1
|
Li B, Xu X, Lv Y, Wu Z, He L, Song YF. Polyoxometalates as Potential Artificial Enzymes toward Biological Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305539. [PMID: 37699754 DOI: 10.1002/smll.202305539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/09/2023] [Indexed: 09/14/2023]
Abstract
Artificial enzymes, as alternatives to natural enzymes, have attracted enormous attention in the fields of catalysis, biosensing, diagnostics, and therapeutics because of their high stability and low cost. Polyoxometalates (POMs), a class of inorganic metal oxides, have recently shown great potential in mimicking enzyme activity due to their well-defined structure, tunable composition, high catalytic efficiency, and easy storage properties. This review focuses on the recent advances in POM-based artificial enzymes. Different types of POMs and their derivatives-based mimetic enzyme functions are covered, as well as the corresponding catalytic mechanisms (where available). An overview of the broad applications of representative POM-based artificial enzymes from biosensing to theragnostic is provided. Insight into the current challenges and the future directions for POMs-based artificial enzymes is discussed.
Collapse
Affiliation(s)
- Bole Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaotong Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yanfei Lv
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhaohui Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lei He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
2
|
Han J, Gu Y, Yang C, Meng L, Ding R, Wang Y, Shi K, Yao H. Single-atom nanozymes: classification, regulation strategy, and safety concerns. J Mater Chem B 2023; 11:9840-9866. [PMID: 37822275 DOI: 10.1039/d3tb01644g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Nanozymes, nanomaterials possessing enzymatic activity, have been studied extensively by researchers. However, their complex composition, low density of active sites, and inadequate substrate selectivity have hindered the maturation and widespread acceptance of nanozymes. Single-atom nanozymes (SAzymes) with atomically dispersed active sites are leading the field of catalysis due to their exceptional performance. The maximum utilization rate of atoms, low cost, well-defined coordination structure, and active sites are the most prominent advantages of SAzymes that researchers favor. This review systematically categorizes SAzymes based on their support type and describes their specific applications. Additionally, we discuss regulation strategies for SAzyme activity and provide a comprehensive summary of biosafety challenges associated with these enzymes.
Collapse
Affiliation(s)
- Jiping Han
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Yaohua Gu
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Changyi Yang
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Lingchen Meng
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Runmei Ding
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Yifan Wang
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Keren Shi
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Huiqin Yao
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
3
|
Zhu Y, Liao Y, Zou J, Cheng J, Pan Y, Lin L, Chen X. Engineering Single-Atom Nanozymes for Catalytic Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300750. [PMID: 37058076 DOI: 10.1002/smll.202300750] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Nanomaterials with enzyme-mimicking properties, coined as nanozymes, are a promising alternative to natural enzymes owing to their remarkable advantages, such as high stability, easy preparation, and favorable catalytic performance. Recently, with the rapid development of nanotechnology and characterization techniques, single atom nanozymes (SAzymes) with atomically dispersed active sites, well-defined electronic and geometric structures, tunable coordination environment, and maximum metal atom utilization are developed and exploited. With superior catalytic performance and selectivity, SAzymes have made impressive progress in biomedical applications and are expected to bridge the gap between artificial nanozymes and natural enzymes. Herein, the recent advances in SAzyme preparation methods, catalytic mechanisms, and biomedical applications are systematically summarized. Their biomedical applications in cancer therapy, oxidative stress cytoprotection, antibacterial therapy, and biosensing are discussed in depth. Furthermore, to appreciate these advances, the main challenges, and prospects for the future development of SAzymes are also outlined and highlighted in this review.
Collapse
Affiliation(s)
- Yang Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Yaxin Liao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Junjie Cheng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuanbo Pan
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
4
|
He L, Ma H, Song W, Zhou Z, Ma C, Zhang H. Arabidopsis COPT1 copper transporter uses a single histidine to regulate transport activity and protein stability. Int J Biol Macromol 2023; 241:124404. [PMID: 37054854 DOI: 10.1016/j.ijbiomac.2023.124404] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
Copper acquisition and subsequent delivery to target proteins are essential for many biological processes. However, the cellular levels of this trace element must be controlled because of its potential toxicity. The COPT1 protein rich in potential metal-binding amino acids functions in high affinity copper uptake at the plasma membrane of Arabidopsis cells. The functional role of these putative metal-binding residues is largely unknown. Through truncations and site-directed mutagenesis, we identified His43, a single residue within the extracellular N-terminal domain as absolutely critical for copper uptake of COPT1. Substitution of this residue with leucine, methionine or cysteine almost inactivated transport function of COPT1, implying that His43 fails to serves as a copper ligand in the regulation of COPT1 activity. Deletion of all extracellular N-terminal metal-binding residues completely blocked copper-stimulated degradation but did not alter the subcellular distribution and multimerization of COPT1. Although mutation of His43 to alanine and serine retained the transporter activity in yeast cells, the mutant protein was unstable and degraded in the proteasome in Arabidopsis cells. Our results demonstrate a pivotal role for the extracellular residue His43 in high affinity copper transport activity, and suggest common molecular mechanisms for regulating both metal transport and protein stability of COPT1.
Collapse
Affiliation(s)
- Lifei He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Hanhan Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wenhua Song
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Zhongle Zhou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Chunjie Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Haiyan Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
5
|
Schulte NB, Pushie MJ, Martinez A, Sendzik M, Escobedo M, Kuter K, Haas KL. Exploration of the Potential Role of Serum Albumin in the Delivery of Cu(I) to Ctr1. Inorg Chem 2023; 62:4021-4034. [PMID: 36826341 DOI: 10.1021/acs.inorgchem.2c03753] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Human serum albumin (HSA) is the major copper (Cu) carrier in blood. The majority of previous studies that have investigated Cu interactions with HSA have focused primarily on the Cu(II) oxidation state. Yet, cellular Cu uptake by the human copper transport protein (Ctr1), a plasma membrane-embedded protein responsible for Cu uptake into cells, requires Cu(I). Recent in vitro work has determined that reducing agents, such as the ascorbate present in blood, are sufficient to reduce the Cu(II)HSA complex to form Cu(I)HSA and that Cu(I) is bound to HSA with pM affinity. The biological accessibility of Cu(I)HSA suggests that HSA-bound Cu(I) may be an unappreciated form of Cu cargo and a key player in extracellular Cu trafficking. To better understand Cu trafficking by HSA, we sought to investigate the exchange of Cu(I) from HSA to a model peptide of the Cu-binding ectodomain of Ctr1. In this study, we used X-ray absorption near-edge spectroscopy to show that Cu(I) becomes more highly coordinated as increasing amounts of the Ctr1-14 model peptide are added to a solution of Cu(I)HSA. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to further characterize the interaction of Cu(I)HSA with Ctr1-14 by determining the ligands coordinating Cu(I) and their bond lengths. The EXAFS data support that some Cu(I) likely undergoes complete transfer from HSA to Ctr1-14. This finding of HSA interacting with and releasing Cu(I) to an ectodomain model peptide of Ctr1 suggests a mechanism by which HSA delivers Cu(I) to cells under physiological conditions.
Collapse
Affiliation(s)
- Natalie B Schulte
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - M Jake Pushie
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Ana Martinez
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Madison Sendzik
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Maria Escobedo
- Department of Mathematics and Computer Science, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Kristin Kuter
- Department of Mathematics and Computer Science, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Kathryn L Haas
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
6
|
Niu X, Wei P, Sun J, Lin Y, Chen X, Ding C, Zhu Y, Kang D. Biomineralized hybrid nanodots for tumor therapy via NIR-II fluorescence and photothermal imaging. Front Bioeng Biotechnol 2022; 10:1052014. [PMID: 36394048 PMCID: PMC9660244 DOI: 10.3389/fbioe.2022.1052014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/18/2022] [Indexed: 10/13/2023] Open
Abstract
Chemodynamic therapy (CDT) is an emerging and promising therapeutic strategy that suppresses tumor growth by catalytically converting intracellular hydrogen peroxide (H2O2) into highly-reactive hydroxyl radicals (•OH). However, the inherent substrate of H2O2 is relatively insufficient to achieve desirable CDT efficacy. Therefore, searching for integrated therapeutic methods with synergistic therapeutic modality is especially vital to augment therapeutic outcomes. Herein, we reported nanodot- CuxMnySz @BSA@ICG (denoted as CMS@B@I) and bovine serum albumin (BSA)-based biomineralization CuxMnySz (CMS) loaded with photodynamic agent-indocyanine green (ICG). CMS@B@I converts endogenous hydrogen peroxide (H2O2) into highly active hydroxyl radical (•OH) via Fenton reaction, and effectively produces reactive oxygen species (ROS) after being exposed to 808 nm laser irradiation, attributable to the excellent photodynamic agent-ICG. This results in eliciting a ROS storm. Additionally, CMS@B@I exhibits a superior photothermal effect under NIR-II 1064 nm laser irradiation to enhance tumor CDT efficacy. The NIR-II fluorescence imaging agent of ICG and the excellent photothermal effect of CMS@B@I are highly beneficial to NIR-II fluorescence and infrared thermal imaging, respectively, resulting in tracing the fate of CMS@B@I. This study attempts to design a bimodal imaging-guided and photothermal-enhanced CDT nanoagent for augmenting tumor catalytic therapy.
Collapse
Affiliation(s)
- Xuegang Niu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Penghui Wei
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jiangnan Sun
- Department of Psychology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoyong Chen
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chenyu Ding
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Zhu
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Nardella MI, Fortino M, Barbanente A, Natile G, Pietropaolo A, Arnesano F. Multinuclear Metal-Binding Ability of the N-Terminal Region of Human Copper Transporter Ctr1: Dependence Upon pH and Metal Oxidation State. Front Mol Biosci 2022; 9:897621. [PMID: 35601835 PMCID: PMC9117721 DOI: 10.3389/fmolb.2022.897621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
The 14mer peptide corresponding to the N-terminal region of human copper transporter Ctr1 was used to investigate the intricate mechanism of metal binding to this plasma membrane permease responsible for copper import in eukaryotic cells. The peptide contains a high-affinity ATCUN Cu(II)/Ni(II)-selective motif, a methionine-only MxMxxM Cu(I)/Ag(I)-selective motif and a double histidine HH(M) motif, which can bind both Cu(II) and Cu(I)/Ag(I) ions. Using a combination of NMR spectroscopy and electrospray mass spectrometry, clear evidence was gained that the Ctr1 peptide, at neutral pH, can bind one or two metal ions in the same or different oxidation states. Addition of ascorbate to a neutral solution containing Ctr11-14 and Cu(II) in 1:1 ratio does not cause an appreciable reduction of Cu(II) to Cu(I), which is indicative of a tight binding of Cu(II) to the ATCUN motif. However, by lowering the pH to 3.5, the Cu(II) ion detaches from the peptide and becomes susceptible to reduction to Cu(I) by ascorbate. It is noteworthy that at low pH, unlike Cu(II), Cu(I) stably binds to methionines of the peptide. This redox reaction could take place in the lumen of acidic organelles after Ctr1 internalization. Unlike Ctr11-14-Cu(II), bimetallic Ctr11-14-2Cu(II) is susceptible to partial reduction by ascorbate at neutral pH, which is indicative of a lower binding affinity of the second Cu(II) ion. The reduced copper remains bound to the peptide, most likely to the HH(M) motif. By lowering the pH to 3.5, Cu(I) shifts from HH(M) to methionine-only coordination, an indication that only the pH-insensitive methionine motif is competent for metal binding at low pH. The easy interconversion of monovalent cations between different coordination modes was supported by DFT calculations.
Collapse
Affiliation(s)
| | - Mariagrazia Fortino
- Dipartimento di Scienze Della Salute, University of Catanzaro, Catanzaro, Italy
| | | | - Giovanni Natile
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze Della Salute, University of Catanzaro, Catanzaro, Italy
| | - Fabio Arnesano
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
8
|
Walke G, Aupič J, Kashoua H, Janoš P, Meron S, Shenberger Y, Qasem Z, Gevorkyan-Airapetov L, Magistrato A, Ruthstein S. Dynamical interplay between the human high-affinity copper transporter hCtr1 and its cognate metal ion. Biophys J 2022; 121:1194-1204. [PMID: 35202609 PMCID: PMC9034245 DOI: 10.1016/j.bpj.2022.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/12/2021] [Accepted: 02/17/2022] [Indexed: 11/02/2022] Open
Abstract
Abnormal cellular copper levels have been clearly implicated in genetic diseases, cancer, and neurodegeneration. Ctr1, a high-affinity copper transporter, is a homotrimeric integral membrane protein that provides the main route for cellular copper uptake. Together with a sophisticated copper transport system, Ctr1 regulates Cu(I) metabolism in eukaryotes. Despite its pivotal role in normal cell function, the molecular mechanism of copper uptake and transport via Ctr1 remains elusive. In this study, electron paramagnetic resonance (EPR), UV-visible spectroscopy, and all-atom simulations were employed to explore Cu(I) binding to full-length human Ctr1 (hCtr1), thereby elucidating how metal binding at multiple distinct sites affects the hCtr1 conformational dynamics. We demonstrate that each hCtr1 monomer binds up to five Cu(I) ions and that progressive Cu(I) binding triggers a marked structural rearrangement in the hCtr1 C-terminal region. The observed Cu(I)-induced conformational remodeling suggests that the C-terminal region may play a dual role, serving both as a channel gate and as a shuttle mediating the delivery of copper ions from the extracellular hCtr1 selectivity filter to intracellular metallochaperones. Our findings thus contribute to a more complete understanding of the mechanism of hCtr1-mediated Cu(I) uptake and provide a conceptual basis for developing mechanism-based therapeutics for treating pathological conditions linked to de-regulated copper metabolism.
Collapse
Affiliation(s)
- Gulshan Walke
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Jana Aupič
- Department National Research Council of Italy (CNR) - Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Hadeel Kashoua
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Pavel Janoš
- Department National Research Council of Italy (CNR) - Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Shelly Meron
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Yulia Shenberger
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Zena Qasem
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Alessandra Magistrato
- Department National Research Council of Italy (CNR) - Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Trieste, Italy.
| | - Sharon Ruthstein
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
9
|
Magrì A, Tabbì G, Naletova I, Attanasio F, Arena G, Rizzarelli E. A Deeper Insight in Metal Binding to the hCtr1 N-terminus Fragment: Affinity, Speciation and Binding Mode of Binuclear Cu 2+ and Mononuclear Ag + Complex Species. Int J Mol Sci 2022; 23:ijms23062929. [PMID: 35328348 PMCID: PMC8953729 DOI: 10.3390/ijms23062929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 01/27/2023] Open
Abstract
Ctr1 regulates copper uptake and its intracellular distribution. The first 14 amino acid sequence of the Ctr1 ectodomain Ctr1(1-14) encompasses the characteristic Amino Terminal Cu2+ and Ni2+ binding motif (ATCUN) as well as the bis-His binding motif (His5 and His6). We report a combined thermodynamic and spectroscopic (UV-vis, CD, EPR) study dealing with the formation of Cu2+ homobinuclear complexes with Ctr1(1-14), the percentage of which is not negligible even in the presence of a small Cu2+ excess and clearly prevails at a M/L ratio of 1.9. Ascorbate fails to reduce Cu2+ when bound to the ATCUN motif, while it reduces Cu2+ when bound to the His5-His6 motif involved in the formation of binuclear species. The histidine diade characterizes the second binding site and is thought to be responsible for ascorbate oxidation. Binding constants and speciation of Ag+ complexes with Ctr1(1-14), which are assumed to mimic Cu+ interaction with N-terminus of Ctr1(1-14), were also determined. A preliminary immunoblot assay evidences that the anti-Ctr1 extracellular antibody recognizes Ctr1(1-14) in a different way from the longer Ctr1(1-25) that encompasses a second His and Met rich domain.
Collapse
Affiliation(s)
- Antonio Magrì
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
| | - Giovanni Tabbì
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
| | - Irina Naletova
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
- Consorzio Interuniversitario per la Ricerca dei Metalli nei Sistemi Biologici, Via Ulpiani 27, 70126 Bari, Italy
| | - Francesco Attanasio
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
- Correspondence: (F.A.); (E.R.); Tel.: +39-095-7385070 (E.R.)
| | - Giuseppe Arena
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
- Consorzio Interuniversitario per la Ricerca dei Metalli nei Sistemi Biologici, Via Ulpiani 27, 70126 Bari, Italy
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
- Correspondence: (F.A.); (E.R.); Tel.: +39-095-7385070 (E.R.)
| |
Collapse
|
10
|
Migliore R, Biver T, Barone G, Sgarlata C. Quantitative Analysis of the Interactions of Metal Complexes and Amphiphilic Systems: Calorimetric, Spectroscopic and Theoretical Aspects. Biomolecules 2022; 12:biom12030408. [PMID: 35327600 PMCID: PMC8946196 DOI: 10.3390/biom12030408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023] Open
Abstract
Metals and metal-based compounds have many implications in biological systems. They are involved in cellular functions, employed in the formation of metal-based drugs and present as pollutants in aqueous systems, with toxic effects for living organisms. Amphiphilic molecules also play important roles in the above bio-related fields as models of membranes, nanocarriers for drug delivery and bioremediating agents. Despite the interest in complex systems involving both metal species and surfactant aggregates, there is still insufficient knowledge regarding the quantitative aspects at the basis of their binding interactions, which are crucial for extensive comprehension of their behavior in solution. Only a few papers have reported quantitative analyses of the thermodynamic, kinetic, speciation and binding features of metal-based compounds and amphiphilic aggregates, and no literature review has yet addressed the quantitative study of these complexes. Here, we summarize and critically discuss the recent contributions to the quantitative investigation of the interactions of metal-based systems with assemblies made of amphiphilic molecules by calorimetric, spectrophotometric and computational techniques, emphasizing the unique picture and parameters that such an analytical approach may provide, to support a deep understanding and beneficial use of these systems for several applications.
Collapse
Affiliation(s)
- Rossella Migliore
- Institute of Biomolecular Chemistry, National Research Council, Via Paolo Gaifami 18, 95126 Catania, Italy;
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy;
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 17, 90128 Palermo, Italy;
| | - Carmelo Sgarlata
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Correspondence:
| |
Collapse
|
11
|
Jayawardhana AMDS, Zheng YR. Interactions between mitochondria-damaging platinum(IV) prodrugs and cytochrome c. Dalton Trans 2022; 51:2012-2018. [PMID: 35029256 PMCID: PMC8838881 DOI: 10.1039/d1dt03875c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this work, we present the first study about the interactions of mitochondria-damaging Pt(IV) prodrugs with cytochrome c. We synthesized a cisplatin-based Pt(IV) prodrug bearing a lipophilic hydrocarbon tail and anionic dansyl head group. The amphiphilic structure facilitates its accumulation in the mitochondria of cancer cells, which was validated using graphite furnace atomic absorption spectroscopy (GFAAS) and fluorescence imaging. Accordingly, this Pt(IV) prodrug is able to trigger mitochondrial damage and apoptosis. Overall, the Pt(IV) prodrug exhibits superior therapeutic effects against a panel of human cancer cells compared to cisplatin. It also overcomes drug resistance in ovarian cancer. Notably, HPLC analysis indicates that cytochrome c accelerates reduction (or activation) of the Pt(IV) prodrug in the presence of the electron donor nicotinamide adenine dinucleotide (NADH). More interestingly, additional studies indicate that cytochrome c was platinated by the reduced product of Pt(IV) prodrugs, and that empowers the proapoptotic peroxidase activity.
Collapse
Affiliation(s)
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, Ohio 44242, USA
| |
Collapse
|
12
|
Copper(II) import and reduction are dependent on His-Met clusters in the extracellular amino terminus of human copper transporter-1. J Biol Chem 2022; 298:101631. [PMID: 35090891 PMCID: PMC8867124 DOI: 10.1016/j.jbc.2022.101631] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/22/2022] Open
Abstract
Copper(I) is an essential metal for all life forms. Though Cu(II) is the most abundant and stable state, its reduction to Cu(I) via an unclear mechanism is prerequisite for its bioutilization. In eukaryotes, the copper transporter-1 (CTR1) is the primary high-affinity copper importer, although its mechanism and role in Cu(II) reduction remain uncharacterized. Here we show that extracellular amino-terminus of human CTR1 contains two methionine-histidine clusters and neighboring aspartates that distinctly bind Cu(I) and Cu(II) preceding its import. We determined that hCTR1 localizes at the basolateral membrane of polarized MDCK-II cells and that its endocytosis to Common-Recycling-Endosomes is regulated by reduction of Cu(II) to Cu(I) and subsequent Cu(I) coordination by the methionine cluster. We demonstrate the transient binding of both Cu(II) and Cu(I) during the reduction process is facilitated by aspartates that also act as another crucial determinant of hCTR1 endocytosis. Mutating the first Methionine cluster (7Met-Gly-Met9) and Asp13 abrogated copper uptake and endocytosis upon copper treatment. This phenotype could be reverted by treating the cells with reduced and nonreoxidizable Cu(I). We show that histidine clusters, on other hand, bind Cu(II) and are crucial for hCTR1 functioning at limiting copper. Finally, we show that two N-terminal His-Met-Asp clusters exhibit functional complementarity, as the second cluster is sufficient to preserve copper-induced CTR1 endocytosis upon complete deletion of the first cluster. We propose a novel and detailed mechanism by which the two His-Met-Asp residues of hCTR1 amino-terminus not only bind copper, but also maintain its reduced state, crucial for intracellular uptake.
Collapse
|
13
|
Stefaniak E, Pushie MJ, Vaerewyck C, Corcelli D, Griggs C, Lewis W, Kelley E, Maloney N, Sendzik M, Bal W, Haas KL. Exploration of the Potential Role for Aβ in Delivery of Extracellular Copper to Ctr1. Inorg Chem 2020; 59:16952-16966. [PMID: 33211469 DOI: 10.1021/acs.inorgchem.0c02100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid beta (Aβ) peptides are notorious for their involvement in Alzheimer's disease (AD), by virtue of their propensity to aggregate to form oligomers, fibrils, and eventually plaques in the brain. Nevertheless, they appear to be essential for correct neurophysiology on the synaptic level and may have additional functions including antimicrobial activity, sealing the blood-brain barrier, promotion of recovery from brain injury, and even tumor suppression. Aβ peptides are also avid copper chelators, and coincidentally copper is significantly dysregulated in the AD brain. Copper (Cu) is released in significant amounts during calcium signaling at the synaptic membrane. Aβ peptides may have a role in maintaining synaptic Cu homeostasis, including as a scavenger for redox-active Cu and as a chaperone for clearing Cu from the synaptic cleft. Here, we employed the Aβ1-16 and Aβ4-16 peptides as well-established non-aggregating models of major Aβ species in healthy and AD brains, and the Ctr1-14 peptide as a model for the extracellular domain of the human cellular copper transporter protein (Ctr1). With these model peptides and a number of spectroscopic techniques, we investigated whether the Cu complexes of Aβ peptides could provide Ctr1 with either Cu(II) or Cu(I). We found that Aβ1-16 fully and rapidly delivered Cu(II) to Ctr1-14 along the affinity gradient. Such delivery was only partial for the Aβ4-16/Ctr1-14 pair, in agreement with the higher complex stability for the former peptide. Moreover, the reaction was very slow and took ca. 40 h to reach equilibrium under the given experimental conditions. In either case of Cu(II) exchange, no intermediate (ternary) species were present in detectable amounts. In contrast, both Aβ species released Cu(I) to Ctr1-14 rapidly and in a quantitative fashion, but ternary intermediate species were detected in the analysis of XAS data. The results presented here are the first direct evidence of a Cu(I) and Cu(II) transfer between the human Ctr1 and Aβ model peptides. These results are discussed in terms of the fundamental difference between the peptides' Cu(II) complexes (pleiotropic ensemble of open structures of Aβ1-16 vs the rigid closed-ring system of amino-terminal Cu/Ni binding Aβ4-16) and the similarity of their Cu(I) complexes (both anchored at the tandem His13/His14, bis-His motif). These results indicate that Cu(I) may be more feasible than Cu(II) as the cargo for copper clearance from the synaptic cleft by Aβ peptides and its delivery to Ctr1. The arguments in favor of Cu(I) include the fact that cellular Cu export and uptake proteins (ATPase7A/B and Ctr1, respectively) specifically transport Cu(I), the abundance of extracellular ascorbate reducing agent in the brain, and evidence of a potential associative (hand-off) mechanism of Cu(I) transfer that may mirror the mechanisms of intracellular Cu chaperone proteins.
Collapse
Affiliation(s)
- Ewelina Stefaniak
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - M Jake Pushie
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Catherine Vaerewyck
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - David Corcelli
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Chloe Griggs
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Whitney Lewis
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Emma Kelley
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Noreen Maloney
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Madison Sendzik
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Kathryn L Haas
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| |
Collapse
|