1
|
Zhang X, Abdulbagi M, Wang L, Wang J, Di B, Li B. HPLC with chiral stationary phase for separation and kinetics study of aspartic acid epimerization in Peroxiredoxin 2 active site peptide. J Pharm Biomed Anal 2024; 247:116247. [PMID: 38815521 DOI: 10.1016/j.jpba.2024.116247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
Amino acid epimerization, a process of converting L-amino acids to D-amino acids, will lead to modification in the protein structure and, subsequently, its biological function. This modification causes no change in protein m/z and may be overlooked during protein analysis. Aspartic Acid Epimerization (AAE) is faster than other amino acids and could be accelerated by free radicals and peroxides. In this work, a novel and site-specific HPLC method using a chiral stationary phase for determining the AAE in the active site model peptide (AP) of Peroxiredoxin 2 has been developed and validated. The developed method showed good linearity (1 - 200 μg/mL) and recoveries of the limit of quantification (LOQ), low, medium, and high concentrations were between 85% and 115%. The Kinetics of AAE in AP were studied using the developed method, and the results showed that when ascorbic acid and Cu2+ coexisted, the AP epimerized rapidly. The AAE extent increased with time and was positively correlated with hydrogen peroxide generation.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China
| | - Mohamed Abdulbagi
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China
| | - Limin Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China
| | - Jiafeng Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Di
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China.
| | - Bo Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China; Hangzhou Innovative Institute of Pharmaceutics, China Pharmaceutical University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Zhao J, Lu F, Yu H, Cao J, Su Z, Zhao J. Proteomic analysis of baicalin intervention on protein expression and modification in the hippocampus of Alzheimer's disease model rat. Int J Neurosci 2024:1-10. [PMID: 39136404 DOI: 10.1080/00207454.2024.2332963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 09/03/2024]
Abstract
OBJECTIVE We aimed to explore the treatment effect and therapeutic mechanisms of baicalin in Alzheimer's disease (AD). METHODS The AD rat model was established by intracerebroventricular injection of Aβ1-40, with rats in the baicalin group receiving baicalin intraventricular injections. Morris Water Maze and Hematoxylin-eosin (H&E) Staining were employed to detect the successful model construction and baicalin treatment effect. The proteins extracted from the hippocampus were subjected to proteomics analysis. Bioinformatics technology was employed for differential protein screening, functional classification, and enrichment. Western Blot was employed to validate the expressions of differentially expressed proteins (DEPs) and the protein modification alternations. RESULTS Water maze test confirmed the successful AD model construction and baicalin can improve learning and memory abilities. A total of 26 DEPs associated with 28 Gene Ontology (GO) functions were identified in the model and 32 DEPs were obtained between the baicalin group and the model. Bioinformatics analysis demonstrated that AD occurrence resulted in neuronal dysfunction and was associated with immune responses. The baicalin therapeutic effect on AD may be associated with metabolic processes, vitamin response, angiogenesis regulation, and fatty acid response. Immunoglobulin heavy constant mu (Ighm) and Immunoglobulin G2a (IgG2a) exhibited significant increases in AD and baicalin attenuated their expressions, while Fatty acid desaturase 1 (Fads1) exhibited a significantly diminished expression and baicalin could reverse the trend. Succinylation detection exhibited the differentially expressed at 35 kD between the model and baicalin group. CONCLUSION Baicalin intervention may ameliorate cognitive impairment in AD rats by modulating the expressions of proteins and the succinylation modifications.
Collapse
Affiliation(s)
- Jiwei Zhao
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fan Lu
- Shandong Public Health Clinical Center, Shandong University, Jinan, Shandong, China
| | - Hongli Yu
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jingwei Cao
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhiqiang Su
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jingkun Zhao
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
3
|
De Luca C, Felletti S, Franchina FA, Bozza D, Compagnin G, Nosengo C, Pasti L, Cavazzini A, Catani M. Recent developments in the high-throughput separation of biologically active chiral compounds via high performance liquid chromatography. J Pharm Biomed Anal 2024; 238:115794. [PMID: 37890321 DOI: 10.1016/j.jpba.2023.115794] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Bioactive compounds, including active pharmaceutical ingredients (APIs), are often chiral molecules where stereoisomers have different biological and therapeutic activity. Nevertheless, the preparation of these molecules can lead to racemic or scalemic mixtures (it is not trivial to produce just the optically pure compound). The evaluation of the enantiomeric purity of bioactive compounds, and therefore quality, is indeed of fundamental importance for regulatory scopes. Chiral high performance liquid chromatography (HPLC) is the gold standard technique to separate and to purify enantiomers. This comes from the wide availability of commercial chiral stationary phases (CSPs) and operational modes, which makes the technique extremely versatile. In recent years, the most relevant trend in the field of chiral analytical HPLC has been the development of CSPs suitable for fast or even ultrafast separations, thus favoring the high throughput screening of biologically active chiral compounds. This process has somehow lagged behind compared to achiral HPLC, due to a series of practical and fundamental issues. The experience has shown how in chiral chromatography even very basic concepts, such as the supposed kinetic superiority of core-shell (pellicular) particles over fully porous ones to improve the chromatographic efficiency, cannot be taken for granted. In this review, the most relevant fundamental and practical features that must be taken into consideration to design successful high-throughput, fast enantioseparations will be discussed. Afterwards, the main classes of CSPs and the most relevant, recent (last five-year) high-throughput applications in the field of the separation of chiral bioactive compounds (for pharmaceutical, forensic, food, and omics applications) will be considered.
Collapse
Affiliation(s)
- Chiara De Luca
- Department of Chemical, Pharrmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Simona Felletti
- Department of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Flavio Antonio Franchina
- Department of Chemical, Pharrmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Desiree Bozza
- Department of Chemical, Pharrmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Greta Compagnin
- Department of Chemical, Pharrmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Chiara Nosengo
- Department of Chemical, Pharrmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Luisa Pasti
- Department of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharrmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy.
| | - Martina Catani
- Department of Chemical, Pharrmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| |
Collapse
|
4
|
Armstrong DW, Berthod A. Occurrence of D-amino acids in natural products. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:47. [PMID: 37932633 PMCID: PMC10628113 DOI: 10.1007/s13659-023-00412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
Since the identified standard genetic code contains 61 triplet codons of three bases for the 20 L-proteinogenic amino acids (AAs), no D-AA should be found in natural products. This is not what is observed in the living world. D-AAs are found in numerous natural compounds produced by bacteria, algae, fungi, or marine animals, and even vertebrates. A review of the literature indicated the existence of at least 132 peptide natural compounds in which D-AAs are an essential part of their structure. All compounds are listed, numbered and described herein. The two biosynthetic routes leading to the presence of D-AA in natural products are: non-ribosomal peptide synthesis (NRPS), and ribosomally synthesized and post-translationally modified peptide (RiPP) synthesis which are described. The methods used to identify the AA chirality within naturally occurring peptides are briefly discussed. The biological activity of an all-L synthetic peptide is most often completely different from that of the D-containing natural compounds. Analyzing the selected natural compounds showed that D-Ala, D-Val, D-Leu and D-Ser are the most commonly encountered D-AAs closely followed by the non-proteinogenic D-allo-Thr. D-Lys and D-Met were the least prevalent D-AAs in naturally occurring compounds.
Collapse
Affiliation(s)
- Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA.
| | - Alain Berthod
- Institut des Sciences Analytiques, CNRS, University of Lyon 1, 69100, Villeurbanne, France
| |
Collapse
|
5
|
Readel ER, Dhaubhadel U, Patel A, Armstrong DW. Variable fragmentation and ionization of amyloid-beta epimers and isomers. Anal Bioanal Chem 2023; 415:6799-6807. [PMID: 37787853 DOI: 10.1007/s00216-023-04958-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
While the existence of D-amino acids in peptides and proteins has recently been accepted in higher forms of life, their roles and importance are yet to be understood. The lack of analytical methods present for such epimeric and/or isomeric analyses often limits developments in the field. Studies have shown the elevated presence of epimeric and isomeric modifications to amyloid-beta (Aβ) peptides extracted from Alzheimer's disease patients. These modifications most frequently occur through aspartic acid and serine residues. Because such peptides are indistinguishable by mass alone, selective liquid chromatography tandem mass spectrometry analysis is required to differentiate such peptides. Herein, we examine MS/MS of tryptic fragments of Aβ peptides containing D-Asp, L-iso-Asp, D-iso-Asp, and/or D-Ser modifications. Peptide ionizability and fragmentation are explored through selected reaction monitoring, selected ion monitoring, and product ion scan. The results show the variability of ionization and fragmentation for many "identical mass peptides" and how these differences can affect the analysis of isomeric and epimeric peptides.
Collapse
Affiliation(s)
- Elizabeth R Readel
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Umang Dhaubhadel
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Arzoo Patel
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
6
|
Du S, Wey M, Armstrong DW. d-Amino acids in biological systems. Chirality 2023; 35:508-534. [PMID: 37074214 DOI: 10.1002/chir.23562] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 04/20/2023]
Abstract
Investigations on the occurrence and biochemical roles of free D-amino acids and D-amino acid-containing peptides and proteins in living systems have increased in frequency and significance. Their occurrence and roles may vary substantially with progression from microbiotic to evermore advanced macrobiotic systems. We now understand many of the biosynthetic and regulatory pathways, which are outlined herein. Important uses for D-amino acids in plants, invertebrates, and vertebrates are reviewed. Given its importance, a separate section on the occurrence and role of D-amino acids in human disease is presented.
Collapse
Affiliation(s)
- Siqi Du
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | - Michael Wey
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
7
|
Li G, Jeon CK, Ma M, Jia Y, Zheng Z, Delafield DG, Lu G, Romanova EV, Sweedler JV, Ruotolo BT, Li L. Site-specific chirality-conferred structural compaction differentially mediates the cytotoxicity of Aβ42. Chem Sci 2023; 14:5936-5944. [PMID: 37293657 PMCID: PMC10246695 DOI: 10.1039/d3sc00678f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/06/2023] [Indexed: 06/10/2023] Open
Abstract
Growing evidence supports the confident association between distinct amyloid beta (Aβ) isoforms and Alzheimer's Disease (AD) pathogenesis. As such, critical investigations seeking to uncover the translational factors contributing to Aβ toxicity represent a venture of significant value. Herein, we comprehensively assess full-length Aβ42 stereochemistry, with a specific focus on models that consider naturally-occurring isomerization of Asp and Ser residues. We customize various forms of d-isomerized Aβ as natural mimics, ranging from fragments containing a single d residue to full length Aβ42 that includes multiple isomerized residues, systematically evaluating their cytotoxicity against a neuronal cell line. Combining multidimensional ion mobility-mass spectrometry experimental data with replica exchange molecular dynamics simulations, we confirm that co-d-epimerization at Asp and Ser residues within Aβ42 in both N-terminal and core regions effectively reduces its cytotoxicity. We provide evidence that this rescuing effect is associated with the differential and domain-specific compaction and remodeling of Aβ42 secondary structure.
Collapse
Affiliation(s)
- Gongyu Li
- State Key Laboratory of Pharmaceutical Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Chae Kyung Jeon
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
| | - Min Ma
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison 777 Highland Ave. Madison WI 53705 USA
| | - Yifei Jia
- State Key Laboratory of Pharmaceutical Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
| | - Zhen Zheng
- School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Daniel G Delafield
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison 777 Highland Ave. Madison WI 53705 USA
| | - Gaoyuan Lu
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison 777 Highland Ave. Madison WI 53705 USA
| | - Elena V Romanova
- Department of Chemistry and The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Jonathan V Sweedler
- Department of Chemistry and The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison 777 Highland Ave. Madison WI 53705 USA
| |
Collapse
|
8
|
Ozaki M, Shimotsuma M, Kuranaga T, Kakeya H, Hirose T. Separation of amyloid β fragment peptides with racemised and isomerised aspartic acid residues using an original chiral resolution labeling reagent. Analyst 2023; 148:1209-1213. [PMID: 36779274 DOI: 10.1039/d2an01885c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We developed a system to separate and identify racemised and isomerised aspartic acid (Asp) residues in amyloid β (Aβ) by labeling with an original chiral resolution labeling reagent, 1-fluoro-2,4-dinitrophenyl-5-D-leucine-N,N-dimethylethylenediamine-amide (D-FDLDA). The racemised and isomerised Asp residues labeled with D-FDLDA in Aβ fragments generated by digesting with trypsin and endoproteinase Glu-C were separated and identified by liquid chromatography-mass spectrometry (LC-MS) under simple gradient conditions. Furthermore, the labeled Aβ fragments did not aggregate and remained stable at least for 1 week at 4 °C.
Collapse
Affiliation(s)
- Makoto Ozaki
- Research and Development Department, Purification Section, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| | - Motoshi Shimotsuma
- Research and Development Department, Purification Section, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan.
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan.
| | - Tsunehisa Hirose
- Research and Development Department, Purification Section, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| |
Collapse
|
9
|
Pandey SN, Singh G, Semwal BC, Gupta G, Alharbi KS, Almalki WH, Albratty M, Najmi A, Meraya AM. Therapeutic approaches of nutraceuticals in the prevention of Alzheimer's disease. J Food Biochem 2022; 46:e14426. [PMID: 36169224 DOI: 10.1111/jfbc.14426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) is a neurological illness that causes memory loss over time. Currently, available pharmaceutical medicines and products are limited, and they have side effects at a higher price. Researchers and scientists have observed significant effects of nutraceuticals. Various preclinical and clinical studies were investigated for the Anti-Alzheimer's activity of nutraceuticals. The increasing ability of the pathogenesis of AD has led to the analysis of novel therapeutic targets, including the pathophysiological mechanisms and distinct cascades. So, current improvement will show the most adequate and prominent nutraceuticals and suggested concise mechanisms involving autophagy regulation, anti-inflammatory, antioxidant, mitochondrial homeostasis, and others. The effects of nutraceuticals cannot be ignored; it is important to investigate high-quality clinical trials. Given the potential of nutraceuticals to battle AD as multi-targeted therapies, it's vital to evaluate them as viable lead compounds for drug discovery and development. To the best of the authors 'knowledge, modification of blood-brain barrier permeability, bioavailability, and aspects of randomized clinical trials should be considered in prospective investigations. PRACTICAL APPLICATIONS: Advancements in molecular diagnostic and fundamentals have implemented particular usefulness for drug evaluation. An excess of experimental knowledge occurs regarding the effect of nutraceuticals on AD. There are various preclinical and clinical studies that have been done on nutraceuticals. In addition, various substitute inhibit and enhance some pathophysiological levels associated with AD. Nutraceuticals are easily available and have fewer side effects with cost-effective advantages. However, further investigations and clinical trials are required to encourage its effect on disease.
Collapse
Affiliation(s)
- Surya Nath Pandey
- Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.,Department of Pharmacology, College of Pharmacy, Teerthanker Mahaveer University, Moradabad, UP, India
| | - Gurfateh Singh
- Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Bhupesh Chander Semwal
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
10
|
Armstrong DW. Analysis of D-Amino Acids: Relevance in Human Disease. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.mg4374l5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Small metabolic molecules often are chiral and can play important roles in regulating a variety of biological functions, occasionally providing information about the presence and progression of disease. The most ubiquitous class of such small molecules are amino acids. Sensitive and accurate analysis of the less prevalent D-amino acids as free entities or as constituents of peptides can be challenging, particularly when complex physiological matrices are involved. The number of studies involving low-abundance D-amino acids in biological systems has increased significantly over the last decade. Studies involving their presence and importance have become increasingly difficult to ignore. Their relevance in neurological pathologies, cancer, kidney disorders, and more, has advanced. Chiral separations have played and continue to play a central role in these studies. Because enantiomers and epimers have the same exact mass, stereoselective separations are essential. However, sensitive detection is also necessary because trace levels of these analytes are involved. Multidimensional separations often provide the best avenue for accurate qualitative and quantitative results. Future developments will involve faster and highly specific routine testing, particularly if these analyses are to enter the clinical realm.
Collapse
|
11
|
Gibson K, Cooper-Shepherd DA, Pallister E, Inman SE, Jackson SE, Lindo V. Toward Rapid Aspartic Acid Isomer Localization in Therapeutic Peptides Using Cyclic Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1204-1212. [PMID: 35609180 PMCID: PMC9264384 DOI: 10.1021/jasms.2c00053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
There is an increasing emphasis on the critical evaluation of interbatch purity and physical stability of therapeutic peptides. This is due to concerns over the impact that product- and process-related impurities may have on safety and efficacy of this class of drug. Aspartic acid isomerization to isoaspartic acid is a common isobaric impurity that can be very difficult to identify without first synthesizing isoAsp peptide standards for comparison by chromatography. As such, analytical tools that can determine if an Asp residue has isomerized, as well as the site of isomerization within the peptide sequence, are highly sought after. Ion mobility-mass spectrometry is a conformation-selective method that has developed rapidly in recent years particularly with the commercialization of traveling wave ion mobility instruments. This study employed a cyclic ion mobility (cIMS) mass spectrometry system to investigate the conformational characteristics of a therapeutic peptide and three synthetic isomeric forms, each with a single Asp residue isomerized to isoAsp. cIMS was able to not only show distinct conformational differences between each peptide but crucially, in conjunction with a simple workflow for comparing ion mobility data, it correctly located which Asp residue in each peptide had isomerized to isoAsp. This work highlights the value of cIMS as a potential screening tool in the analysis of therapeutic peptides prone to the formation of isoAsp impurities.
Collapse
Affiliation(s)
- Katherine Gibson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
- Analytical
Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| | | | - Edward Pallister
- Analytical
Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| | - Sophie E. Inman
- Analytical
Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| | - Sophie E. Jackson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Viv Lindo
- Analytical
Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| |
Collapse
|
12
|
Han T, Cong H, Yu B, Shen Y. Application of peptide biomarkers in life analysis based on liquid chromatography-mass spectrometry technology. Biofactors 2022; 48:725-743. [PMID: 35816279 DOI: 10.1002/biof.1875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/18/2022] [Indexed: 12/11/2022]
Abstract
Biomedicine is developing rapidly in the 21st century. Among them, the qualitative and quantitative analysis of peptide biomarkers is of considerable importance for the diagnosis and therapy of diseases and the quality evaluation of drugs and food. The identification and quantitative analysis of peptides have been going on for decades. Traditionally, immunoassays or biological assays are generally used to quantify peptides in biological matrices. However, the selectivity and sensitivity of these methods cannot meet the requirements of the application. The separation and analysis technique of liquid chromatography-mass spectrometry (LC-MS) supplies a reliable alternative. In contrast to immunoassays, LC-MS methods are capable of providing the analytical prowess necessary to satisfy the demands of peptide biomarker research in the life sciences arena. This review article provides a historical account of the in-roads made by LC-MS technology for the detection of peptide biomarkers in the past 10 years, with the focus on the qualification/quantification developments and their applications.
Collapse
Affiliation(s)
- Tingting Han
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Enhanced ion mobility resolution of Abeta isomers from human brain using high-resolution demultiplexing software. Anal Bioanal Chem 2022; 414:5683-5693. [DOI: 10.1007/s00216-022-04055-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/16/2022] [Accepted: 03/31/2022] [Indexed: 01/03/2023]
|
14
|
Zakharova NV, Kononikhin AS, Indeykina MI, Bugrova AE, Strelnikova P, Pekov S, Kozin SA, Popov IA, Mitkevich V, Makarov AA, Nikolaev EN. Mass spectrometric studies of the variety of beta-amyloid proteoforms in Alzheimer's disease. MASS SPECTROMETRY REVIEWS 2022:e21775. [PMID: 35347731 DOI: 10.1002/mas.21775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
This review covers the results of the application of mass spectrometric (MS) techniques to study the diversity of beta-amyloid (Aβ) peptides in human samples. Since Aβ is an important hallmark of Alzheimer's disease (AD), which is a socially significant neurodegenerative disorder of the elderly worldwide, analysis of its endogenous variations is of particular importance for elucidating the pathogenesis of AD, predicting increased risks of the disease onset, and developing effective therapy. MS approaches have no alternative for the study of complex samples, including a wide variety of Aβ proteoforms, differing in length and modifications. Approaches based on matrix-assisted laser desorption/ionization time-of-flight and liquid chromatography with electrospray ionization tandem MS are most common in Aβ studies. However, Aβ forms with isomerized and/or racemized Asp and Ser residues require the use of special methods for separation and extra sensitive and selective methods for detection. Overall, this review summarizes current knowledge of Aβ species found in human brain, cerebrospinal fluid, and blood plasma; focuses on application of different MS approaches for Aβ studies; and considers the potential of MS techniques for further studies of Aβ-peptides.
Collapse
Affiliation(s)
- Natalia V Zakharova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alexey S Kononikhin
- CMCB, Skolkovo Institute of Science and Technology, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria I Indeykina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna E Bugrova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- CMCB, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Polina Strelnikova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of ion and molecular physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Stanislav Pekov
- CMCB, Skolkovo Institute of Science and Technology, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Laboratory of ion and molecular physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Igor A Popov
- Laboratory of ion and molecular physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- N.N. Semenov Federal Center of Chemical Physics, V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
15
|
Enhanced carboxypeptidase efficacies and differentiation of peptide epimers. Anal Biochem 2021; 642:114451. [PMID: 34774536 DOI: 10.1016/j.ab.2021.114451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 11/24/2022]
Abstract
Carboxypeptidases enzymatically cleaves the peptide bond of C-terminal amino acids within peptides. In humans, it is involved in enzymatic synthesis and maturation of proteins and peptides. Carboxypeptidases A and Y have difficulty hydrolyzing the peptide bond of dipeptides and some other amino acid sequences. Early investigations into different N-blocking groups concluded that larger moieties increased substrate susceptibility to peptide bond hydrolysis with carboxypeptidase. This study conclusively demonstrates that 6-aminoquinoline-N-hydroxysuccimidyl carbamate (AQC) as an N-blocking group greatly enhances substrate hydrolysis with carboxypeptidase. AQC addition to the N-terminus of amino acids and peptides also improves chromatographic peak shape and sensitivities via mass spectrometry detection. These enzymes have been used for amino acid sequence determination prior to the advent of modern proteomics. However, most modern proteomic methods assume that all peptides are comprised of l-amino acids and therefore cannot distinguish L-from d-amino acids within the peptide sequence. The majority of existing methods that allow for chiral differentiation either require synthetic standards or incur racemization in the process. This study highlights the resistance of d-amino acids within peptides to enzymatic hydrolysis by Carboxypeptidase Y. This stereoselectivity may be advantageous when screening low abundance peptide epimers.
Collapse
|
16
|
Lian Z, Wang N, Tian Y, Huang L. Characterization of Synthetic Peptide Therapeutics Using Liquid Chromatography-Mass Spectrometry: Challenges, Solutions, Pitfalls, and Future Perspectives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1852-1860. [PMID: 34110145 DOI: 10.1021/jasms.0c00479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthetic peptides represent an important and expanding class of therapeutics. Despite having a relatively small size as compared to monoclonal antibodies and other proteins, synthetic peptides are subject to many complex structural modifications originating from the starting materials, manufacturing process, and storage conditions. Although mass spectrometry has been increasingly used to characterize impurities of synthetic peptides, systematic review of this field is scarce. In this paper, an overview of the impurities in synthetic peptide therapeutics is provided in the context of how the knowledge from detailed characterization of the impurities using liquid chromatography-mass spectrometry (LC-MS) can be used to develop the manufacturing process and control strategy for synthetic peptide therapeutics following the critical quality attribute (CQA)-driven and risk-based approach. The thresholds for identifying and controlling the impurities are discussed based on currently available regulatory guidance. Specific LC-MS techniques for identification of various types of impurities based on their structural characteristics are discussed with the focus on structural isomers and stereoisomers (i.e., peptide epimers). Absolute and relative quantitation methods for the peptide impurities are critiqued. Potential pitfalls in characterization of synthetic peptide therapeutics using LC-MS are discussed. Finally, a systematic LC-MS workflow for characterizing the impurities in synthetic peptide therapeutics is proposed, and future perspectives on applying emerging LC-MS techniques to address the remaining challenges in the development of synthetic peptide therapeutics are presented.
Collapse
Affiliation(s)
- Zhirui Lian
- Bioproducts Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Ning Wang
- Bioproducts Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Yuwei Tian
- Bioproducts Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Lihua Huang
- Bioproducts Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| |
Collapse
|
17
|
Abstract
Like many biological compounds, proteins are found primarily in their homochiral form. However, homochirality is not guaranteed throughout life. Determining their chiral proteinogenic sequence is a complex analytical challenge. This is because certain d-amino acids contained in proteins play a role in human health and disease. This is the case, for example, with d-Asp in elastin, β-amyloid and α-crystallin which, respectively, have an action on arteriosclerosis, Alzheimer’s disease and cataracts. Sequence-dependent and sequence-independent are the two strategies for detecting the presence and position of d-amino acids in proteins. These methods rely on enzymatic digestion by a site-specific enzyme and acid hydrolysis in a deuterium or tritium environment to limit the natural racemization of amino acids. In this review, chromatographic and electrophoretic techniques, such as LC, SFC, GC and CE, will be recently developed (2018–2020) for the enantioseparation of amino acids and peptides. For future work, the discovery and development of new chiral stationary phases and derivatization reagents could increase the resolution of chiral separations.
Collapse
|
18
|
Readel ER, Wey M, Armstrong DW. Rapid and selective separation of amyloid beta from its stereoisomeric point mutations implicated in neurodegenerative Alzheimer's disease. Anal Chim Acta 2021; 1163:338506. [PMID: 34024415 DOI: 10.1016/j.aca.2021.338506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022]
Abstract
Extracellular deposition of amyloid beta (Aβ) peptides are a hallmark of Alzheimer's disease. The isomerization and epimerization of Aβ peptides have been linked to the enhanced deposition of Aβ plaques. Therefore, considerable effort has been expended to create effective methods to distinguish such aberrant Aβ peptides from normal Aβ peptides. Herein, we have developed chromatographic retention U-shaped curves to investigate the hydrophobicity of Aβ 1-38, 1-40, 1-42 and fourteen aberrant Aβ 1-42 peptides. Using this information, we developed the first selective and comprehensive method that can easily detect both aberrant and normal Aβ peptides simultaneously using high performance liquid chromatography-mass spectrometry (HPLC-MS). We show for the first time that D-Ser modifications to Aβ cause the peptide to be more hydrophilic, as does D-Asp and L/D-iso-Asp.
Collapse
Affiliation(s)
- Elizabeth R Readel
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Michael Wey
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
19
|
Talebi M, Kakouri E, Talebi M, Tarantilis PA, Farkhondeh T, İlgün S, Pourbagher-Shahri AM, Samarghandian S. Nutraceuticals-based therapeutic approach: recent advances to combat pathogenesis of Alzheimer's disease. Expert Rev Neurother 2021; 21:625-642. [PMID: 33910446 DOI: 10.1080/14737175.2021.1923479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Alzheimer's disease (AD) is a progressive neurodegenerative disease accompanying memory deficits. The available pharmaceutical care has some limitations mostly entailing side effects, shelf-life, and patient's compliance. The momentous implications of nutraceuticals in AD have attracted scientists. Several preclinical studies for the investigation of nutraceuticals have been conducted.Areas covered: This review focuses on the potential use of a nutraceuticals-based therapeutic approach to treat and prevent AD. Increasing knowledge of AD pathogenesis has led to the discovery of new therapeutic targets including pathophysiological mechanisms and various cascades. Hence, the present contribution will attend to the most popular and effective nutraceuticals with proposed brief mechanisms entailing antioxidant, anti-inflammatory, autophagy regulation, mitochondrial homeostasis, and more. Therefore, even though the effectiveness of nutraceuticals cannot be dismissed, it is essential to do further high-quality randomized clinical trials.Expert opinion: According to the potential of nutraceuticals to combat AD as multi-target directed drugs, there is critical importance to assess them as feasible lead compounds for drug discovery and development. To the best of the authors' knowledge, modification of blood-brain barrier permeability, bioavailability, and features of randomized clinical trials should be considered in prospective studies.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Eleni Kakouri
- Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, United States.,Food Safety Net Services, San Antonio, Texas, United States
| | - Petros A Tarantilis
- Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ali Mohammad Pourbagher-Shahri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
20
|
Mukherjee S, Perez KA, Lago LC, Klatt S, McLean CA, Birchall IE, Barnham KJ, Masters CL, Roberts BR. Quantification of N-terminal amyloid-β isoforms reveals isomers are the most abundant form of the amyloid-β peptide in sporadic Alzheimer's disease. Brain Commun 2021; 3:fcab028. [PMID: 33928245 PMCID: PMC8062259 DOI: 10.1093/braincomms/fcab028] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Plaques that characterize Alzheimer's disease accumulate over 20 years as a result of decreased clearance of amyloid-β peptides. Such long-lived peptides are subjected to multiple post-translational modifications, in particular isomerization. Using liquid chromatography ion mobility separations mass spectrometry, we characterized the most common isomerized amyloid-β peptides present in the temporal cortex of sporadic Alzheimer's disease brains. Quantitative assessment of amyloid-β N-terminus revealed that > 80% of aspartates (Asp-1 and Asp-7) in the N-terminus was isomerized, making isomerization the most dominant post-translational modification of amyloid-β in Alzheimer's disease brain. Total amyloid-β1-15 was ∼85% isomerized at Asp-1 and/or Asp-7 residues, with only 15% unmodified amyloid-β1-15 left in Alzheimer's disease. While amyloid-β4-15 the next most abundant N-terminus found in Alzheimer's disease brain, was only ∼50% isomerized at Asp-7 in Alzheimer's disease. Further investigations into different biochemically defined amyloid-β-pools indicated a distinct pattern of accumulation of extensively isomerized amyloid-β in the insoluble fibrillar plaque and membrane-associated pools, while the extent of isomerization was lower in peripheral membrane/vesicular and soluble pools. This pattern correlated with the accumulation of aggregation-prone amyloid-β42 in Alzheimer's disease brains. Isomerization significantly alters the structure of the amyloid-β peptide, which not only has implications for its degradation, but also for oligomer assembly, and the binding of therapeutic antibodies that directly target the N-terminus, where these modifications are located.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Keyla A Perez
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Larissa C Lago
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stephan Klatt
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Catriona A McLean
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Anatomical Pathology, Alfred Hospital, Prahran, VIC 3004, Australia
| | - Ian E Birchall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kevin J Barnham
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Blaine R Roberts
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|