1
|
Pritee, Dhariwal N, Yadav P, Sharma S, Thakur S. Enhanced Photocatalytic Degradation of Environmental Pollutants Using a Triphenylamine-Based Polymer: Synthesis, Characterization, and Mechanistic Insights. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26007-26017. [PMID: 39604219 DOI: 10.1021/acs.langmuir.4c03461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Conjugated porous organic polymers have sparked growing research attention as photocatalysts owing to their high surface area, tunable pores, and capacity to collect and transfer light energy via their delocalized backbone. However, the synthesis methods for preparing these polymers require difficult experimental setups, such as high polymerization temperature, inert atmosphere, and use of transition metal catalysts. In the present work, a triphenylamine-based conjugated porous polymer (TPA-BPA) has been synthesized employing tris(4-aminophenyl)amine (TPA) and biphenyldicarboxaldehyde (BPA) as precursors via a one-pot Schiff base reaction in ambient conditions in the absence of the metal catalyst. The synthesized TPA-BPA polymer has been characterized using Fourier transform infrared spectroscopy, 13C cross-polarization magic angle spinning nuclear magnetic resonance, Brunauer-Emmett-Teller (BET), thermogravimetric analysis, field emission scanning electron microscopy, high-resolution transmission electron microscopy, valence band X-ray photoelectron spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, powder X-ray diffraction, electron paramagnetic resonance (EPR), and diffuse reflectance spectroscopy (DRS) techniques. The DRS analysis revealed that TPA-BPA has an optical band gap of 2.1 eV, demonstrating its semiconductive nature. The EPR study has shown that the synthesized polymer exhibits an intense radical signal at g = 2.00, confirming free radical generation upon photoexcitation and facilitating the breakdown of organic contaminants by photocatalysis. TPA-BPA possesses an exceptional porous structure with a surface area of 36 m2/g, as confirmed by BET studies, and high thermal stability up to 420 °C. It has been confirmed by photocatalytic studies that TPA-BPA shows effective degradation of methyl orange (92%), Congo red (91.5%), tobramycin (96%), and hydroquinone (85%) under visible light irradiation in 60 min. Owing to these observations, TPA-BPA can be an excellent candidate as a photocatalyst for environmental remediation. These findings pave the way for large-scale manufacturing of metal-free conjugated porous polymers as photocatalysts with variable photoelectrical characteristics.
Collapse
Affiliation(s)
- Pritee
- Department of Chemistry, Netaji Subhas University of Technology, Delhi 110078, India
| | - Neeraj Dhariwal
- Department of Physics, Netaji Subhas University of Technology, Delhi 110078, India
| | - Preety Yadav
- Department of Physics, Netaji Subhas University of Technology, Delhi 110078, India
| | - Shikha Sharma
- Department of Chemistry, Netaji Subhas University of Technology, Delhi 110078, India
- Department of Chemistry, JSS Academy of Technical Education, Noida, Uttar Pradesh 201301, India
| | - Sanjeeve Thakur
- Department of Chemistry, Netaji Subhas University of Technology, Delhi 110078, India
| |
Collapse
|
2
|
Yoneda A, Watanabe T, Kosugi K, Takahara T, Kusaka S, Matsuda R, Saga Y, Kambe T, Kondo M, Masaoka S. Development of a Ru-porphyrin-based supramolecular framework catalyst for styrene epoxidation. Chem Commun (Camb) 2024; 60:13939-13942. [PMID: 39508519 DOI: 10.1039/d4cc03868a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
A new microporous supramolecular-framework Ru(II)-porphyrin catalyst containing non-covalent interactions between pyrenylphenyl moieties at the meso-position of the porphyrin ring is synthesised and structurally characterised. This recyclable catalyst expedites styrene epoxidation more efficiently than homogeneous Ru-porphyrin catalytic systems.
Collapse
Affiliation(s)
- Akira Yoneda
- Division of Applied Chemistry, Graduate School of Engineering Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Taito Watanabe
- Division of Applied Chemistry, Graduate School of Engineering Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kento Kosugi
- Department of Chemistry, School of Science, Tokyo Institute of Technology, NE-6, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Teppei Takahara
- Department of Chemistry and Biotechnology, School of Engineering, and Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shinpei Kusaka
- Department of Chemistry and Biotechnology, School of Engineering, and Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ryotaro Matsuda
- Department of Chemistry and Biotechnology, School of Engineering, and Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yutaka Saga
- Division of Applied Chemistry, Graduate School of Engineering Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsuya Kambe
- Division of Applied Chemistry, Graduate School of Engineering Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- Center for Future Innovation (CFi), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mio Kondo
- Department of Chemistry, School of Science, Tokyo Institute of Technology, NE-6, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shigeyuki Masaoka
- Division of Applied Chemistry, Graduate School of Engineering Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Boruah A, Boro B, Paul R, Chang CC, Mandal S, Shrotri A, Pao CW, Mai BK, Mondal J. Site-Selective Zn-Metalation in Poly-Triphenyl Amine-based Porous Organic Polymer for Solid-Gas Phase CO 2 Photoreduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34437-34449. [PMID: 38940318 DOI: 10.1021/acsami.4c06198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Harvesting solar energy to produce value-added chemicals from carbon dioxide (CO2) presents a promising route for addressing the complexities of sustainable energy systems and environmental issues. In this context, the development of metal-coordinated porous organic polymers (POPs) offers a vital avenue for improving the photocatalytic performance of organic motifs. The current study presents a metal-integrated photocatalytic system (namely, Zn@BP-POP) developed via a one-pot Friedel-Crafts (F.C.) acylation strategy, for solid-gas phase photochemical CO2 reduction to CO (CO2RR). The postsynthetic incorporation of metal (Zn) active sites on the host polymeric backbone of BP-POP significantly influences the catalytic activity. Notably, Zn@BP-POP demonstrates good photocatalytic performance in the absence of any cocatalyst and photosensitizer yielding CO while impeding the competitive hydrogen evolution reaction (HER) from water. The experimental findings collectively propose that the observed catalytic activity and selectivity arise from the synergistic interplay between the singular zinc catalytic centers and the light-harvesting capacity of the highly conjugated polymeric backbone. Further, X-ray absorption spectroscopy (XAS) analysis has significantly highlighted the prominent role played by the ZnN2O4 single sites in the polymeric framework for activating the gaseous CO2 molecules. Further, time-dependent density functional theory (DFT) analysis also reveals the thermodynamic feasibility of CO2RR over HER under optimized reaction conditions. This work cumulatively presents an effective strategy to demonstrate the importance of metal-active sites and effectively establish their structure-activity relationship during photocatalysis.
Collapse
Affiliation(s)
- Ankita Boruah
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201001, India
| | - Bishal Boro
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201001, India
| | - Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India
| | - Chia-Che Chang
- National Synchrotron Radiation Research Centre,101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Srayee Mandal
- Department of Chemical Sciences, IISER- Berhampur, Berhampur, Odisha 760010, India
| | - Abhijit Shrotri
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-Ku, Sapporo 001-0021, Japan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Centre,101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 United States
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201001, India
| |
Collapse
|
4
|
Singh G, Prakash K, Nagaraja CM. Fe(III)-Anchored Porphyrin-Based Nanoporous Covalent Organic Frameworks for Green Synthesis of Cyclic Carbonates from Olefins and CO 2 under Atmospheric Pressure Conditions. Inorg Chem 2023; 62:13058-13068. [PMID: 37534594 DOI: 10.1021/acs.inorgchem.3c01899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The utilization of carbon dioxide (CO2) as a C1 source coupled with olefins, readily accessible feedstocks, offers dual advantages of mitigating atmospheric carbon dioxide and green synthesis of valuable chemicals. In this regard, herein we demonstrate the application of Fe(III)-anchored porphyrin-based covalent organic framework (P-COF) as a promising recyclable catalyst for one-step generation of cyclic carbonates (CCs), value-added commodity chemicals from olefins and CO2, under mild atmospheric pressure conditions. Moreover, this one-pot synthesis was applied to transform various olefins (aliphatic and aromatic) into the corresponding CCs in good yield and selectivity. In addition, the Fe(III)@P-COF showed good recyclability and durability for multiple reuse cycles without losing its catalytic activity. Notably, this one-step synthesis strategy presents an eco-friendly, atom-economic alternative to the conventional two-step process requiring epoxides. This work represents a rare demonstration of porphyrin COF-catalyzed one-pot CC synthesis by utilizing readily available olefins at atmospheric pressure of carbon dioxide.
Collapse
Affiliation(s)
- Gulshan Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Kamal Prakash
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - C M Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
5
|
Wang H, Wang G, Hu L, Ge B, Yu X, Deng J. Porous Polymer Materials for CO 2 Capture and Electrocatalytic Reduction. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1630. [PMID: 36837258 PMCID: PMC9967298 DOI: 10.3390/ma16041630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Efficient capture of CO2 and its conversion into other high value-added compounds by electrochemical methods is an effective way to reduce excess CO2 in the atmosphere. Porous polymeric materials hold great promise for selective adsorption and electrocatalytic reduction of CO2 due to their high specific surface area, tunable porosity, structural diversity, and chemical stability. Here, we review recent research advances in this field, including design of porous organic polymers (POPs), porous coordination polymers (PCPs), covalent organic frameworks (COFs), and functional nitrogen-containing polymers for capture and electrocatalytic reduction of CO2. In addition, key issues and prospects for the optimal design of porous polymers for future development are elucidated. This review is expected to shed new light on the development of advanced porous polymer electrocatalysts for efficient CO2 reduction.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Haihe Laboratory of Sustainable Chemical Transformations, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Genyuan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Liang Hu
- Department of Mechanical Engineering, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
| | - Bingcheng Ge
- Department of Mechanical Engineering, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaoliang Yu
- Department of Mechanical Engineering, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jiaojiao Deng
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Li Y, Liu M, Wu J, Li J, Yu X, Zhang Q. Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications. FRONTIERS OF OPTOELECTRONICS 2022; 15:38. [PMID: 36637691 PMCID: PMC9756274 DOI: 10.1007/s12200-022-00032-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/09/2022] [Indexed: 05/15/2023]
Abstract
Covalent organic frameworks (COFs) are one class of porous materials with permanent porosity and regular channels, and have a covalent bond structure. Due to their interesting characteristics, COFs have exhibited diverse potential applications in many fields. However, some applications require the frameworks to possess high structural stability, excellent crystallinity, and suitable pore size. COFs based on β-ketoenamine and imines are prepared through the irreversible enol-to-keto tautomerization. These materials have high crystallinity and exhibit high stability in boiling water, with strong resistance to acids and bases, resulting in various possible applications. In this review, we first summarize the preparation methods for COFs based on β-ketoenamine, in the form of powders, films and foams. Then, the effects of different synthetic methods on the crystallinity and pore structure of COFs based on β-ketoenamine are analyzed and compared. The relationship between structures and different applications including fluorescence sensors, energy storage, photocatalysis, electrocatalysis, batteries and proton conduction are carefully summarized. Finally, the potential applications, large-scale industrial preparation and challenges in the future are presented.
Collapse
Affiliation(s)
- Yaqin Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Maosong Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Jinjun Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Junbo Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Xianglin Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China.
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hongkong, Hong Kong SAR, 999077, China.
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hongkong, Hong Kong SAR, 999077, China.
| |
Collapse
|
7
|
|
8
|
Hlatshwayo ZT, Doremus JG, McGrier P. The Hydrosilylative Reduction of CO2 to Formate and Methanol Using a Cobalt Porphyrin‐Based Porous Organic Polymer. ChemCatChem 2022. [DOI: 10.1002/cctc.202200783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Jared G. Doremus
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | - Psaras McGrier
- The Ohio State University Chemistry and Biochemistry 100 W. 18th Ave. 43210 Columbus UNITED STATES
| |
Collapse
|
9
|
Khanlarkhani S, Akbarzadeh AR, Rahimi R. A retrospective-prospective survey of porphyrinoid fluorophores: towards new architectures as an electron transfer systems promoter. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Gorginpour F, Moradinia S, Daneshi M, Zali-Boeini H. Novel Sulfur-Containing Porous Organic Polymer as a Nanotrap for Rapid Removal of Mercury(II) from Environmental Waters. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Forough Gorginpour
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Somayeh Moradinia
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Marzieh Daneshi
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Hassan Zali-Boeini
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| |
Collapse
|
11
|
Li Z, Yang YW. Macrocycle-Based Porous Organic Polymers for Separation, Sensing, and Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107401. [PMID: 34676932 DOI: 10.1002/adma.202107401] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Indexed: 06/13/2023]
Abstract
With the rapid development of materials science, porous organic polymers (POPs) have received remarkable attentions because of their unique properties such as the exceptionally high surface area and flexible molecular design. The ability to incorporate specific functions in a precise manner makes POPs promising platforms for a myriad of applications in molecular adsorption, separation, and catalysis. Therefore, many different types of POPs have been rationally designed and synthesized to expand the scope of advanced materials, endowing them with distinct structures and properties. Recently, supramolecular macrocycles with excellent host-guest complexation abilities are emerging as powerful crosslinkers for developing novel POPs with hierarchical structures and improved performance, which can be well-organized at different spatial scales. Macrocycle-based POPs could have unusual porous, adsorptive, and optical properties when compared to their nonmacrocycle-incorporated counterparts. This cooperation provides valuable insights for the molecular-level understanding of skeletal complexity and diversity. Here, the research advances of macrocycle-based POPs are aptly summarized by showing their syntheses, properties, and applications in terms of separation, sensing, and catalysis. Finally, the current challenging issues in this exciting research field are delineated and a comprehensive outlook is offered for their future directions.
Collapse
Affiliation(s)
- Zheng Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
12
|
Chongdar S, Bhattacharjee S, Bhanja P, Bhaumik A. Porous organic-inorganic hybrid materials for catalysis, energy and environmental applications. Chem Commun (Camb) 2022; 58:3429-3460. [DOI: 10.1039/d1cc06340e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction of organic functionalities into the porous inorganic materials make the resulting hybrid porous framework not only more flexible and hydrophobic, but also provide additional scope for further functionalization, which...
Collapse
|
13
|
Li J, Liu H, Zhu H, Yao W, Wang D. Highly Efficient and Recyclable Porous Organic Polymer Supported Iridium Catalysts for Dehydrogenation and Borrowing Hydrogen Reactions in Water. ChemCatChem 2021. [DOI: 10.1002/cctc.202101168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jiahao Li
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province P. R. China
| | - Hongqiang Liu
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province P. R. China
- China Synchem Technology Co., Ltd. Bengbu Anhui 233000 P. R. China
| | - Haiyan Zhu
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province P. R. China
| | - Wei Yao
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province P. R. China
| | - Dawei Wang
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province P. R. China
| |
Collapse
|
14
|
Sarkar C, Shit SC, Das N, Mondal J. Presenting porous-organic-polymers as next-generation invigorating materials for nanoreactors. Chem Commun (Camb) 2021; 57:8550-8567. [PMID: 34369958 DOI: 10.1039/d1cc02616j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Porous organic polymers (POPs) represent an emerging class of porous organic materials which mainly comprise organic building blocks that are interconnected via strong covalent bonds, thereby offering highly cross-linked frameworks with rigid structures and specific void spaces for accommodating guest molecules. In the past few years, POPs have garnered colossal research interest as nanoreactors for heterogeneous catalysis (thermal, photochemical, electrochemical, etc.) because of their intriguing characteristic features, such as high thermal and chemical stabilities, adjustable chemical functionalities, large surface areas, and tunable pore size distributions. This feature article provides an overview of existing research relating to diverse POP synthetic approaches (COFs, CTFs, and some amorphous POPs), the possible modification of the functionality of POPs, and their exciting application as next-generation nanoreactors. These POPs are extremely interesting, as they offer the potential for either metal-free or metalated polymer catalysts allowing photocatalytic CO2 reduction to solar-fuel, biofuel upgrades, the conversion of waste cooking oil to bio-oil, and clean H2 production from water, addressing many scientific and technological challenges and providing new opportunities for various specific topics in catalysis. Finally, we emphasize that the integration of various synthetic approaches and the application of POPs as nanoreactors will provide opportunities in the near future for the precision synthesis of functional materials with significant impact in both basic and applied research areas.
Collapse
Affiliation(s)
- Chitra Sarkar
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 50007, India.
| | | | | | | |
Collapse
|
15
|
Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective. SUSTAINABILITY 2021. [DOI: 10.3390/su13126962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Managing the concentration of atmospheric CO2 requires a multifaceted engineering strategy, which remains a highly challenging task. Reducing atmospheric CO2 (CO2R) by converting it to value-added chemicals in a carbon neutral footprint manner must be the ultimate goal. The latest progress in CO2R through either abiotic (artificial catalysts) or biotic (natural enzymes) processes is reviewed herein. Abiotic CO2R can be conducted in the aqueous phase that usually leads to the formation of a mixture of CO, formic acid, and hydrogen. By contrast, a wide spectrum of hydrocarbon species is often observed by abiotic CO2R in the gaseous phase. On the other hand, biotic CO2R is often conducted in the aqueous phase and a wide spectrum of value-added chemicals are obtained. Key to the success of the abiotic process is understanding the surface chemistry of catalysts, which significantly governs the reactivity and selectivity of CO2R. However, in biotic CO2R, operation conditions and reactor design are crucial to reaching a neutral carbon footprint. Future research needs to look toward neutral or even negative carbon footprint CO2R processes. Having a deep insight into the scientific and technological aspect of both abiotic and biotic CO2R would advance in designing efficient catalysts and microalgae farming systems. Integrating the abiotic and biotic CO2R such as microbial fuel cells further diversifies the spectrum of CO2R.
Collapse
|
16
|
Cusin L, Peng H, Ciesielski A, Samorì P. Chemical Conversion and Locking of the Imine Linkage: Enhancing the Functionality of Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021; 60:14236-14250. [PMID: 33491860 DOI: 10.1002/anie.202016667] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 11/05/2022]
Abstract
Imine-based covalent organic frameworks (COFs) are a widely studied class of functional, crystalline, and porous nanostructures which combine a relatively facile crystallization with tuneable compositions and porosities. However, the imine linkage constitutes an intrinsic limitation due to its reduced stability in harsh chemical conditions and its unsuitability for in-plane π-conjugation in COFs. Urgent solutions are therefore required in order to exploit the full potential of these materials, thereby enabling their technological application in electronics, sensing, and energy storage devices. In this context, the advent of a new generation of linkages derived from the chemical conversion and locking of the imine bond represents a cornerstone for the synthesis of new COFs. A marked increase in the framework robustness is in fact often combined with the incorporation of novel functionalities including, for some of these reactions, an extension of the in-plane π-conjugation. This Minireview describes the most enlightening examples of one-pot reactions and post-synthetic modifications towards the chemical locking of the imine bond in COFs.
Collapse
Affiliation(s)
- Luca Cusin
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg and CNRS, 8 alleé Gaspard Monge, 67000, Strasbourg, France
| | - Haijun Peng
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg and CNRS, 8 alleé Gaspard Monge, 67000, Strasbourg, France
| | - Artur Ciesielski
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg and CNRS, 8 alleé Gaspard Monge, 67000, Strasbourg, France
| | - Paolo Samorì
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg and CNRS, 8 alleé Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
17
|
Cusin L, Peng H, Ciesielski A, Samorì P. Chemical Conversion and Locking of the Imine Linkage: Enhancing the Functionality of Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Luca Cusin
- Institut de Science et d'Ingénierie Supramoléculaires Université de Strasbourg and CNRS 8 alleé Gaspard Monge 67000 Strasbourg France
| | - Haijun Peng
- Institut de Science et d'Ingénierie Supramoléculaires Université de Strasbourg and CNRS 8 alleé Gaspard Monge 67000 Strasbourg France
| | - Artur Ciesielski
- Institut de Science et d'Ingénierie Supramoléculaires Université de Strasbourg and CNRS 8 alleé Gaspard Monge 67000 Strasbourg France
| | - Paolo Samorì
- Institut de Science et d'Ingénierie Supramoléculaires Université de Strasbourg and CNRS 8 alleé Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
18
|
Modak A, Ghosh A, Bhaumik A, Chowdhury B. CO 2 hydrogenation over functional nanoporous polymers and metal-organic frameworks. Adv Colloid Interface Sci 2021; 290:102349. [PMID: 33780826 DOI: 10.1016/j.cis.2020.102349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
CO2 is one of the major environmental pollutants and its mitigation is attracting huge attention over the years due to continuous increase in this greenhouse gas emission in the atmosphere. Being environmentally hazardous and plentiful presence in nature, CO2 utilization as C1 resource into fuels and feedstock is very demanding from the green chemistry perspectives. To accomplish this CO2 utilization issue, functional organic materials like porous organic polymers (POPs), covalent organic frameworks (COFs) as well as organic-inorganic hybrid materials like metal-organic frameworks (MOFs), having characteristics of large surface area, high thermal stability and tunability in the porous nanostructures play significant role in designing the suitable catalyst for the CO2 hydrogenation reactions. Although CO2 hydrogenation is a widely studied and emerging area of research, till date review exclusively focused on designing POPs, COFs and MOFs bearing reactive functional groups is very limited. A thorough literature review on this matter will enrich our knowledge over the CO2 hydrogenation processes and the catalytic sites responsible for carrying out these chemical transformations. We emphasize recent state-of-the art developments in POPs/COFs/MOFs having unique functionalities and topologies in stabilizing metallic NPs and molecular complexes for the CO2 reduction reactions. The major differences between MOFs and porous organics are critically summarized in the outlook section with the aim of the future benefit in mitigating CO2 emission from ambient air.
Collapse
|
19
|
Abstract
Conjugated macrocycle polymers as an emerging class of organic porous materials embedded with macrocycles in the conjugated skeleton are discussed.
Collapse
Affiliation(s)
- Zheng Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
20
|
König M, Rigo M, Chaoui N, Tran Ngoc T, Epping JD, Schmidt J, Pachfule P, Ye M, Trunk M, Teichert JF, Drieß M, Thomas A. Immobilization of an Iridium Pincer Complex in a Microporous Polymer for Application in Room‐Temperature Gas Phase Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michaela König
- Institut für Chemie Technische Universität Berlin Hardenbergstrasse 40 10623 Berlin Germany
| | - Massimo Rigo
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany
| | - Nicolas Chaoui
- Institut für Chemie Technische Universität Berlin Hardenbergstrasse 40 10623 Berlin Germany
| | - Trung Tran Ngoc
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany
| | - Jan Dirk Epping
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany
| | - Johannes Schmidt
- Institut für Chemie Technische Universität Berlin Hardenbergstrasse 40 10623 Berlin Germany
| | - Pradip Pachfule
- Institut für Chemie Technische Universität Berlin Hardenbergstrasse 40 10623 Berlin Germany
| | - Meng‐Yang Ye
- Institut für Chemie Technische Universität Berlin Hardenbergstrasse 40 10623 Berlin Germany
| | - Matthias Trunk
- Institut für Chemie Technische Universität Berlin Hardenbergstrasse 40 10623 Berlin Germany
| | - Johannes F. Teichert
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany
| | - Matthias Drieß
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany
| | - Arne Thomas
- Institut für Chemie Technische Universität Berlin Hardenbergstrasse 40 10623 Berlin Germany
| |
Collapse
|
21
|
König M, Rigo M, Chaoui N, Tran Ngoc T, Epping JD, Schmidt J, Pachfule P, Ye M, Trunk M, Teichert JF, Drieß M, Thomas A. Immobilization of an Iridium Pincer Complex in a Microporous Polymer for Application in Room-Temperature Gas Phase Catalysis. Angew Chem Int Ed Engl 2020; 59:19830-19834. [PMID: 32614513 PMCID: PMC7692909 DOI: 10.1002/anie.202004092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/26/2020] [Indexed: 11/06/2022]
Abstract
An iridium dihydride pincer complex [IrH2 (POCOP)] is immobilized in a hydroxy-functionalized microporous polymer network using the concepts of surface organometallic chemistry. The introduction of this novel, truly innocent support with remote OH-groups enables the formation of isolated active metal sites embedded in a chemically robust and highly inert environment. The catalyst maintained high porosity and without prior activation exhibited efficacy in the gas phase hydrogenation of ethene and propene at room temperature and low pressure. The catalyst can be recycled for at least four times.
Collapse
Affiliation(s)
- Michaela König
- Institut für ChemieTechnische Universität BerlinHardenbergstrasse 4010623BerlinGermany
| | - Massimo Rigo
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 11510623BerlinGermany
| | - Nicolas Chaoui
- Institut für ChemieTechnische Universität BerlinHardenbergstrasse 4010623BerlinGermany
| | - Trung Tran Ngoc
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 11510623BerlinGermany
| | - Jan Dirk Epping
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 11510623BerlinGermany
| | - Johannes Schmidt
- Institut für ChemieTechnische Universität BerlinHardenbergstrasse 4010623BerlinGermany
| | - Pradip Pachfule
- Institut für ChemieTechnische Universität BerlinHardenbergstrasse 4010623BerlinGermany
| | - Meng‐Yang Ye
- Institut für ChemieTechnische Universität BerlinHardenbergstrasse 4010623BerlinGermany
| | - Matthias Trunk
- Institut für ChemieTechnische Universität BerlinHardenbergstrasse 4010623BerlinGermany
| | - Johannes F. Teichert
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 11510623BerlinGermany
| | - Matthias Drieß
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 11510623BerlinGermany
| | - Arne Thomas
- Institut für ChemieTechnische Universität BerlinHardenbergstrasse 4010623BerlinGermany
| |
Collapse
|
22
|
Kumar G, Singh M, Goswami R, Neogi S. Structural Dynamism-Actuated Reversible CO 2 Adsorption Switch and Postmetalation-Induced Visible Light C α-H Photocyanation with Rare Size Selectivity in N-Functionalized 3D Covalent Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48642-48653. [PMID: 33052646 DOI: 10.1021/acsami.0c14678] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The impact of dimensionality and flexibility on anticipated properties has prompted major research focus to three-dimensional covalent organic frameworks (3D COFs), where astute functionalization of porous channels for dynamic CO2 adsorption as well as size-exclusive C-H activation under eco-friendly condition are the most intriguing advanced applications. Herein, we report an imine-based, diamondoid COF that embraces one-dimensional porous channels in spite of ninefold interpenetration. A combination of intrinsic microporosity and pore wall decoration with accessible N atoms from linear strut renders this 3D COF display reasonable CO2 affinity with decent selectivity (CO2/N2: 64.2; CO2/CH4: 10.5) alongside worthy multicyclic CO2 uptake-release recurrence. Interestingly, the COF undergoes solvent-assisted alteration to a pore-stretched structure via -C═N- "pedal" motion with a concomitant enhancement in CO2 uptake, where steady reversibility of such structural dynamism instigates unprecedented CO2 adsorption switch up to seven consecutive cycles. Integration of 2,2'-bipyridyl units benefits anchoring of homogeneous catalyst to device first-ever Ru(Bpy)22+ hooked diamondoid COF (Ru-COF), which performs visible-light-triggered oxidative cyanation of tertiary amines at room temperature, using molecular oxygen as a selective oxidant in green solvent H2O. The photocatalyst-engineered COF manifests excellent recyclability and comparable activity to that of homogeneous catalyst. To the best of Ru-COF, atom-economic photocyanation is realized via in situ generated iminium ion, wherein larger-sized substrates exhibit insignificant conversion of α-aminonitriles and validate rarest size selectivity in oxidative Strecker reaction. This study not only demonstrates potential of 3D COF as next-generation dynamic CO2 adsorbent but also sheds light on tailor-made fabrication of smart functional material for promising catalytic applications through an environmentally benign route.
Collapse
Affiliation(s)
- Gaurav Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar 364002, Gujarat, India
| | - Manpreet Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar 364002, Gujarat, India
| | - Ranadip Goswami
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar 364002, Gujarat, India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar 364002, Gujarat, India
| |
Collapse
|
23
|
Gao W, Tian J, Fang Y, Liu T, Zhang X, Xu X, Zhang X. Visible-light-driven photo-Fenton degradation of organic pollutants by a novel porphyrin-based porous organic polymer at neutral pH. CHEMOSPHERE 2020; 243:125334. [PMID: 31995864 DOI: 10.1016/j.chemosphere.2019.125334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/27/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Developing novel heterogeneous photo-Fenton catalysts with high efficiency and stability, driven by visible-light rather ultraviolet light at neutral pH has been a major challenge for degradation of organic pollutants. In this work, we successfully synthesized a metalloporphyrin-based porous organic polymer (FePPOP-1) by the Sonogashira cross-coupling reaction. UV-vis absorption spectra showed FePPOP-1 exhibits a significant coverage of the natural solar irradiance spectrum. As a result, the prepared FePPOP-1 has a significantly enhanced photocatalytic activity for the visible-light-driven degradation of methylene blue. By using only 4 mg of FePPOP-1 as a catalyst, it was found that 50 mL of organic wastewater containing 70 ppm MB could be totally degraded in 80 min even at neutral pH. The effects of the initial MB, H2O2 concentrations, pH value and common ions on MB degradation were studied in detail. Both the catalytic mechanism of FePPOP-1 and the degradation route of MB were also proposed.
Collapse
Affiliation(s)
- Wenqiang Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jing Tian
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China; Shandong Product Quality Inspection Research Institute, Jinan, Shandong, 250100, China
| | - Yishan Fang
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Tingting Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xiumei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xiaohong Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| |
Collapse
|
24
|
Luo Y, Xu ZY, Wang H, Sun XW, Li ZT, Zhang DW. Porous Ru(bpy) 32+-Linked Polymers for Recyclable Photocatalysis of Enantioselective Alkylation of Aldehydes. ACS Macro Lett 2020; 9:90-95. [PMID: 35638654 DOI: 10.1021/acsmacrolett.9b00872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two metal porous organic polymers (POPs) that contain the [Ru(bpy)3]2+ cores are prepared via one-pot Suzuki-Miyaura coupling reactions. Both Ru-POPs are thermally stable at up to 340 °C in air and do not dissolve in all solvents tested. One of the POPs has been revealed to be highly effective and reusable as a heterogeneous photocatalyst for visible light-driven enantioselective alkylation of aldehydes. After 10 cycles, the catalyst still maintains the enantioselectivity, while the activity just decreases slightly.
Collapse
Affiliation(s)
- Yi Luo
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Zi-Yue Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Xing-Wen Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
25
|
Chen J, McGraw M, Chen EYX. Diverse Catalytic Systems and Mechanistic Pathways for Hydrosilylative Reduction of CO 2. CHEMSUSCHEM 2019; 12:4543-4569. [PMID: 31386795 DOI: 10.1002/cssc.201901764] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Catalytic hydrosilylation of carbon dioxide has emerged as a promising approach for carbon dioxide utilization. It allows the reductive transformation of carbon dioxide into value-added products at the levels of formate, formaldehyde, methanol, and methane. Tremendous progress has been made in the area of carbon dioxide hydrosilylation since the first reports in 1981. This focus review describes recent advances in the design and catalytic performance of leading catalyst systems, including transition-metal, main-group, and transition-metal/main-group and main-group/main-group tandem catalysts. Emphasis is placed on discussions of key mechanistic features of these systems and efforts towards the development of more selective, efficient, and sustainable carbon dioxide hydrosilylation processes.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Michael McGraw
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|