are based on the repurposing of existing fluorescent dye platforms that exhibit non-optimal properties for PA applications. Herein, we introduce PA-HD, a new dye scaffold optimized for PA probe development that features a 4.8-fold increase in sensitivity and a red-shift of the λabs from 690 nm to 745 nm to enable ratiometric imaging. Computational modeling was used to elucidate the origin of these enhanced properties. To demonstrate the generalizability of our remodeling efforts, we developed three probes for β-galactosidase activity (PA-HD-Gal), nitroreductase activity (PA-HD-NTR), and H2 O2 (PA-HD-H2 O2 ). We generated two cancer models to evaluate PA-HD-Gal and PA-HD-NTR. We employed a murine model of Alzheimer's disease to test PA-HD-H2 O2 . There, we observed a PA signal increase at 735 nm of 1.79±0.20-fold relative to background, indicating the presence of oxidative stress. These results were confirmed via ratiometric calibration, which was not possible using the parent HD platform.
Collapse
Affiliation(s)
- Sarah H Gardner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catharine J Brady
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, I, L, 61801, USA
| | - Cameron Keeton
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, I, L, 61801, USA
| | - Anuj K Yadav
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, I, L, 61801, USA
| | | | - Melissa Y Lucero
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, I, L, 61801, USA
| | - Shengzhang Su
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, I, L, 61801, USA
| | - Zhengxin Yu
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, I, L, 61801, USA
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, Binghamton, NY, 13902, USA
| | - Liviu M Mirica
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, I, L, 61801, USA
| | - Jefferson Chan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, I, L, 61801, USA
| |
Collapse
|
18
|
Yadav AK, Tapia Hernandez R, Chan J. A general strategy to optimize the performance of aza-BODIPY-based probes for enhanced photoacoustic properties. Methods Enzymol 2021; 657:415-441. [PMID: 34353497 DOI: 10.1016/bs.mie.2021.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this chapter, we describe a generalizable strategy to obtain a high PA output platform that is optimized for ratiometric imaging. Our approach entails conformationally restricting pendant aryl rings on the aza-BODIPY core to enhance orbital overlap which consequently increases the extinction coefficient. This strategy can potentially be applied to other dye platforms to enhance their signal intensity. We provide detailed protocols for the synthesis, in vitro characterization, and in vivo application.
Collapse
Affiliation(s)
- Anuj K Yadav
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rodrigo Tapia Hernandez
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
19
|
Gardner SH, Brady CJ, Keeton C, Yadav AK, Mallojjala SC, Lucero MY, Su S, Yu Z, Hirschi JS, Mirica LM, Chan J. A General Approach to Convert Hemicyanine Dyes into Highly Optimized Photoacoustic Scaffolds for Analyte Sensing**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sarah H. Gardner
- Department of Biochemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Catharine J. Brady
- Department of Chemistry and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana, I L 61801 USA
| | - Cameron Keeton
- Department of Chemistry and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana, I L 61801 USA
| | - Anuj K. Yadav
- Department of Chemistry and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana, I L 61801 USA
| | | | - Melissa Y. Lucero
- Department of Chemistry and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana, I L 61801 USA
| | - Shengzhang Su
- Department of Chemistry and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana, I L 61801 USA
| | - Zhengxin Yu
- Department of Chemistry and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana, I L 61801 USA
| | | | - Liviu M. Mirica
- Department of Chemistry and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana, I L 61801 USA
| | - Jefferson Chan
- Department of Biochemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Chemistry and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana, I L 61801 USA
| |
Collapse
|
20
|
Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2050-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Li C, Liu C, Fan Y, Ma X, Zhan Y, Lu X, Sun Y. Recent development of near-infrared photoacoustic probes based on small-molecule organic dye. RSC Chem Biol 2021; 2:743-758. [PMID: 34458809 PMCID: PMC8341990 DOI: 10.1039/d0cb00225a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/07/2021] [Indexed: 12/22/2022] Open
Abstract
Photoacoustic imaging (PAI), which integrates the higher spatial resolution of optical imaging and the deeper penetration depth of ultrasound imaging, has attracted great attention. Various photoacoustic probes including inorganic and organic agents have been well fabricated in last decades. Among them, small-molecule based agents are most promising candidates for preclinical/clinical applications due to their favorite in vivo features and facile functionalization. In recent years, PAI, in the near-infrared region (NIR, 700-1700 nm) has developed rapidly and has made remarkable achievements in the biomedical field. Compared with the visible light region (400-700 nm), it can significantly reduce light scattering and meanwhile provide deeper tissue penetration. In this review, we discuss the recent developments of near-infrared photoacoustic probes based on small molecule dyes, which focus on their "always on" and "activatable" form in biomedicine. Further, we also suggest current challenges and perspectives.
Collapse
Affiliation(s)
- Chonglu Li
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University Huangshi 435003 China
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology Nanjing 210044 China
| | - Chang Liu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology Nanjing 210044 China
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Yifan Fan
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Xin Ma
- Guangdong Provincial Key Laboratory of Radioactive and Rare Resource Utilization Shaoguan 512026 China
| | - Yibei Zhan
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University Huangshi 435003 China
| | - Xiaoju Lu
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University Huangshi 435003 China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University Wuhan 430079 China
| |
Collapse
|
22
|
Niu P, Liu J, Rong Y, Liu X, Wei L. A fluorescent probe for selective and instantaneous detection of hydrogen sulfide in living cells and zebrafish. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Wu S, Ma X, Wang Y, Zhou J, Li X, Wang X. A novel fluorescent BODIPY-based probe for detection of Cu 2+ and H 2S based on displacement approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119330. [PMID: 33378736 DOI: 10.1016/j.saa.2020.119330] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/26/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
A new BODIPY-based fluorescent probe (BC-DPA) was prepared by a simple method for Cu2+ detection in aqueous media and living cells. BC-DPA displayed excellent selectivity toward Cu2+via fluorescence "turn-off" mode when a mononuclear Cu(Ⅱ) complex is formed. The corresponding BC-DPA-Cu(Ⅱ) complex, whose structure was characterized by X-ray crystallography, has Cu(Ⅱ) in a distorted octahedral geometry. On the basis of the displacement approach, the fluorescence of BC-DPA-Cu2+ was recovered in the presence of S2-, which allowed the system to act as a sensitive "turn-on" sensor for hydrogen sulfide. Furthermore, BC-DPA exhibited noticeable permeability and low cytotoxicity, making it a useful tool to detect Cu2+ in biosystems.
Collapse
Affiliation(s)
- Shasha Wu
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Xiaoyan Ma
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, 241000, PR China
| | - Yujing Wang
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Jie Zhou
- Large Instruments Sharing Service Centre, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, PR China
| | - Xianghua Li
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Xiaobo Wang
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, PR China.
| |
Collapse
|
24
|
Exner RM, Cortezon‐Tamarit F, Pascu SI. Explorations into the Effect of meso-Substituents in Tricarbocyanine Dyes: A Path to Diverse Biomolecular Probes and Materials. Angew Chem Int Ed Engl 2021; 60:6230-6241. [PMID: 32959963 PMCID: PMC7985877 DOI: 10.1002/anie.202008075] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Polymethine cyanine dyes have been widely recognized as promising chemical tools for a range of life science and biomedical applications, such as fluorescent staining of DNA and proteins in gel electrophoresis, fluorescence guided surgery, or as ratiometric probes for probing biochemical pathways. The photophysical properties of such dyes can be tuned through the synthetic modification of the conjugated backbone, for example, by altering aromatic cores or by varying the length of the conjugated polymethine chain. Alternative routes to shaping the absorption, emission, and photostability of dyes of this family are centered around the chemical modifications on the polymethine chain. This Minireview aims to discuss strategies for the introduction of substituents in the meso-position, their effect on the photophysical properties of these dyes and some structure-activity correlations which could help overcome common limitations in the state of the art in the synthesis.
Collapse
Affiliation(s)
- Rüdiger M. Exner
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUK
| | | | - Sofia I. Pascu
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUK
| |
Collapse
|
25
|
Tian Y, Jiang WL, Wang WX, Mao GJ, Li Y, Li CY. NAD(P)H-triggered probe for dual-modal imaging during energy metabolism and novel strategy of enhanced photothermal therapy in tumor. Biomaterials 2021; 271:120736. [PMID: 33662745 DOI: 10.1016/j.biomaterials.2021.120736] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
Abstract
The reduced coenzymes (NADH and NADPH) are an important product in energy metabolism and closely related to the occurrence and development of cancer. So it is necessary to use a powerful detection tool to visualize NAD(P)H in energy metabolism of tumor cells and find a new strategy to improve cancer treatment based on NAD(P)H. Herein, a novel multifunctional probe (Cy-N) is synthesized with good near-infrared fluorescence (NIRF) response to NAD(P)H and the photoacoustic (PA) and photothermal properties are successfully activated by NAD(P)H. The probe is successfully applied in visualizing NAD(P)H in energy metabolism of tumor cells and imaging NAD(P)H in bacteria. Moreover, the probe can be used to image NAD(P)H in energy metabolism of tumor-bearing mice by dual-modal imaging (NIRF and PA). More importantly, in terms of the role of NAD(P)H in energy metabolism, the photothermal therapy (PTT) is activated by NAD(P)H and a novel strategy of enhanced PTT is proposed by injecting glucose. As far as we know, this is the first probe to detect NAD(P)H in energy metabolism through dual-modal imaging, and also the first probe to activate PTT based on NAD(P)H, which will provide important information of the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Yang Tian
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Wen-Xin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China; College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, PR China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| |
Collapse
|
26
|
Zhang C, Qiu Z, Zhang L, Pang Q, Yang Z, Qin JK, Liang H, Zhao S. Design and synthesis of a ratiometric photoacoustic imaging probe activated by selenol for visual monitoring of pathological progression of autoimmune hepatitis. Chem Sci 2021; 12:4883-4888. [PMID: 34163738 PMCID: PMC8179563 DOI: 10.1039/d0sc06573k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
Photoacoustic (PA) imaging with both the high contrast of optical imaging and the high spatial resolution of ultrasound imaging has been regarded as a robust biomedical imaging technique. Autoimmune hepatitis (AIH) is the second largest liver inflammatory disease after viral hepatitis, but its pathogenesis is not fully understood probably due to the lack of an effective in vivo monitoring approach. In this work, an innovative selenol-activated ratiometric PA imaging probe APSel was developed for visual monitoring of pathological progress of AIH. Selenols including selenocysteine (Sec, the major form of Se-containing species in vivo) have been demonstrated to have an effective antioxidant role in inflammation. The reaction of APSel with selenol results in a blue shift of the PA spectrum peak from 860 nm to 690 nm, which enables the ratiometric PA imaging. The APSel probe displays high sensitivity and selectivity to Sec and other selenols. The APSel probe was then employed for ratiometric PA imaging of selenol in cells, and for monitoring the development of AIH in a murine model by tracking the changes of selenol level. The results revealed that the level of selenol was closely correlated with the development of AIH. The proposed APSel, as the first example of a selenol-responsive PA imaging probe, provides a new tool and approach to study and diagnose AIH diseases.
Collapse
Affiliation(s)
- Chaobang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Zhidong Qiu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Qiufang Pang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Zhengmin Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Jiang-Ke Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| |
Collapse
|
27
|
Exner RM, Cortezon‐Tamarit F, Pascu SI. Explorations into the Effect of
meso
‐Substituents in Tricarbocyanine Dyes: A Path to Diverse Biomolecular Probes and Materials. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rüdiger M. Exner
- Department of Chemistry University of Bath Claverton Down Bath BA2 7AY UK
| | | | - Sofia I. Pascu
- Department of Chemistry University of Bath Claverton Down Bath BA2 7AY UK
| |
Collapse
|
28
|
Wang X, Zhong X, Lei H, Yang N, Gao X, Cheng L. Tumor microenvironment-responsive contrast agents for specific cancer imaging: a narrative review. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
29
|
Dong Y, Sun W, Chang S, Li T, Huang X, Xing S, Bai T, Ma H. A Fluorescent Turn‐on Probe Based on Zn‐doped AgIn
5
S
8
Quantum Dots for Imaging of Hydrogen Sulfide in Living Cells. ChemistrySelect 2020. [DOI: 10.1002/slct.202003729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yanyu Dong
- College of Medical Laboratory Dalian Medical University No. 9 West Section LvShun south Road Dalian 116044 P. R. China
| | - Wenping Sun
- College of Medical Laboratory Dalian Medical University No. 9 West Section LvShun south Road Dalian 116044 P. R. China
| | - Shiqi Chang
- College of Medical Laboratory Dalian Medical University No. 9 West Section LvShun south Road Dalian 116044 P. R. China
| | - Tong Li
- College of Medical Laboratory Dalian Medical University No. 9 West Section LvShun south Road Dalian 116044 P. R. China
| | - Xiaohua Huang
- College of Medical Laboratory Dalian Medical University No. 9 West Section LvShun south Road Dalian 116044 P. R. China
| | - Shanghua Xing
- Key Laboratory of Inorganic Synthesis and Precparative Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Tianyu Bai
- College of Medical Laboratory Dalian Medical University No. 9 West Section LvShun south Road Dalian 116044 P. R. China
| | - Huipeng Ma
- College of Medical Laboratory Dalian Medical University No. 9 West Section LvShun south Road Dalian 116044 P. R. China
| |
Collapse
|
30
|
Wang S, Zhang X. Design Strategies of Photoacoustic Molecular Probes. Chembiochem 2020; 22:308-316. [PMID: 32770597 DOI: 10.1002/cbic.202000514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Photoacoustic (PA) probes have been developed very quickly and applied in broad areas in recent years. Most of them are constructed based on organic dyes with intrinsic near-infrared (NIR) absorption properties. To increase PA contrast and improve imaging resolution and the sensitivity of detection, various methods for the design of PA probes have been developed. This minireview mainly focuses on the development and design strategies of activatable small-molecule PA probes in four aspects: reaction-cleavage, metal ion chelation, photoswitch, and protonation-deprotonation. It highlights some key points of designing PA probes corresponding to their properties and applications. The challenges and perspectives for small-molecule PA probes are also discussed.
Collapse
Affiliation(s)
- Shichao Wang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, P.R. China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, P.R. China
| |
Collapse
|
31
|
MEN Y, ZHOU X, YAN Z, NIU L, LUO Y, WANG J, WANG J. A Water-soluble Near-infrared Fluorescent Probe for Cysteine/Homocysteine and Its Application in Live Cells and Mice. ANAL SCI 2020; 36:1053-1057. [DOI: 10.2116/analsci.20p016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yuhui MEN
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University
| | - Xiaomin ZHOU
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University
| | - Zhijie YAN
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University
| | - Linqiang NIU
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University
| | - Yang LUO
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University
| | - Jiamin WANG
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University
| | - Jianhong WANG
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University
| |
Collapse
|
32
|
Choi PJ, Park TI, Cooper E, Dragunow M, Denny WA, Jose J. Heptamethine Cyanine Dye Mediated Drug Delivery: Hype or Hope. Bioconjug Chem 2020; 31:1724-1739. [DOI: 10.1021/acs.bioconjchem.0c00302] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Peter J. Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Thomas I−H. Park
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - Elizabeth Cooper
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - Mike Dragunow
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - William A. Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
33
|
Zhang J, Wen G, Wang W, Cheng K, Guo Q, Tian S, Liu C, Hu H, Zhang Y, Zhang H, Wang L, Sun H. Controllable Cleavage of C–N Bond-Based Fluorescent and Photoacoustic Dual-Modal Probes for the Detection of H2S in Living Mice. ACS APPLIED BIO MATERIALS 2020; 4:2020-2025. [DOI: 10.1021/acsabm.0c00413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jie Zhang
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Guohua Wen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Wanhe Wang
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Ke Cheng
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Qiang Guo
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Shuang Tian
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Chao Liu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Hanrong Hu
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Lidai Wang
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Hongyan Sun
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
34
|
Zhou J, Gao ZJ, Cai JQ, Li LL, Wang H. Synthesis and Self-Assembly Behavior of Chlorophyll Derivatives for Ratiometric Photoacoustic Signal Optimization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1559-1568. [PMID: 32030985 DOI: 10.1021/acs.langmuir.9b03652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Self-assembly provides researchers powerful tools for creating ordered functional structures and complex architectures. Investigation of in vivo self-assembly reveals the assembly/aggregation-induced retention (AIR) effect and enhanced targeting effect, which can be applied to promising biomedical applications by enhancing molecular accumulation in the target region. These unique bioeffects inspire the interest of researchers in construction of self-assembled nanomaterials in biological systems. Although many efforts have been achieved, the in-depth analysis of the relationship between assemblies and functions is rarely reported. Here, we focus on the relationship of chlorophyll-derivative assemblies and their photoacoustic signals and attempt to establish a method for monitoring the aggregation efficiency in vivo based on photoacoustic signals. Three arginine-rich peptide-purpurin molecules were designed and synthesized. The assembled capabilities and assembly processes of these molecules were characterized and monitored by UV, fluorescence, and CD spectra images of gradually changing polarities in mixed solvents, and the morphologies of the assemblies were observed by TEM. Furthermore, the relationship between the aggregation ratios of the molecules and the ratiometric photoacoustic signals was systemically studied. We prospect that the fundamental research in revealing objective laws will be useful for future guidance in optimizing photoacoustic detection windows and assembled molecule design.
Collapse
Affiliation(s)
- Jin Zhou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Standardization and Measurement for Nanotechnology , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Zi-Jun Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Jun-Quan Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Li-Li Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| |
Collapse
|
35
|
Zhou EY, Knox HJ, Liu C, Zhao W, Chan J. A Conformationally Restricted Aza-BODIPY Platform for Stimulus-Responsive Probes with Enhanced Photoacoustic Properties. J Am Chem Soc 2019; 141:17601-17609. [PMID: 31660741 PMCID: PMC6942515 DOI: 10.1021/jacs.9b06694] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Photoacoustic (PA) dyes, which absorb near-infrared (NIR) light to generate an ultrasonic signal, can be detected at centimeter depths in tissues with significantly higher resolution than dyes imaged with fluorescence-based methods. As such, PA agents show great promise as research tools for the study of live-animal disease models. However, the development of activatable PA probes has been hampered by the relative scarcity of appropriate PA-active molecular platforms with properties that can be manipulated in a rational manner. Herein we synthesized and evaluated six modifications to the aza-BODIPY dye platform with respect to their absorbance, fluorescence, and PA properties. We identified a promising conformationally restricted aza-BODIPY (CRaB) scaffold that prioritizes three criteria necessary for the design of stimulus-responsive dyes with optimal ratiometric PA response: absorbance at NIR wavelengths, strong PA intensity, and large Δλ upon interaction with the desired stimulus. Using this scaffold, we synthesized three chemically diverse stimulus-responsive PA probes and demonstrated between 2- and 8-fold improvements in theoretical ratiometric response in vitro. This suggests that improvements in PA parameters are generalizable. Finally, we validated the in vitro turnover of each CRaB PA probe and demonstrated the in vivo potential of the CRaB scaffold by direct comparison to an established hypoxia-responsive probe for the detection of tumor hypoxia.
Collapse
Affiliation(s)
- Effie Y. Zhou
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Hailey J. Knox
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Chang Liu
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, P. R. China
| | - Weili Zhao
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, P. R. China
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, 475004, P. R. China
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
36
|
Long R, Tang C, Xu J, Li T, Tong C, Guo Y, Shi S, Wang D. Novel natural myricetin with AIE and ESIPT characteristics for selective detection and imaging of superoxide anions in vitro and in vivo. Chem Commun (Camb) 2019; 55:10912-10915. [DOI: 10.1039/c9cc05212g] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel reversible AIE + ESIPT probe, myricetin, easily obtained from vine tea, for detection and imaging of O2•−.
Collapse
Affiliation(s)
- Ruiqing Long
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Cui Tang
- Department of Clinical Pharmacology
- Xiangya Hospital
- Hunan Key Laboratory of Pharmacogenetics
- Central South University
- 410078 Changsha
| | - Jinju Xu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Te Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Chaoying Tong
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Ying Guo
- Department of Clinical Pharmacology
- Xiangya Hospital
- Hunan Key Laboratory of Pharmacogenetics
- Central South University
- 410078 Changsha
| | - Shuyun Shi
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Daijie Wang
- Key Laboratory of TCM Quality Control
- Shandong Analysis and Test Center
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250014
- China
| |
Collapse
|