1
|
Bhandari S, Pramanik S, Manna M, Singha S, Akhtar F. Surface modification unleashes light emitting applications of APbX 3 perovskite nanocrystals. Chem Commun (Camb) 2024. [PMID: 39659258 DOI: 10.1039/d4cc05491a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Engineering the surface of metal halide perovskite nanocrystals (MHPNCs) is crucial for optimizing their optical properties, repairing surface defects, enhancing quantum yield, and ensuring long-term stability. These enhancements make surface-engineered MHPNCs ideal for applications in light-emitting devices (LEDs), displays, lasers, and photodetectors, contributing to energy efficiency. This article delves into an introduction to MHPNCs, their structure and types, particularly the ABX3 type (where A represents monovalent organic/inorganic cations, B represents divalent metal ions mainly Pb metal, and X represents halide ions), synthesis methods, unique optical properties, surface modification techniques using various agents (particularly inorganic molecules/materials, organic molecules, polymers, and biomolecules) to tune optical properties and applications in the aforementioned light-emitting technologies, challenges and opportunities, including advantages and disadvantages of surface-modified APbX3 MHPNCs, and a summary and future outlook. This article explores surface modification strategies to improve the optical performance of MHPNCs and aims to inspire advancements in light emitting applications. Importantly, the challenges and opportunities section of this article will illuminate the path to overcoming obstacles, providing invaluable insights for researchers in this field. This in-depth review explores the surface engineering of MHPNCs for light-emitting applications, highlighting their notable advantages and addressing ongoing challenges. By delving deep into various surface modification strategies, this article aims to revolutionize MHPNC-based light-emitting applications, setting a new benchmark in the field. This paves the way for revolutionary advancements, maximizing the capabilities of surface-engineered MHPNCs and heralding a transformative era in precise light-emitting research.
Collapse
Affiliation(s)
- Satyapriya Bhandari
- Department of Chemistry, Kandi Raj College, Affiliated to University of Kalyani, Kandi, Murshidabad, West Bengal 742137, India.
| | - Sabyasachi Pramanik
- Assam Energy Institute, Sivasagar, a Centre of Rajiv Gandhi Institute of Petroleum Technology, Assam 785697, India.
| | - Mihir Manna
- Chemical Sciences Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF, Salt Lake, Sector-I, Bidhannagar, Kolkata 700064, India
| | - Sumit Singha
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling 734013, India
| | - Farhin Akhtar
- Assam Energy Institute, Sivasagar, a Centre of Rajiv Gandhi Institute of Petroleum Technology, Assam 785697, India.
| |
Collapse
|
2
|
Sen A, Dutta A, Bose AL, Sen P. Oleylammonium fluoride passivated blue-emitting 2D CsPbBr 3 nanoplates with near-unity photoluminescence quantum yield: safeguarding against threats from external perturbations. Chem Sci 2024:d4sc05565a. [PMID: 39629488 PMCID: PMC11610764 DOI: 10.1039/d4sc05565a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Quantum-confined, two-dimensional (2D) CsPbBr3 (CPB) nanoplates (NPLs) have emerged as exceptional candidates for next-generation blue LEDs and display technology applications. However, their large surface-to-volume ratio and detrimental bromide vacancies adversely affect their photoluminescence quantum yield (PLQY). Additionally, external perturbations such as heat, light exposure, moisture, oxygen, and solvent polarity accelerate their transformation into three-dimensional (3D), green-emitting CPB nanocrystals (NCs), thereby resulting in the loss of their quantum confinement. Until now, no reported strategies have successfully addressed all these issues simultaneously. In this study, for the first time, we prepared oleylammonium fluoride (OAmF) salt and applied it post-synthetically to CPB NPLs with thicknesses of n = 3 and n = 4. Steady state and time-resolved photoluminescence (TRPL) measurements like fluorescence upconversion and TCSPC confirmed the elimination of detrimental deep trap states by fluoride ions, resulting in an unprecedented improvement in PLQY to 85% for n = 3 and 98% for n = 4. Furthermore, the formation of robust Pb-F bonds, coupled with strong electrostatic and hydrogen-bonding interactions, resulted in a highly stable NPL surface-ligand interaction. This concrete surface architecture restricts the undesired phase transition of 2D NPLs into 3D NCs under various external perturbations, including heat up to 363 K, strong UV irradiation, water, atmospheric conditions, and solvent polarity. Also, the temperature dependent TRPL measurements provide an insight into the charge carrier dynamics under thermal stress conditions and reveal the location of shallow trap states, which lie below 7 meV from the conduction band edge. In brief, our innovative OAmF salt has effectively addressed all the critical issues of 2D CPB NPLs, paving the way for next-generation LED applications. This breakthrough not only enhances the stability and PLQY of CPB NPLs but also offers a scalable solution for the advancement of perovskite-based technologies.
Collapse
Affiliation(s)
- Arghya Sen
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208 016 UP India +91 512 259 6806 +91 512 259 6312
| | - Abhijit Dutta
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208 016 UP India +91 512 259 6806 +91 512 259 6312
| | - Abir Lal Bose
- Department of Chemical Engineering, Indian Institute of Technology Kanpur Kanpur - 208 016 UP India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208 016 UP India +91 512 259 6806 +91 512 259 6312
| |
Collapse
|
3
|
Wang Y, Wang S, Li R, Li W, Long T, Wang L, Kong L, Cao F, Wu Q, Jia G, Yang X. Quantum-Confined Perovskite Nanocrystals Enabled by Negative Catalyst Strategy for Efficient Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402825. [PMID: 38990086 DOI: 10.1002/smll.202402825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Indexed: 07/12/2024]
Abstract
The perovskite nanocrystals (PeNCs) are emerging as a promising emitter for light-emitting diodes (LEDs) due to their excellent optical and electrical properties. However, the ultrafast growth of PeNCs often results in large sizes exceeding the Bohr diameter, leading to low exciton binding energy and susceptibility to nonradiative recombination, while small-sized PeNCs exhibit a large specific surface area, contributing to an increased defect density. Herein, Zn2+ ions as a negative catalyst to realize quantum-confined FAPbBr3 PeNCs with high photoluminescence quantum yields (PL QY) over 90%. Zn2+ ions exhibit robust coordination with Br- ions is introduced, effectively retarding the participation of Br- ions in the perovskite crystallization process and thus facilitating PeNCs size control. Notably, Zn2+ ions neither incorporate into the perovskite lattice nor are absorbed on the surface of PeNCs. And the reduced growth rate also promotes sufficient octahedral coordination of PeNC that reduces defect density. The LEDs based on these optimized PeNCs exhibits an external quantum efficiency (EQE) of 21.7%, significantly surpassing that of the pristine PeNCs (15.2%). Furthermore, the device lifetime is also extended by twofold. This research presents a novel approach to achieving high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Yuankun Wang
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, 830017, P. R. China
| | - Sheng Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Rui Li
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, 830017, P. R. China
| | - Wenqiang Li
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Tengfei Long
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, 830017, P. R. China
| | - Lin Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Lingmei Kong
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Fan Cao
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Qianqian Wu
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, 6102, Australia
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| |
Collapse
|
4
|
Chatterjee S, Biswas S, Sourav S, Rath J, Akhil S, Mishra N. Strategies To Achieve Long-Term Stability in Lead Halide Perovskite Nanocrystals and Its Optoelectronic Applications. J Phys Chem Lett 2024; 15:10118-10137. [PMID: 39332015 DOI: 10.1021/acs.jpclett.4c02240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
The lead halide perovskite (LHP) nanocrystals (NCs) research area is flourishing due to their exceptional properties and great potential for a wide range of applications in optoelectronics and photovoltaics. Yet, despite the momentum in the field, perovskite devices are not yet ready for commercialization due to degradation caused by intrinsic phase transitions and external factors such as moisture, temperature, and ultraviolet (UV) light. To attain long-term stability, we analyze the origin of instabilities and describe different strategies such as surface modification, encapsulation, and doping for long-term viability. We also assess how these stabilizing strategies have been utilized to obtain optoelectronic devices with long-term stability. This Mini-Review also outlines the future direction of each strategy for producing highly efficient and ultrastable LHP NCs for sustainable applications.
Collapse
Affiliation(s)
- Shovon Chatterjee
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| | - Subarna Biswas
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| | - Smruti Sourav
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| | - Jyotisman Rath
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| | - Syed Akhil
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Nimai Mishra
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| |
Collapse
|
5
|
Alanazi M, Marshall AR, Liu Y, Kim J, Kar S, Snaith HJ, Taylor RA, Farrow T. Inhibiting the Appearance of Green Emission in Mixed Lead Halide Perovskite Nanocrystals for Pure Red Emission. NANO LETTERS 2024; 24:12045-12053. [PMID: 39311748 PMCID: PMC11450971 DOI: 10.1021/acs.nanolett.4c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
Mixed halide perovskites exhibit promising optoelectronic properties for next-generation light-emitting diodes due to their tunable emission wavelength that covers the entire visible light spectrum. However, these materials suffer from severe phase segregation under continuous illumination, making long-term stability for pure red emission a significant challenge. In this study, we present a comprehensive analysis of the role of halide oxidation in unbalanced ion migration (I/Br) within CsPbI2Br nanocrystals and thin films. We also introduce a new approach using cyclic olefin copolymer (COC) to encapsulate CsPbI2Br perovskite nanocrystals (PNCs), effectively suppressing ion migration by increasing the corresponding activation energy. Compared with that of unencapsulated samples, we observe a substantial reduction in phase separation under intense illumination in PNCs with a COC coating. Our findings show that COC enhances phase stability by passivating uncoordinated surface defects (Pb2+ and I-), increasing the formation energy of halide vacancies, improving the charge carrier lifetime, and reducing the nonradiative recombination density.
Collapse
Affiliation(s)
- Mutibah Alanazi
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Ashley R. Marshall
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
- Helio
Display Materials Ltd., Wood Centre for Innovation, Oxford OX3 8SB, United Kingdom
| | - Yincheng Liu
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
- Institute
of Materials Research and Engineering, Agency for Science, Technology
and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
| | - Jinwoo Kim
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Shaoni Kar
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
- Helio
Display Materials Ltd., Wood Centre for Innovation, Oxford OX3 8SB, United Kingdom
| | - Henry J. Snaith
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Robert A. Taylor
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Tristan Farrow
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
- , NEOM U, and Education, Research and
Innovation Foundation, Tabuk 49643-9136, Saudi
Arabia
| |
Collapse
|
6
|
Yasmeen F, Tarek M, Basith MA. Moisture-Stable CsSnBr 2Cl Halide Perovskite: Electrochemical Insights in Aqueous Environments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47535-47550. [PMID: 39207119 DOI: 10.1021/acsami.4c08313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In this investigation, moisture-stable CsSnBr2Cl nanoparticles were synthesized by incorporating Cl into CsSnBr3 halide perovskite using the hot injection method. Various analyses including XRD, XPS, UV-vis absorbance, photoluminescence, and Mott-Schottky have confirmed that the structural properties, chemical states, optical properties, and electronic band structure of CsSnBr2Cl nanoparticles remain intact even after 75 days of water immersion, thereby conclusively demonstrating their moisture stability. In a three-electrode system, the comparative electrochemical performance of pristine CsSnBr3 nanoparticles and moisture-stable Cl-incorporated CsSnBr2Cl nanoparticles was evaluated in various aqueous electrolytes, including HCl, Na2SO4, and KOH. The results indicate that the CsSnBr2Cl electrode material exhibits superior electrochemical properties, such as a larger integrated cyclic voltammetry (CV) area, a wider potential window, longer charge-discharge times, and lower impedance parameters compared to the pristine CsSnBr3 nanoparticles. The electrochemical performance of CsSnBr2Cl nanoparticles was evaluated for potential applications in batteries, supercapacitors, fuel cells, and water splitting, with a focus on reaction kinetics, charge storage mechanisms, and impedance parameters. The electrochemical properties of the nanoparticles were assessed using a three-electrode configuration across various 0.5 M aqueous electrolytes (HCl, Na2SO4, and KOH). In HCl, the nanoparticles demonstrated impressive charge storage capability, achieving a capacitance of 474 F g-1 at 1 A g-1, affirming their suitability for energy storage devices. In Na2SO4(aq.), the nanoparticles exhibited excellent stability for supercapacitors, operating up to 1.6 V without significant oxygen evolution. Notably, in KOH, they demonstrated potential as effective water-splitting electrodes. The practical applicability of the nanoparticles was evaluated using a symmetric two-electrode configuration with HCl and Na2SO4 electrolytes. The capacitance values were 117 F g-1 in HCl and 70 F g-1 in Na2SO4 at 1 A g-1. Notably, after 5000 GCD cycles in HCl(aq.), the nanoparticles retained 93% of their capacitance and maintained 91% Coulombic efficiency. They also demonstrated stable operation across a temperature range of 3 to 60 °C, achieving an energy density of 5.83 W h kg-1 at a power density of 600 W kg-1. This study emphasizes the considerable potential of CsSnBr2Cl nanoparticles in advancing electrochemical energy storage technologies and sets a solid foundation for future research and development in metal halide perovskites.
Collapse
Affiliation(s)
- Ferdous Yasmeen
- Nanotechnology Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Mohasin Tarek
- Nanotechnology Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - M A Basith
- Nanotechnology Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
7
|
Salari R, Amjadi M. An efficient chemiluminescent probe based on Ni-doped CsPbBr 3 perovskite nanocrystals embedded in mesoporous SiO 2 for sensitive assay of L-cysteine. Sci Rep 2024; 14:20871. [PMID: 39242591 PMCID: PMC11379696 DOI: 10.1038/s41598-024-70624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
This study presents an efficient chemiluminescence (CL) probe based on perovskite nanocrystals (NCs) for detection of L-cysteine (L-Cys). It consists of nickel-doped CsPbBr3 NCs embedded in the mesoporous SiO2 matrix as CL reagent and cerium (IV) as an oxidant in aqueous environment. The probe was designed for the highly selective determination of L-Cys based on its remarkable enhancing effect on the CL intensity. The colloidal nanocomposite of nickel-doped CsPbBr3 NCs@SiO2 with photoluminescence quantum yield of 58% was fabricated by ligand-assisted re-precipitation method and characterized by using UV-Vis absorption, FT-IR, X-ray diffraction, and transmission electron microscopy. The sensor was utilized to determine L-Cys in the linear concentration range of 20-300 nM with a detection limit of 12.8 nM. Direct chemical oxidation of Ni-doped CsPbBr3 NCs@SiO2 by Ce(IV) was the single cause of the formation of the excited-state NCs and subsequent production of CL. The developed probe provides outstanding selectivity towards L-Cys over structurally related compounds. Accurate determination of L-Cys in human serum samples was achieved without interference, and the results were confirmed by HPLC method.
Collapse
Affiliation(s)
- Rana Salari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran.
| |
Collapse
|
8
|
Duan Y, Li S, Gu K, Kuang Z, Xu S, Zhang J. Multicolor tunable persistent luminescence mechanism in well-designed inorganic composites. OPTICS LETTERS 2024; 49:3251-3254. [PMID: 38824376 DOI: 10.1364/ol.522446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
Herein, by ball milling CsPb(Br/I)3 quantum dot glass powder with Sr2MgSi2O7:Eu2+, Dy3+ phosphor, multicolor tunable long persistent luminescence (LPL) in inorganic composites with more than 700 min attenuation time can be obtained via a radiation photon reabsorption process. Attractively, the wide color gamut of LPL spectra overlaps the National Television System Committee space 74%. Notably, the luminescence intensity remains stable when the inorganic composites are composed with UV light for 100 h. Finally, practical anticounterfeiting application is successfully realized based on the prepared LPL inorganic composites. This work provides a new, to the best of our knowledge, perspective to achieve polychromatic adjustment of LPL.
Collapse
|
9
|
Liu Y, Li J, Zhu Y, Ai Q, Xu R, Yang R, Zhang B, Fang Q, Zhai T, Xu C, Terlier T, Zhu H, Grigoropoulos CP, Lou J. Spatially Resolved Anion Diffusion and Tunable Waveguides in Bismuth Halide Perovskites. NANO LETTERS 2024; 24:5182-5188. [PMID: 38630435 DOI: 10.1021/acs.nanolett.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Bismuth halide perovskites are widely regarded as nontoxic alternatives to lead halide perovskites for optoelectronics and solar energy harvesting applications. With a tailorable composition and intriguing optical properties, bismuth halide perovskites are also promising candidates for tunable photonic devices. However, robust control of the anion composition in bismuth halide perovskites remains elusive. Here, we established chemical vapor deposition and anion exchange protocols to synthesize bismuth halide perovskite nanoflakes with controlled dimensions and variable compositions. In particular, we demonstrated the gradient bromide distribution by controlling the anion exchange and diffusion processes, which is spatially resolved by time-of-flight secondary ion mass spectrometry. Moreover, the optical waveguiding properties of bismuth halide perovskites can be modulated by flake thicknesses and anion compositions. With a unique gradient anion distribution and controllable optical properties, bismuth halide perovskites provide new possibilities for applications in optoelectronic devices and integrated photonics.
Collapse
Affiliation(s)
- Yifeng Liu
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Jingang Li
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Yifan Zhu
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Qing Ai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Rui Xu
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Rundi Yang
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Boyu Zhang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Qiyi Fang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Tianshu Zhai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Clyde Xu
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, Houston, Texas 77005, United States
| | - Hanyu Zhu
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Costas P Grigoropoulos
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Jun Lou
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
10
|
Liu Y, Di Stasio F, Bi C, Zhang J, Xia Z, Shi Z, Manna L. Near-Infrared Light Emitting Metal Halides: Materials, Mechanisms, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312482. [PMID: 38380797 DOI: 10.1002/adma.202312482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Near-Infrared (NIR) light emitting metal halides are emerging as a new generation of optical materials owing to their appealing features, which include low-cost synthesis, solution processability, and adjustable optical properties. NIR-emitting perovskite-based light-emitting diodes (LEDs) have reached an external quantum efficiency (EQE) of over 20% and a device stability of over 10,000 h. Such results have sparked an interest in exploring new NIR metal halide emitters. In this review, several different types of NIR-emitting metal halides, including lead/tin bromide/iodide perovskites, lanthanide ions doped/based metal halides, double perovskites, low dimensional hybrid and Bi3+/Sb3+/Cr3+ doped metal halides, are summarized, and their recent advancement is assessed. The characteristics and mechanisms of narrow-band or broadband NIR luminescence in all these materials are discussed in detail. Also, the various applications of NIR-emitting metal halides are highlighted and an outlook for the field is provided.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Francesco Di Stasio
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Chenghao Bi
- Qingdao Innovation and Development Base, Harbin Engineering University, Sansha Str. 1777, Qingdao, 266500, China
| | - Jibin Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiguo Xia
- The State Key Laboratory of Luminescent Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
11
|
Shellaiah M, Sun KW, Thirumalaivasan N, Bhushan M, Murugan A. Sensing Utilities of Cesium Lead Halide Perovskites and Composites: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2504. [PMID: 38676122 PMCID: PMC11054776 DOI: 10.3390/s24082504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Recently, the utilization of metal halide perovskites in sensing and their application in environmental studies have reached a new height. Among the different metal halide perovskites, cesium lead halide perovskites (CsPbX3; X = Cl, Br, and I) and composites have attracted great interest in sensing applications owing to their exceptional optoelectronic properties. Most CsPbX3 nanostructures and composites possess great structural stability, luminescence, and electrical properties for developing distinct optical and photonic devices. When exposed to light, heat, and water, CsPbX3 and composites can display stable sensing utilities. Many CsPbX3 and composites have been reported as probes in the detection of diverse analytes, such as metal ions, anions, important chemical species, humidity, temperature, radiation photodetection, and so forth. So far, the sensing studies of metal halide perovskites covering all metallic and organic-inorganic perovskites have already been reviewed in many studies. Nevertheless, a detailed review of the sensing utilities of CsPbX3 and composites could be helpful for researchers who are looking for innovative designs using these nanomaterials. Herein, we deliver a thorough review of the sensing utilities of CsPbX3 and composites, in the quantitation of metal ions, anions, chemicals, explosives, bioanalytes, pesticides, fungicides, cellular imaging, volatile organic compounds (VOCs), toxic gases, humidity, temperature, radiation, and photodetection. Furthermore, this review also covers the synthetic pathways, design requirements, advantages, limitations, and future directions for this material.
Collapse
Affiliation(s)
- Muthaiah Shellaiah
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India; (M.S.); (M.B.)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Yang-Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Mayank Bhushan
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India; (M.S.); (M.B.)
| | - Arumugam Murugan
- Department of Chemistry, North Eastern Regional Institute of Science & Technology, Nirjuli, Itanagar 791109, India;
| |
Collapse
|
12
|
Tepliakov NV, Sokolova AV, Tatarinov DA, Zhang X, Zheng W, Litvin AP, Rogach AL. Trap-Mediated Sensitization Governs Near-Infrared Emission from Yb 3+-Doped Mixed-Halide CsPbCl xBr 3-x Perovskite Nanocrystals. NANO LETTERS 2024; 24:3347-3354. [PMID: 38451030 DOI: 10.1021/acs.nanolett.3c04881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Understanding the photosensitization mechanisms in Yb3+-doped perovskite nanocrystals is crucial for developing their anticipated photonic applications. Here, we address this question by investigating near-infrared photoluminescence of Yb3+-doped mixed-halide CsPbClxBr3-x nanocrystals as a function of temperature and revealing its strong dependence on the stoichiometry of the host perovskite matrix. To explain the observed experimental trends, we developed a theoretical model in which energy transfer from the perovskite matrix to Yb3+ ions occurs through intermediate trap states situated beneath the conduction band of the host. The developed model provides an excellent agreement with experimental results and is further validated through the measurements of emission saturation at high excitation powers and near-infrared photoluminescence quantum yield as a function of the anion composition. Our findings establish trap-mediated energy transfer as a dominant photosensitization mechanism in Yb3+-doped CsPbClxBr3-x nanocrystals and open up new ways of engineering their optical properties for light-emitting and light-harvesting applications.
Collapse
Affiliation(s)
- Nikita V Tepliakov
- Department of Materials and The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- PhysNano Department, ITMO University, Saint-Petersburg 197101, Russia
| | - Anastasiia V Sokolova
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | | | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials MOE, School of Material Science & Engineering, Jilin University, Changchun 130012, P. R. China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, School of Material Science & Engineering, Jilin University, Changchun 130012, P. R. China
| | - Aleksandr P Litvin
- PhysNano Department, ITMO University, Saint-Petersburg 197101, Russia
- Key Laboratory of Automobile Materials MOE, School of Material Science & Engineering, Jilin University, Changchun 130012, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, P. R. China
- Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
13
|
Huang J, Wang H, Jia C, Yang H, Tang Y, Gou K, Zhou Y, Zhang D. High-Efficiency and Ultra-Stable Cesium-Bismuth-Based Lead-free Perovskite Solar Cells without Modification. J Phys Chem Lett 2024:3383-3389. [PMID: 38501789 DOI: 10.1021/acs.jpclett.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Perovskite solar cells (PSCs) have become a new photovoltaic technology with great commercial potential because of their excellent photovoltaic performance. However, the toxicity and poor environmental stability of Pb in Pb-based perovskites limit its large-scale application. Exploring alternatives to Pb is an available approach to develop environmentally friendly PSCs. As an adjacent element of Pb, Bi shows many similar physical and chemical properties; therefore, it is commonly applied for B site substitution in Pb-based PSCs. CsBiSCl2, a new Pb-free perovskite system, was synthesized for the first time as a light absorber. By preparing DMABiS2 as an intermediate, Cs-Bi-based CsBiSCl2 perovskite films with a band gap over 2.012 eV were prepared by introducing CsCl, and the optimal annealing temperature, time, and stoichiometric ratio of the film were explored in this work. The conventional structure of CsBiSCl2 PSCs achieved a power conversion efficiency (PCE) of 10.38%, and the efficiency declined by only 3% after aging in air for 150 days, showing excellent stability, which is one of the most stable devices in inorganic PSCs. This work opens up a new road for the future development of environmentally friendly and commercially stable lead-free PSCs.
Collapse
Affiliation(s)
- Jin Huang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710049, China
- Shool of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Hao Wang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710049, China
- Shool of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Chunliang Jia
- Shool of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Husheng Yang
- Shool of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yizhe Tang
- Shool of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Kaiyuan Gou
- Shool of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yufan Zhou
- Shool of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Dan Zhang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
14
|
Roy M, Sykora M, Aslam M. Chemical Aspects of Halide Perovskite Nanocrystals. Top Curr Chem (Cham) 2024; 382:9. [PMID: 38430313 DOI: 10.1007/s41061-024-00453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/24/2024] [Indexed: 03/03/2024]
Abstract
Halide perovskite nanocrystals (HPNCs) are currently among the most intensely investigated group of materials. Structurally related to the bulk halide perovskites (HPs), HPNCs are nanostructures with distinct chemical, optical, and electronic properties and significant practical potential. One of the keys to the effective exploitation of the HPNCs in advanced technologies is the development of controllable, reproducible, and scalable methods for preparation of materials with desired compositions, phases, and shapes and low defect content. Another important condition is a quantitative understanding of factors affecting the chemical stability and the optical and electronic properties of HPNCs. Here we review important recent developments in these areas. Following a brief historical prospective, we provide an overview of known chemical methods for preparation of HPNCs and approaches used to control their composition, phase, size, and shape. We then review studies of the relationship between the chemical composition and optical properties of HPNCs, degradation mechanisms, and effects of charge injection. Finally, we provide a short summary and an outlook. The aim of this review is not to provide a comprehensive summary of all relevant literature but rather a selection of highlights, which, in the subjective view of the authors, provide the most significant recent observations and relevant analyses.
Collapse
Affiliation(s)
- Mrinmoy Roy
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India
- Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, Bratislava, 84104, Slovakia
| | - Milan Sykora
- Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, Bratislava, 84104, Slovakia
| | - M Aslam
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
15
|
Cai T, Shi W, Wu R, Chu C, Jin N, Wang J, Zheng W, Wang X, Chen O. Lanthanide Doping into All-Inorganic Heterometallic Halide Layered Double Perovskite Nanocrystals for Multimodal Visible and Near-Infrared Emission. J Am Chem Soc 2024; 146:3200-3209. [PMID: 38276958 DOI: 10.1021/jacs.3c11164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The introduction of lanthanide ions (Ln3+) into all-inorganic lead-free halide perovskites has captured significant attention in optoelectronic applications. However, doping Ln3+ ions into heterometallic halide layered double perovskite (LDP) nanocrystals (NCs) and their associated doping mechanisms remain unexplored. Herein, we report the first colloidal synthesis of Ln3+ (Yb3+, Er3+)-doped LDP NCs utilizing a modified hot-injection method. The resulting NCs exhibit efficient near-infrared (NIR) photoluminescence in both NIR-I and NIR-II regions, achieved through energy transfer down-conversion mechanisms. Density functional theory calculations reveal that Ln3+ dopants preferentially occupy the Sb3+ cation positions, resulting in a disruption of local site symmetry of the LDP lattices. By leveraging sensitizations of intermediate energy levels, we delved into a series of Ln3+-doped Cs4M(II)Sb2Cl12 (M(II): Cd2+ or Mn2+) LDP NCs via co-doping strategies. Remarkably, we observe a brightening effect of the predark states of Er3+ dopant in the Er3+-doped Cs4M(II)Sb2Cl12 LDP NCs owing to the Mn component acting as an intermediate energy bridge. This study not only advances our understanding of energy transfer mechanisms in doped NCs but also propels all-inorganic LDP NCs for a wider range of optoelectronic applications.
Collapse
Affiliation(s)
- Tong Cai
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Wenwu Shi
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
- Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Rongzhen Wu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Chun Chu
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Na Jin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Junyu Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Weiwei Zheng
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Xinzhong Wang
- Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
16
|
Zhao H, Li H, Zheng J, Yan H, Lu J, Liu H, Hao H, Dou J, Li Y, Wang S. Cd-MOF and Its Ln 3+-Post Modification Products: Regulation of Luminescence Properties and Improved Detection of Uric Acid, Quinine, and Quinidine. Inorg Chem 2024; 63:1962-1973. [PMID: 38236237 DOI: 10.1021/acs.inorgchem.3c03661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
One 3D Cd-MOF, namely, {[(HDMA)2][Cd3(L)2]·5H2O·2DMF}n (LCU-124, LCU indicates Liaocheng University), was synthesized from an ether-containing ligand 1,3-bis(3,5-dicarboxylphenoxy)benzene (H4L). Its Ln3+-postmodified samples, Eu3+@LCU-124 and Tb3+@LCU-124, were obtained through cation exchange of dimethylamine cation (HDMA) with Eu3+ and Tb3+. The successful entry of rare earth into LCU-124 by cation exchange modification was verified by IR, XRD, XPS, EDS mapping, and luminescence spectra. The proportion of Eu3+/Tb3+ was adjusted during the modification process, leading to fluorescent materials with different emissions. Luminescence measurements indicated that these complexes exhibited interesting multiresponsive sensing activities toward biomarkers urine acid (UA), quinine (QN), and quinidine (QND). First, LCU-124 has a pronounced quenching effect toward UA with the detection limit of 31.01 μM. After modification, the visualization of the detection was improved significantly and the detection limit of Eu3+@LCU-124 was reduced to 0.868 μM. Second, when QN and QND were present in the suspensions of Eu3+@LCU-124 and Tb3+@LCU-124, strong blue light emission peaks occurred, while the characteristic emission of Eu3+/Tb3+ decreased, forming ratiometric fluorescent sensors with the detection limit in the range of 0.199-9.49 μM. The fluorescent probes have high selectivity, excellent sensitivity recycling, and fast response time (less than 1 min). Besides, a simple logic gate circuit and a range of luminescent mixed matrix membranes were designed to provide simple and fast detection of above biomarkers. Our work indicated that modification of Eu3+/Tb3+ could improve the detection ability significantly.
Collapse
Affiliation(s)
- Hengyi Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Hongjian Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Jun Zheng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Hui Yan
- School of Pharmacy, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Houting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| |
Collapse
|
17
|
Kim D, Yun T, An S, Lee CL. How to improve the structural stabilities of halide perovskite quantum dots: review of various strategies to enhance the structural stabilities of halide perovskite quantum dots. NANO CONVERGENCE 2024; 11:4. [PMID: 38279984 PMCID: PMC10821855 DOI: 10.1186/s40580-024-00412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/08/2024] [Indexed: 01/29/2024]
Abstract
Halide perovskites have emerged as promising materials for various optoelectronic devices because of their excellent optical and electrical properties. In particular, halide perovskite quantum dots (PQDs) have garnered considerable attention as emissive materials for light-emitting diodes (LEDs) because of their higher color purities and photoluminescence quantum yields compared to conventional inorganic quantum dots (CdSe, ZnSe, ZnS, etc.). However, PQDs exhibit poor structural stabilities in response to external stimuli (moisture, heat, etc.) owing to their inherent ionic nature. This review presents recent research trends and insights into improving the structural stabilities of PQDs. In addition, the origins of the poor structural stabilities of PQDs and various methods to overcome this drawback are discussed. The structural degradation of PQDs is mainly caused by two mechanisms: (1) defect formation on the surface of the PQDs by ligand dissociation (i.e., detachment of weakly bound ligands from the surface of PQDs), and (2) vacancy formation by halide migration in the lattices of the PQDs due to the low migration energy of halide ions. The structural stabilities of PQDs can be improved through four methods: (1) ligand modification, (2) core-shell structure, (3) crosslinking, and (4) metal doping, all of which are presented in detail herein. This review provides a comprehensive understanding of the structural stabilities and opto-electrical properties of PQDs and is expected to contribute to future research on improving the device performance of perovskite quantum dot LEDs (PeLEDs).
Collapse
Affiliation(s)
- Dokyum Kim
- Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Taesun Yun
- Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Department of Physics, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sangmin An
- Department of Physics, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Chang-Lyoul Lee
- Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
18
|
Yao Z, Xiong Y, Kang H, Xu X, Guo J, Li W, Xu X. Tunable Periodic Nanopillar Array for MAPbI 3 Perovskite Photodetectors with Improved Light Absorption. ACS OMEGA 2024; 9:2606-2614. [PMID: 38250387 PMCID: PMC10795138 DOI: 10.1021/acsomega.3c07390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
In the field of optoelectronic applications, the vigorous development of organic-inorganic hybrid perovskite materials, such as methylammonium lead triiodide (MAPbI3), has spurred continuous research on methods to enhance the photodetection performance. Periodic nanoarrays can effectively improve the light absorption of perovskite thin films. However, there are still challenges in fabricating tunable periodic patterned and large-area perovskite nanoarrays. In this study, we present a cost-effective and facile approach utilizing nanosphere lithography and dry etching techniques to create a large-area Si nanopillar array, which is employed for patterning MAPbI3 thin films. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) results reveal that the introduction of nanopillar structures did not have a significant adverse effect on the crystallinity of the MAPbI3 thin film. Light absorption tests and optical simulations indicate that the nanopillar array enhances the light intensity within the perovskite films, leading to photodetectors with a responsivity of 11.2 A/W and a detectivity of 7.3 × 1010 Jones at 450 nm in wavelength. Compared with photodetectors without nanostructures, these photodetectors exhibit better visible light absorption. Finally, we demonstrate the application of these photodetector arrays in a prototype image sensor.
Collapse
Affiliation(s)
- Zhengtong Yao
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Yuting Xiong
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Hanyue Kang
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Xiuzhen Xu
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Jianhe Guo
- Guangdong
Provincial Key Laboratory of Sensing Technology and Biomedical
Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Wen Li
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Xiaobin Xu
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
19
|
Guo J, Fu Y, Zheng W, Xie M, Huang Y, Miao Z, Han C, Yin W, Zhang J, Yang X, Tian J, Zhang X. Entropy-Driven Strongly Confined Low-Toxicity Pure-Red Perovskite Quantum Dots for Spectrally Stable Light-Emitting Diodes. NANO LETTERS 2024; 24:417-423. [PMID: 38149580 DOI: 10.1021/acs.nanolett.3c04214] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Spectrally stable pure-red perovskite quantum dots (QDs) with low lead content are essential for high-definition displays but are difficult to synthesize due to QD self-purification. Here, we make use of entropy-driven quantum-confined pure-red perovskite QDs to fabricate light-emitting diodes (LEDs) that have low toxicity and are efficient and spectrum-stable. Based on experimental data and first-principles calculations, multiple element alloying results in a 60% reduction in lead content while improving QD entropy to promote crystal stability. Entropy-driven QDs exhibit photoluminescence with 100% quantum yields and single-exponential decay lifetimes without alteration of their morphology or crystal structure. The pure-red LEDs utilizing entropy-driven QDs have spectrally stable electroluminescence, achieving a brightness of 4932 cd/m2, a maximum external quantum efficiency of over 20%, and a 15-fold longer operational lifetime than the CsPbI3 QD-based LEDs. These achievements demonstrate that entropy-driven QDs can mitigate local compositional heterogeneity and ion migration.
Collapse
Affiliation(s)
- Jie Guo
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Yuhao Fu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Weijia Zheng
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Mingyuan Xie
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuchao Huang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Zeyu Miao
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Ce Han
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Wenxu Yin
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Jiaqi Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, P.R. China
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
20
|
Jeong WH, Lee S, Song H, Shen X, Choi H, Choi Y, Yang J, Yoon JW, Yu Z, Kim J, Seok GE, Lee J, Kim HY, Snaith HJ, Choi H, Park SH, Lee BR. Synergistic Surface Modification for High-Efficiency Perovskite Nanocrystal Light-Emitting Diodes: Divalent Metal Ion Doping and Halide-Based Ligand Passivation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305383. [PMID: 38037253 PMCID: PMC10811502 DOI: 10.1002/advs.202305383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Indexed: 12/02/2023]
Abstract
Surface defects of metal halide perovskite nanocrystals (PNCs) substantially compromise the optoelectronic performances of the materials and devices via undesired charge recombination. However, those defects, mainly the vacancies, are structurally entangled with each other in the PNC lattice, necessitating a delicately designed strategy for effective passivation. Here, a synergistic metal ion doping and surface ligand exchange strategy is proposed to passivate the surface defects of CsPbBr3 PNCs with various divalent metal (e.g., Cd2+ , Zn2+, and Hg2+ ) acetate salts and didodecyldimethylammonium (DDA+ ) via one-step post-treatment. The addition of metal acetate salts to PNCs is demonstrated to suppress the defect formation energy effectively via the ab initio calculations. The developed PNCs not only have near-unity photoluminescence quantum yield and excellent stability but also show luminance of 1175 cd m-2 , current efficiency of 65.48 cd A-1 , external quantum efficiency of 20.79%, wavelength of 514 nm in optimized PNC light-emitting diodes with Cd2+ passivator and DDA ligand. The "organic-inorganic" hybrid engineering approach is completely general and can be straightforwardly applied to any combination of quaternary ammonium ligands and source of metal, which will be useful in PNC-based optoelectronic devices such as solar cells, photodetectors, and transistors.
Collapse
Affiliation(s)
- Woo Hyeon Jeong
- School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Seongbeom Lee
- Department of ChemistryResearch Institute for Convergence of Basic Sciencesand Research Institute for Natural ScienceHanyang UniversitySeoul04763Republic of Korea
- Department of PhysicsPukyong National UniversityBusan48513Republic of Korea
- CECS Research InstituteCore Research InstituteBusan48513Republic of Korea
| | - Hochan Song
- Department of ChemistryResearch Institute for Convergence of Basic Sciencesand Research Institute for Natural ScienceHanyang UniversitySeoul04763Republic of Korea
| | - Xinyu Shen
- School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
- Clarendon LaboratoryDepartment of PhysicsUniversity of OxfordOxfordOX1 3PUUK
| | - Hyuk Choi
- Department of Materials Science and EngineeringChungnam National UniversityDaehak‐ro, Yuseong‐guDaejeon34134Republic of Korea
| | - Yejung Choi
- Department of Materials Science and EngineeringChungnam National UniversityDaehak‐ro, Yuseong‐guDaejeon34134Republic of Korea
| | - Jonghee Yang
- Institute for Advanced Materials and ManufacturingDepartment of Materials Science and EngineeringUniversity of TennesseeKnoxvilleTN37996USA
| | - Jung Won Yoon
- Department of ChemistryResearch Institute for Convergence of Basic Sciencesand Research Institute for Natural ScienceHanyang UniversitySeoul04763Republic of Korea
| | - Zhongkai Yu
- School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Jihoon Kim
- School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Gyeong Eun Seok
- School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Jeongjae Lee
- School of Earth and Environmental SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Hyun You Kim
- Department of Materials Science and EngineeringChungnam National UniversityDaehak‐ro, Yuseong‐guDaejeon34134Republic of Korea
| | - Henry J. Snaith
- Clarendon LaboratoryDepartment of PhysicsUniversity of OxfordOxfordOX1 3PUUK
| | - Hyosung Choi
- Department of ChemistryResearch Institute for Convergence of Basic Sciencesand Research Institute for Natural ScienceHanyang UniversitySeoul04763Republic of Korea
| | - Sung Heum Park
- Department of PhysicsPukyong National UniversityBusan48513Republic of Korea
- CECS Research InstituteCore Research InstituteBusan48513Republic of Korea
| | - Bo Ram Lee
- School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| |
Collapse
|
21
|
Ahmed MT, Islam S, Ahmed F. A-Site Cation Replacement of Hydrazinium Lead Iodide Perovskites by Borane Ammonium Ions: A DFT Calculation. ChemistryOpen 2024; 13:e202300207. [PMID: 38047541 PMCID: PMC10784623 DOI: 10.1002/open.202300207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Organometallic perovskites have become one of the most common multifunctional materials in optoelectronic research fields. This research studies density functional theory calculation on orthorhombic hydrazinium lead iodide (N2 H5 PbI3 ) perovskite by replacing A-site cation with a borane ammonium (BH2 NH3 + ) ion. The perovskite showed a significant structural deformation and an orthorhombic to triclinic phase transition due to A-site ion replacement. The N2 H5 PbI3 perovskite has a band gap of 1.64 eV, suitable for the solar cell absorber layer. The band gap has increased to 2.12 eV after complete A-site ion replacement. All structures showed a high absorption coefficient over 104 cm-1 in the low wavelength region and an increase in refractive index from 2.5 to 2.75 due to ion replacement. All the structures showed high optical conductivity of 1015 s-1 order in the blue wavelength region. These new perovskite structures hold the potential to provide a revolution in optoelectronic research.
Collapse
Affiliation(s)
| | - Shariful Islam
- Department of PhysicsJahangirnagar UniversityDhakaBangladesh
| | - Farid Ahmed
- Department of PhysicsJahangirnagar UniversityDhakaBangladesh
| |
Collapse
|
22
|
Chen Z, Shahid MZ, Jiang X, Zhang M, Pan D, Xu H, Jiang G, Wang J, Li Z. Regulating the Active Sites of Cs 2 AgBiCl 6 by Doping for Efficient Coupling of Photocatalytic CO 2 Reduction and Benzyl Alcohol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304756. [PMID: 37653605 DOI: 10.1002/smll.202304756] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/15/2023] [Indexed: 09/02/2023]
Abstract
Halide perovskites exhibit outstanding optoelectronic properties, which make them an ideal choice for photocatalytic CO2 reduction and benzyl alcohol (BA) oxidation. Nevertheless, the simultaneous realization of the above redox coupling reactions on halide perovskites remains a great challenge, as it requires distinct catalytic sites for different target reactions. Herein, the catalytic sites of Cs2 AgBiCl6 (CABC) are regulated by doping Fe for efficient coupling of photocatalytic CO2 reduction and BA oxidation. The Fe-doped CABC (Fe: CABC) exhibits an enhanced visible-light response and effective charge separation. Experimental results and theoretical calculations reveal a synergistic interplay between Bi and Fe sites, where the Bi and Fe sites have lower activation energies toward CO2 reduction and BA oxidation. Further investigations demonstrate that electrons and holes prefer to accumulate at the Bi site and Fe site under light irradiation, respectively, which creates favorable conditions for facilitating CO2 reduction and BA oxidation. The resultant Fe: CABC achieves a high photocatalytic performance toward CO (18.5 µmol g-1 h-1 ) and BD (1.1 mmol g-1 h-1 ) generation, which surpasses most of the state-of-the-art halide photocatalysts. This work demonstrates a facile strategy for regulating the catalytic site for redox coupling reactions, which will pave a new way for designing halide perovskites for photocatalysis.
Collapse
Affiliation(s)
- Zhihao Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Malik Zeeshan Shahid
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Xinyan Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Meng Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Danrui Pan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Hongpeng Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Guocan Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
- Zhejiang Institute of Photonelectronic, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Jin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
- Zhejiang Institute of Photonelectronic, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Zhengquan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
- Zhejiang Institute of Photonelectronic, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| |
Collapse
|
23
|
Zhou W, Yu Y, Han P, Li C, Wu T, Ding Z, Liu R, Zhang R, Luo C, Li H, Zhao K, Han K, Lu R. Sb-Doped Cs 3 TbCl 6 Nanocrystals for Highly Efficient Narrow-Band Green Emission and X-Ray Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302140. [PMID: 37801733 DOI: 10.1002/adma.202302140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/15/2023] [Indexed: 10/08/2023]
Abstract
Metal halide nanocrystals (NCs) with high photoluminescence quantum yield (PLQY) are desirable for lighting, display, and X-ray detection. Herein, the novel lanthanide-based halide NCs are committed to designing and optimizing the optical and scintillating properties, so as to unravel the PL origin, exciton dynamics, and optoelectronic applications. Sb-doped zero-dimensional (0D) Cs3 TbCl6 NCs exhibit a green emission with a narrow full width of half maximum of 8.6 nm, and the best PLQY of 48.1% is about three times higher than that of undoped NCs. Experiments and theoretical calculations indicate that 0D crystalline and electronic structures make the exciton highly localized on [TbCl6 ]3- octahedron, which boosts the Cl- -Tb3+ charge transfer process, thus resulting in bright Tb3+ emission. More importantly, the introduction of Sb3+ not only facilitates the photon absorption transition, but also builds an effective thermally boosting energy transfer channel assisted by [SbCl6 ]3- -induced self-trapped state, which is responsible for the PL enhancement. The high luminescence efficiency and negligible self-absorption of the Cs3 TbCl6 : Sb nanoscintillator enable a more sensitive X-ray detection response compared with undoped sample. The study opens a new perspective to deeply understand the excited state dynamics of metal halide NCs, which helps to design high-performance luminescent lanthanide-based nanomaterials.
Collapse
Affiliation(s)
- Wei Zhou
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yang Yu
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Peigeng Han
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Cheng Li
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Tong Wu
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zhiling Ding
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Runze Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Cheng Luo
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Hui Li
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Kun Zhao
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Keli Han
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Ruifeng Lu
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
24
|
Lee GH, Kim K, Kim Y, Yang J, Choi MK. Recent Advances in Patterning Strategies for Full-Color Perovskite Light-Emitting Diodes. NANO-MICRO LETTERS 2023; 16:45. [PMID: 38060071 PMCID: PMC10704014 DOI: 10.1007/s40820-023-01254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 12/08/2023]
Abstract
Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability, pure color emission with remarkably narrow bandwidths, high quantum yield, and solution processability. Despite recent advances have pushed the luminance efficiency of monochromic perovskite light-emitting diodes (PeLEDs) to their theoretical limits, their current fabrication using the spin-coating process poses limitations for fabrication of full-color displays. To integrate PeLEDs into full-color display panels, it is crucial to pattern red-green-blue (RGB) perovskite pixels, while mitigating issues such as cross-contamination and reductions in luminous efficiency. Herein, we present state-of-the-art patterning technologies for the development of full-color PeLEDs. First, we highlight recent advances in the development of efficient PeLEDs. Second, we discuss various patterning techniques of MPHs (i.e., photolithography, inkjet printing, electron beam lithography and laser-assisted lithography, electrohydrodynamic jet printing, thermal evaporation, and transfer printing) for fabrication of RGB pixelated displays. These patterning techniques can be classified into two distinct approaches: in situ crystallization patterning using perovskite precursors and patterning of colloidal perovskite nanocrystals. This review highlights advancements and limitations in patterning techniques for PeLEDs, paving the way for integrating PeLEDs into full-color panels.
Collapse
Affiliation(s)
- Gwang Heon Lee
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kiwook Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Yunho Kim
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Moon Kee Choi
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
| |
Collapse
|
25
|
Iftikhar R, Irshad R, Zahid WA, Akram W, Shehzad RA, Abdelmohsen SAM, Alanazi MM, Shahzad N, Iqbal J. Designing of fluorine-substituted benzodithiophene-based small molecules with efficient photovoltaic parameters. J Mol Graph Model 2023; 125:108588. [PMID: 37557026 DOI: 10.1016/j.jmgm.2023.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/17/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
In this study, four hole-transporting materials (JY-M1, JY-M2, JY-M3, and JY-M4) are designed by modifying benzothiadiazole-based core with diphenylamine-based carbazole via acceptors through thiophene linkers. The designed molecules exhibited deeper HOMO energy with smaller energy gaps than the reference JY molecule which enhance their hole mobility. The absorption spectra of the JY-M1, JY-M2, JY-M3, and JY-M4 molecules are located at 380 nm to 407 nm in the gaseous phase and 397 nm to 433 nm in the solvent phase, which is red-shifted and higher than the reference molecule, demonstrating that designed molecules possess improved light absorption properties and enhanced effective hole transfer. The dipole moments of the designed molecules (14.74 D to 26.12 D) indicate a greater ability for charge separation, solubility and will be beneficial to produce multilayer films. Moreover, the results of hole reorganization energy (0.38198 eV to 0.45304 eV) and charge transfer integral (0.14315 eV to 0.14665 eV) of designing molecules show improved hole mobility and lower recombination losses compared to the JY molecule. Overall, we suggested that the structural modifications in the designed molecules contributed to their enhanced efficiency in converting light energy into electrical energy and have the potential for utilization in solar devices, paving the way for future advancements in the field of photovoltaics.
Collapse
Affiliation(s)
- Rabia Iftikhar
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Rabiya Irshad
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Waqar Ali Zahid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Waqas Akram
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Rao Aqil Shehzad
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Shaimaa A M Abdelmohsen
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Meznah M Alanazi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Nabeel Shahzad
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
26
|
Guan J, Zheng Y, Cheng P, Han W, Han X, Wang P, Xin M, Shi R, Xu J, Bu XH. Free Halogen Substitution of Chiral Hybrid Metal Halides for Activating the Linear and Nonlinear Chiroptical Properties. J Am Chem Soc 2023. [PMID: 38039190 DOI: 10.1021/jacs.3c09395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Halogen substitution has been proven as an effective approach to the band gap engineering and optoelectronic modulation of organic-inorganic hybrid metal halide (OIHMH) materials. Various high-performance mixed halide OIHMH film materials have been primarily obtained through the substitution of coordinated halogens in their inorganic octahedra. Herein, we propose a new strategy of substitution of free halogen outside the inorganic octahedra for constructing mixed halide OIHMH single crystals with chiral structures, resulting in a boost of their linear and nonlinear chiroptical properties. The substitution from DMA4[InCl6]Cl (DMA = dimethylammonium) to DMA4[InCl6]Br crystals through a facile antisolvent vaporization method produces centimeter-scale single crystals with high thermal stability along with high quantum yield photoluminescence, conspicuous circularly polarized luminescence, and greatly enhanced second harmonic generation (SHG). In particular, the obtained DMA4[InCl6]Br single crystal features an intrinsic chiral structure, exhibiting a significant SHG circular dichroism (SHG-CD) response with a highest reported anisotropy factor (gSHG-CD) of 1.56 among chiral OIHMH materials. The enhancements in both linear and nonlinear chiroptical properties are directly attributed to the modulation of octahedral distortion. The mixed halide OIHMH single crystals obtained by free halogen substitution confine the introduced halogens within free halogen sites of the lattice, thereby ensuring the stability of compositions and properties. The successful employment of such a free halogen substitution approach may broaden the horizon of the regulation of structures and the optoelectronic properties of the OIHMH materials.
Collapse
Affiliation(s)
- Junjie Guan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Yongshen Zheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Puxin Cheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Wenqing Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Xiao Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Peihan Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Mingyang Xin
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Rongchao Shi
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| |
Collapse
|
27
|
Peng S, Yang Z, Sun M, Yu L, Li Y. Stabilizing Metal Halide Perovskites for Solar Fuel Production: Challenges, Solutions, and Future Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304711. [PMID: 37548095 DOI: 10.1002/adma.202304711] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Indexed: 08/08/2023]
Abstract
Metal halide perovskites (MHPs) are emerging photocatalyst materials that can enable sustainable solar-to-chemical energy conversion by virtue of their broad absorption spectra, effective separation/transport of photogenerated carriers, and solution processability. Although preliminary studies show the excellent photocatalytic activities of MHPs, their intrinsic structural instability due to the low formation energy and soft ionic nature is an open challenge for their practical applications. This review discusses the latest understanding of the stability issue and strategies to overcome this issue for MHP-based photocatalysis. First, the origin of the instability issue at atomic levels and the design rules for robust structures are analyzed and elucidated. This is then followed by presenting several different material design strategies for stability enhancement, including reaction medium modification, material surface protection, structural dimensionality engineering, and chemical composition engineering. Emphases are placed on understanding the effects of these strategies on photocatalytic stability as well as the possible structure-performance correlation. Finally, the possible future research directions for pursuing stable and efficient MHP photocatalysts in order to accelerate their technological maturity on a practical scale are outlined. With that, it is hoped to provide readers a valuable snapshot of this rapidly developing and exciting field.
Collapse
Affiliation(s)
- Shaomin Peng
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhuoying Yang
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ming Sun
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lin Yu
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| |
Collapse
|
28
|
Bacha AUR, Nabi I, Chen Y, Li Z, Iqbal A, Liu W, Afridi MN, Arifeen A, Jin W, Yang L. Environmental application of perovskite material for organic pollutant-enriched wastewater treatment. Coord Chem Rev 2023; 495:215378. [DOI: 10.1016/j.ccr.2023.215378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
|
29
|
Wu Y, Li Z, Lei Y, Jin Z. Metal-Free Perovskites for X-Ray Detection. Chemistry 2023; 29:e202301536. [PMID: 37427493 DOI: 10.1002/chem.202301536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/11/2023]
Abstract
Metal-free perovskites are a promising class of materials for X-ray detection due to their unique structural, optical, and electrical properties. Here, we first delve into the stoichiometry and geometric argument of metal-free perovskites. Followed, the alternative A/B/X ions and hydrogen-bonding are clearly introduced to further optimize the materials' stability and properties. Finally, we provide a comprehensive overview of their potential applications for flexible X-ray images and prospects for metal-free perovskite development. In conclusion, metal-free perovskite is a promising material for X-ray detection. Its stoichiometric and geometric parameters, ion, and hydrogen bond selection, and application prospects are worthy of further study.
Collapse
Affiliation(s)
- Yujiang Wu
- School of Materials and Energy School of Physical Science and Technolog Lanzhou Center for Theoretical Physics Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Zhizai Li
- School of Materials and Energy School of Physical Science and Technolog Lanzhou Center for Theoretical Physics Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Yutian Lei
- School of Materials and Energy School of Physical Science and Technolog Lanzhou Center for Theoretical Physics Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Jin
- School of Materials and Energy School of Physical Science and Technolog Lanzhou Center for Theoretical Physics Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
30
|
Huang S, Gao S, Zhang H, Bian C, Zhao Y, Gu X, Xu W. Multi-Functional Ethylene-vinyl Acetate Copolymer Flexible Composite Film Embedded with Indium Acetate-Passivated Perovskite Quantum Dots. Polymers (Basel) 2023; 15:3986. [PMID: 37836035 PMCID: PMC10575095 DOI: 10.3390/polym15193986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, all-inorganic cesium lead halide perovskite quantum dots have emerged as promising candidates for various optoelectronic applications, including sensors, light-emitting diodes, and solar cells, owing to their exceptional photoelectric properties. However, their commercial utilization has been limited by stability issues. In this study, we addressed this challenge by passivating the surface defects of CsPbBr3 quantum dots using indium acetate, a metal-organic compound. The resulting CsPbBr3 quantum dots exhibited not only high photoluminescence intensity, but also a remarkably narrow half-peak width of 19 nm. Furthermore, by embedding the CsPbBr3 quantum dots in ethylene-vinyl acetate, we achieved stretchability and significantly enhanced stability while preserving the original luminous intensity. The resulting composite film demonstrated the potential to improve the power conversion efficiency of crystalline silicon solar cells and enabled the creation of excellent white light-emitting diodes with coordinates of (0.33, 0.31). This co-passivation strategy, involving surface passivation and polymer packaging, provides a new idea for the practical application of CsPbBr3 quantum dots.
Collapse
Affiliation(s)
- Sheng Huang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China (Y.Z.)
| | | | | | | | | | - Xiuquan Gu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China (Y.Z.)
| | - Wenjie Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China (Y.Z.)
| |
Collapse
|
31
|
Kim JI, Zeng Q, Park S, Lee H, Park J, Kim T, Lee TW. Strategies to Extend the Lifetime of Perovskite Downconversion Films for Display Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209784. [PMID: 36525667 DOI: 10.1002/adma.202209784] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Metal halide perovskite nanocrystals (PeNCs) have outstanding luminescent properties that are suitable for displays that have high color purity and high absorption coefficient; so they are evaluated for application as light emitters for organic light-emitting diodes, light-converters for downconversion displays, and future near-eye augmented reality/virtual reality displays. However, PeNCs are chemically vulnerable to heat, light, and moisture, and these weaknesses must be overcome before devices that use PeNCs can be commercialized. This review examines strategies to overcome the low stability of PeNCs and thereby permit the fabrication of stable downconversion films, and summarizes downconversion-type display applications and future prospects. First, methods to increase the chemical stability of PeNCs are examined. Second, methods to encapsulate PeNC downconversion films to increase their lifetime are reviewed. Third, methods to increase the long-term compatibility of resin with PeNCs, and finally, how to secure stability using fillers added to the resin are summarized. Fourth, the method to manufacture downconversion films and the procedure to evaluate their reliability for commercialization is then described. Finally, the prospects of a downconversion system that exploits the properties of PeNCs and can be employed to fabricate fine pixels for high-resolution displays and for near-eye augmented reality/virtual reality devices are explored.
Collapse
Affiliation(s)
- Jae Il Kim
- Department of Materials Science and Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Qingsen Zeng
- Department of Materials Science and Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Sunghee Park
- School of Chemical and Biological Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- PEROLED Co. Ltd., 08826, Building 940, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Hyejin Lee
- Department of Materials Science and Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Jinwoo Park
- Department of Materials Science and Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Taejun Kim
- School of Chemical and Biological Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- PEROLED Co. Ltd., 08826, Building 940, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- Soft Foundry, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- Institute of Engineering Research, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- SN Display Co. Ltd., 08826, Building 33, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| |
Collapse
|
32
|
Qin F, Lu M, Lu P, Sun S, Bai X, Zhang Y. Luminescence and Degeneration Mechanism of Perovskite Light-Emitting Diodes and Strategies for Improving Device Performance. SMALL METHODS 2023; 7:e2300434. [PMID: 37434048 DOI: 10.1002/smtd.202300434] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/17/2023] [Indexed: 07/13/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) can be a promising technology for next-generation display and lighting applications due to their excellent optoelectronic properties. However, a systematical overview of luminescence and degradation mechanism of perovskite materials and PeLEDs is lacking. Therefore, it is crucial to fully understand these mechanisms and further improve device performances. In this work, the fundamental photophysical processes of perovskite materials, electroluminescence mechanism of PeLEDs including carrier kinetics and efficiency roll-off as well as device degradation mechanism are discussed in detail. In addition, the strategies to improve device performances are summarized, including optimization of photoluminescence quantum yield, charge injection and recombination, and light outcoupling efficiency. It is hoped that this work can provide guidance for future development of PeLEDs and ultimately realize industrial applications.
Collapse
Affiliation(s)
- Feisong Qin
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Po Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Siqi Sun
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
33
|
Zhou W, Li C, Wu T, Liu R, Ding Z, Zhang R, Yu Y, Han P, Lu R. Bright Green-Emitting All-Inorganic Terbium Halide Double Perovskite Nanocrystals for Low-Dose X-ray Imaging. J Phys Chem Lett 2023; 14:8577-8583. [PMID: 37725534 DOI: 10.1021/acs.jpclett.3c02070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Inorganic halide double perovskite (DP) nanocrystals (NCs) have attracted great attention because of their nontoxicity, mild reaction conditions, good stability, and excellent optical and optoelectronic properties. Herein, we prepare the inorganic terbium halide DP Cs2BTbCl6 (B = Na or Ag) NCs with bright green photoluminescence (PL) emission. The Na-Tb-based DP NCs exhibit better PL properties compared with the Ag-Tb-based DP NCs, which is due to Cs2NaTbCl6 NCs having a more localized charge carrier distribution on the [TbCl6]3- octahedron. The incorporation of Sb3+ dopant in Cs2NaTbCl6 NCs can construct a more efficient energy transfer process, resulting in a doubling of PL efficiency. Furthermore, Cs2NaTbCl6: Sb3+ NCs possess excellent X-ray scintillating performance with a low-dose detection limit of 140 nGyair/s, which is nearly 5 times more sensitive than the undoped NCs. The optimized NCs show great application prospects in X-ray imaging. This work helps deepen the understanding of the luminescence mechanism, excited state dynamics, and scintillation property in Tb-based DP NCs.
Collapse
Affiliation(s)
- Wei Zhou
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Cheng Li
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Tong Wu
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Runze Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Zhiling Ding
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Yang Yu
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Peigeng Han
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Ruifeng Lu
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
34
|
Wu X, Liang H, Li C, Zhou D, Liu R. A hyperthermia-enhanced nanocatalyst based on asymmetric Au@polypyrrole for synergistic cancer Fenton/photothermal therapy. RSC Adv 2023; 13:29061-29069. [PMID: 37799302 PMCID: PMC10548105 DOI: 10.1039/d3ra04779b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
The specific tumor microenvironment is a conducive breeding ground for malignant tumors, favoring their survival, rapid proliferation, and metastasis, which is also an inevitable obstacle to tumor treatment, particularly for catalytic therapy. To address this issue, a hyperthermia-enhanced nanocatalyst (AuP@MnO2) consisting of an asymmetric Au@polypyrrole core and a MnO2 shell is constructed for synergistic cancer Fenton/photothermal therapy. In an ultra-short reaction time (15 min), the innovative introduction of a new oxidizer, tetrachloroauric acid trihydrate, not only successfully initiates the oxidative polymerization of pyrrole monomer while reducing itself to cubic Au, but also accelerates the polymerization process by supplying protic acid. After MnO2 coating, AuP@MnO2 catalyzes the conversion of antioxidant GSH and excess H2O2 into GSSG and ˙OH through Mn2+/Mn4+ ion couples, leading to oxidative damage of tumor cells. More importantly, after 1064 nm laser irradiation, more extreme oxidative imbalance and cell death are demonstrated in this work under the combined effect of photothermal and catalytic therapy, with insignificant toxicity to normal cells. This work develops an efficient one-step synthesis method of asymmetric Au@polypyrrole and provides constructive insight into its oxidative stress-based antitumor treatment.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Radiation Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region Nanning 530000 China
| | - Huazhen Liang
- The First Tumor Department, Maoming People's Hospital Maoming 525000 China
| | - Chaoming Li
- The First Tumor Department, Maoming People's Hospital Maoming 525000 China
| | - Duanyang Zhou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University Shenzhen 518000 China
| | - Rui Liu
- Department of Joint Surgery and Sports Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region Nanning 530000 China
| |
Collapse
|
35
|
Xu W, Liu J, Dong B, Huang J, Shi H, Xue X, Liu M. Atomic-scale imaging of ytterbium ions in lead halide perovskites. SCIENCE ADVANCES 2023; 9:eadi7931. [PMID: 37656785 PMCID: PMC10854428 DOI: 10.1126/sciadv.adi7931] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Lanthanide-doped lead halide perovskites have demonstrated great potential for photoelectric applications. However, there is a long-standing controversy about the existence of lanthanide ions, e.g., whether the doping of Ln3+ is successful or not; the substituting sites of Ln3+ in lead halide perovskites are unclear. We directly identify the doped Yb3+ in CsPbCl3 perovskites by using the state-of-the-art transmission electron microscopy and three-dimensional atom probe tomography at atomic scale. Different from the previous assumptions and/or results, we evidence that Yb3+ simultaneously replace Pb2+ and occupy the lattice interstitial sites. Furthermore, we directly observe the cluster phenomenon of CsPbCl3 single crystal at near atomic scale. Density functional theory modeling further confirms and explains the mechanisms of our findings. Our findings thus provide an atomic-level understanding of the doping mechanism in perovskites and will stimulate a further thinking of the doping effect on the performance of perovskites.
Collapse
Affiliation(s)
- Wen Xu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, P. R. China
| | - Jiamu Liu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Bin Dong
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, P. R. China
| | - Jindou Huang
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, P. R. China
| | - Honglong Shi
- School of Science, Minzu University of China, Beijing, China
| | - Xiangxin Xue
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Mao Liu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
36
|
Yuan L, Zhou T, Jin F, Liang G, Liao Y, Zhao A, Yan W. Transmission Electron Microscopy Peeled Surface Defect of Perovskite Quantum Dots to Improve Crystal Structure. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6010. [PMID: 37687703 PMCID: PMC10489022 DOI: 10.3390/ma16176010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Transmission electron microscopy (TEM) is an excellent characterization method to analyze the size, morphology, crystalline state, and microstructure of perovskite quantum dots (PeQDs). Nevertheless, the electron beam of TEM as an illumination source provides high energy, which causes morphological variation (fusion and melting) and recession of the crystalline structure in low radiolysis tolerance specimens. Hence, a novel and facile strategy is proposed: electron beam peel [PbBr6]4- octahedron defects from the surface of QDs to optimize the crystal structure. TEM and high-angle annular dark-field scanning TEM (HAADF) tests indicate that the [PbBr6]4- octahedron would be peeled from the surface of QDs when QDs samples were irradiated under high-power irradiation, and then a clear image would be obtained. To avoid interference from a protective film of "carbon deposits" on the surface of the sample when using high resolution TEM, amorphous carbon film (15-20 nm) was deposited on the surface of QDs film and then characterized by TEM and HAADF. The detection consequences showed that the defection of PbBr2 on the surface of QDs will gradually disappear with the extension of radiation time, which further verifies the conjecture.
Collapse
Affiliation(s)
- Longfei Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (L.Y.); (T.Z.); (F.J.); (Y.L.); (A.Z.)
| | - Taixin Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (L.Y.); (T.Z.); (F.J.); (Y.L.); (A.Z.)
| | - Fengmin Jin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (L.Y.); (T.Z.); (F.J.); (Y.L.); (A.Z.)
| | - Guohong Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (L.Y.); (T.Z.); (F.J.); (Y.L.); (A.Z.)
| | - Yuxiang Liao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (L.Y.); (T.Z.); (F.J.); (Y.L.); (A.Z.)
| | - Aijuan Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (L.Y.); (T.Z.); (F.J.); (Y.L.); (A.Z.)
| | - Wenbo Yan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China;
| |
Collapse
|
37
|
Bian L, Cao F, Li L. Performance Improvement of Lead-Based Halide Perovskites through B-Site Ion-Doping Strategies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302700. [PMID: 37144436 DOI: 10.1002/smll.202302700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Owing to their excellent properties, lead halide perovskites have attracted extensive attention in the photoelectric field. Presently, the certified power conversion efficiency of perovskite solar cells has reached 25.7%, the specific detectivity of perovskite photodetectors has exceeded 1014 Jones, and the external quantum efficiency of perovskite-based light-emitting diode has exceeded 26%. However, their practical applications are limited by the inherent instability induced by the perovskite structure due to moisture, heat, and light. Therefore, one of the widely used strategies to address the issue is to replace partial ions of the perovskites with ions of smaller radii to shorten the bond length between halides and metal cations, improving the bond energy and enhancing the perovskite stability. Particularly, the B-site cation in the perovskite structure can affect the size of eight cubic octahedrons and their gap. However, the X-site can only affect four such voids. This review comprehensively summarizes the recent progress in B-site ion-doping strategies for lead halide perovskites and provides some perspectives for further performance improvements.
Collapse
Affiliation(s)
- Liukang Bian
- School of Physical Science and Technology, Center for Energy Conversion Materials and Physics (CECMP), Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, China
| | - Fengren Cao
- School of Physical Science and Technology, Center for Energy Conversion Materials and Physics (CECMP), Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, China
| | - Liang Li
- School of Physical Science and Technology, Center for Energy Conversion Materials and Physics (CECMP), Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, China
| |
Collapse
|
38
|
Meng L, Vu TV, Criscenti LJ, Ho TA, Qin Y, Fan H. Theoretical and Experimental Advances in High-Pressure Behaviors of Nanoparticles. Chem Rev 2023; 123:10206-10257. [PMID: 37523660 DOI: 10.1021/acs.chemrev.3c00169] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Using compressive mechanical forces, such as pressure, to induce crystallographic phase transitions and mesostructural changes while modulating material properties in nanoparticles (NPs) is a unique way to discover new phase behaviors, create novel nanostructures, and study emerging properties that are difficult to achieve under conventional conditions. In recent decades, NPs of a plethora of chemical compositions, sizes, shapes, surface ligands, and self-assembled mesostructures have been studied under pressure by in-situ scattering and/or spectroscopy techniques. As a result, the fundamental knowledge of pressure-structure-property relationships has been significantly improved, leading to a better understanding of the design guidelines for nanomaterial synthesis. In the present review, we discuss experimental progress in NP high-pressure research conducted primarily over roughly the past four years on semiconductor NPs, metal and metal oxide NPs, and perovskite NPs. We focus on the pressure-induced behaviors of NPs at both the atomic- and mesoscales, inorganic NP property changes upon compression, and the structural and property transitions of perovskite NPs under pressure. We further discuss in depth progress on molecular modeling, including simulations of ligand behavior, phase-change chalcogenides, layered transition metal dichalcogenides, boron nitride, and inorganic and hybrid organic-inorganic perovskites NPs. These models now provide both mechanistic explanations of experimental observations and predictive guidelines for future experimental design. We conclude with a summary and our insights on future directions for exploration of nanomaterial phase transition, coupling, growth, and nanoelectronic and photonic properties.
Collapse
Affiliation(s)
- Lingyao Meng
- Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Tuan V Vu
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Louise J Criscenti
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Tuan A Ho
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Yang Qin
- Department of Chemical & Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Mansfield, Connecticut 06269, United States
| | - Hongyou Fan
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
39
|
Ahmed MT, Islam S, Ahmed F. Exchange-correlation functional's impact on structural, electronic, and optical properties of (N 2H 5)PbI 3 perovskite. Heliyon 2023; 9:e17779. [PMID: 37449187 PMCID: PMC10336499 DOI: 10.1016/j.heliyon.2023.e17779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
One of the most popular multifunctional materials in optoelectronic research domains is organometallic perovskites. In this research, DFT calculation on Hydrazinium Lead Iodide (N2H5PbI3, HAPI) perovskite with orthorhombic phase has been studied with distinct exchange-correlation functionals. HAPI showed a slight structural deformation using the LDA CAPZ functionals, revealing the minimum total energy. A very slight change in Mulliken and Hirshfeld charges of each element was observed due to the variation of functionals. The GGA calculations resulted in a perfect orthorhombic phase of HAPI, whereas LDA functional showed slight deformation from the orthorhombic phase. The band gaps of 1.644, 1.633, 1.618, and 1.650 eV were obtained using GGA (PBE, PBEsol, PW91) and LDA (CAPZ) functionals, respectively. HAPI showed a high absorption coefficient of 104 cm-1 order with strong absorption of high energy visible wavelength. A maximum refractive index of 2.8 was observed in the visible wavelength region and a high optical conductivity of over 1015 s-1 suggests that HAPI can be a potential material for numerous optoelectronic research.
Collapse
Affiliation(s)
- Mohammad Tanvir Ahmed
- Department of Physics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Shariful Islam
- Department of Physics, Jahangirnagar University, Dhaka, Bangladesh
| | - Farid Ahmed
- Department of Physics, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
40
|
Nguyen HA, Dixon G, Dou FY, Gallagher S, Gibbs S, Ladd DM, Marino E, Ondry JC, Shanahan JP, Vasileiadou ES, Barlow S, Gamelin DR, Ginger DS, Jonas DM, Kanatzidis MG, Marder SR, Morton D, Murray CB, Owen JS, Talapin DV, Toney MF, Cossairt BM. Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solution. Chem Rev 2023. [PMID: 37311205 DOI: 10.1021/acs.chemrev.3c00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.
Collapse
Affiliation(s)
- Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Grant Dixon
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Shaun Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Stephen Gibbs
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dylan M Ladd
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - James P Shanahan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen Barlow
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David M Jonas
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Seth R Marder
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel Morton
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael F Toney
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
41
|
Zhou X, Chang Q, Xiang G, Jiang S, Li L, Tang X, Ling F, Wang Y, Li J, Wang Z, Zhang X. A and B sites dual substitution by Na + and Cu 2+ co-doping in CsPbBr 3 quantum dots to achieve bright and stable blue light emitting diodes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122773. [PMID: 37244025 DOI: 10.1016/j.saa.2023.122773] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/29/2023]
Abstract
Light-emitting perovskite quantum dots (PeQDs) are extensively investigated owing to their evident merits. However, it is still a challenge to adjust their intrinsic emissions and enhance their thermal stability to achieve full-color highly emissive QD-based light-emitting diodes (QLEDs), especially blue QLEDs. Herein, we demonstrate an effective strategy to fundamentally stabilize the crystal structure of CsPbBr3 QDs by codoping Na+ and Cu2+ ions, which are designed to substitute Cs+ (A sites) and Pb2+ (B sites), respectively. It is found out that the codoping metal ions have significantly improved the thermal stability and the optical properties of the QDs. 40% of the emission intensity can be remained after 8 thermal cycles (20-120 °C) for CsPbBr3: Na+/Cu2+ QDs, whilst less than 10% is maintained for undoped CsPbBr3 QDs. Accordingly, stable blue QLEDs are packed by CsPbBr3: Na+/Cu2+ QDs. Strong electroluminescence with the maximum luminance of 7161 cd m-2 and low turn-on voltage of 2.4 V are realized. The CIE coordinates are tuned from green (0.10, 0.74) to blue (0.17, 0.25) via Na+ and Cu2+ codoping. The maximum external quantum efficiency (EQEmax) is obtained as 4.52% for PeLEDs based on codoped QDs. The proposed metal ions A and B sites dual substitution strategy guarantees PeQDs as an extremely promising prospect in potential applications as high-resolution displays and high-quality lightings.
Collapse
Affiliation(s)
- Xianju Zhou
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China.
| | - Qianyang Chang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Guotao Xiang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Sha Jiang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Li Li
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Xiao Tang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Faling Ling
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Yongjie Wang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Jingfang Li
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Zhen Wang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China.
| | - Xuecong Zhang
- Jiangsu AMICC Optoelectronics Technology Co., Ltd., Changzhou 213164, PR China.
| |
Collapse
|
42
|
Liang S, Biesold GM, Zhuang M, Kang Z, Wagner B, Lin Z. Continuous manufacturing of highly stable lead halide perovskite nanocrystals via a dual-reactor strategy. NANOSCALE ADVANCES 2023; 5:2038-2044. [PMID: 36998667 PMCID: PMC10044306 DOI: 10.1039/d2na00744d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Lead halide perovskite nanocrystals possess incredible potential as next generation emitters due to their stellar set of optoelectronic properties. Unfortunately, their instability towards many ambient conditions and reliance on batch processing hinder their widespread utilities. Herein, we address both challenges by continuously synthesizing highly stable perovskite nanocrystals via integrating star-like block copolymer nanoreactors into a house-built flow reactor. Perovskite nanocrystals manufactured in this strategy display significantly enhanced colloidal, UV, and thermal stabilities over those synthesized with conventional ligands. Such scaling up of highly stable perovskite nanocrystals represents an important step towards their eventual use in many practical applications in optoelectronic materials and devices.
Collapse
Affiliation(s)
- Shuang Liang
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta 30332 GA USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology Atlanta 30332 Georgia USA
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta 30332 GA USA
| | - Mingyue Zhuang
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta 30332 GA USA
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Zhitao Kang
- Georgia Tech Research Institute, Georgia Institute of Technology Atlanta 30332 Georgia USA
| | - Brent Wagner
- Georgia Tech Research Institute, Georgia Institute of Technology Atlanta 30332 Georgia USA
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta 30332 GA USA
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| |
Collapse
|
43
|
Gao M, Li J, Qiu L, Xia X, Cheng X, Xu F, Xu G, Wei F, Yang J, Hu Q, Cen Y. Glucose and pH responsive fluorescence detection system based on simple synthesis of silicon-coated perovskite quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122212. [PMID: 36512959 DOI: 10.1016/j.saa.2022.122212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/20/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Perovskite quantum dots (PQDs) are extremely unstable in ambient air due to their inherent structural instability, which limits the wide application of PQDs. In this work, silicon-coated CsPbBr3 PQDs (CsPbBr3@SiO2) was synthesized via a simple method. The SiO2 coating effectively isolated PQDs from water and oxygen in the environment, which were the main elements that destroyed the structure stability of PQDs. The synthesized CsPbBr3@SiO2 can be stored in water for more than 2 months and posessed wonderful dispersibility in aqueous solution. The fluorescence intensity remained unchanged within 7 days and only decreased by 11.9 % within 2 months. We found that CsPbBr3@SiO2 was extremely sensitive to environmental pH, and the fluorescence intensity decreased with the reduction of pH. In addition, an excellent linear relationship with pH value in the range of 1.0 ∼ 5.0 was achieved. As we all known that glucose can be catalyzed by glucose oxidase to produce gluconic acid and hydrogen peroxide, in which a good deal of protons were produced and the pH was gradually lowered. Since CsPbBr3@SiO2 was stable to water and oxygen, and sensitive to ambient pH, we applied CsPbBr3@SiO2 to the detection of glucose. CsPbBr3@SiO2 showed fantastic selectivity and sensitivity to glucose, and the detection limit can even reach 18.5 μM. Furthermore, CsPbBr3@SiO2 was successfully applied to the detection of glucose in the human serum with satisfactory performance.
Collapse
Affiliation(s)
- Mingcong Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Jiawei Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Lei Qiu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Xinyi Xia
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Xia Cheng
- Department of Pharmacy, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China
| | - Feifei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Guanhong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Fangdi Wei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Jing Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Qin Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Key Laboratory of Toxicology, Ningde Normal University, Ningde, Fujian 352000, PR China.
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| |
Collapse
|
44
|
Efficiency Enhancement Strategies for Stable Bismuth-Based Perovskite and Its Bioimaging Applications. Int J Mol Sci 2023; 24:ijms24054711. [PMID: 36902142 PMCID: PMC10002936 DOI: 10.3390/ijms24054711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Lead-free perovskite is one of the ideal solutions for the toxicity and instability of lead halide perovskite quantum dots. As the most ideal lead-free perovskite at present, bismuth-based perovskite quantum dots still have the problem of a low photoluminescence quantum yield, and its biocompatibility also needs to be explored. In this paper, Ce3+ ions were successfully introduced into the Cs3Bi2Cl9 lattice using a modified antisolvent method. The photoluminescence quantum yield of Cs3Bi2Cl9:Ce is up to 22.12%, which is 71% higher than that of undoped Cs3Bi2Cl9. The two quantum dots show high water-soluble stability and good biocompatibility. Under the excitation of a 750 nm femtosecond laser, high-intensity up-conversion fluorescence images of human liver hepatocellular carcinoma cells cultured with the quantum dots were obtained, and the fluorescence of the two quantum dots was observed in the image of the nucleus. The fluorescence intensity of cells cultured with Cs3Bi2Cl9:Ce was 3.20 times of that of the control group and 4.54 times of the control group for the fluorescence intensity of the nucleus, respectively. This paper provides a new strategy to develop the biocompatibility and water stability of perovskite and expands the application of perovskite in the field.
Collapse
|
45
|
Wu X, Wang J, Tang C, Li L, Chen W, Wu Z, Zhu J, Li T, Song H, Bai X. Synergistic regulation effect of magnesium and acetate ions on structural rigidity for synthesizing an efficient and robust CsPbI 3 perovskite toward red light-emitting devices. Dalton Trans 2023; 52:2175-2181. [PMID: 36723095 DOI: 10.1039/d2dt03816a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The structure of CsPbI3 nanocrystals (NCs) with excellent photoelectric properties easily collapses, which hinders their application in light-emitting diodes (LEDs). Herein, we accomplished the synthesis of efficient and stable CsPbI3 NCs by regulating structural rigidity under the synergistic effect of Mg2+ and AcO- ions. The introduced AcO- and Mg2+ ions increase surface steric hindrance and defect formation energy, which enhances the structural rigidity of the perovskite. As a result, the CsPbI3 NCs display an outstanding photoluminescence quantum yield of 95.7%, in conjunction with reduced defect state density, balanced carrier injection, and distinguished conductivity. Remarkably, the modified CsPbI3 NCs exhibit excellent stability under ambient conditions for 180 days and can even survive when the temperature reaches 150 °C. Given their enhanced structural rigidity, LEDs made from these modified CsPbI3 NCs exhibit a maximum luminance and an EQE of 3281 cd m-2 and 13.2%, respectively, which are significantly improved compared with those of unmodified CsPbI3 NC LEDs.
Collapse
Affiliation(s)
- Xiufeng Wu
- College of Physics, Liaoning University, Shenyang, China
| | - Jiwei Wang
- College of Physics, Liaoning University, Shenyang, China
| | - Chengyuan Tang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Lifang Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Wenda Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Jinyang Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Tingting Li
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun, China.
| | - Hongwei Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| |
Collapse
|
46
|
Chen S, Yin H, Liu P, Wang Y, Zhao H. Stabilization and Performance Enhancement Strategies for Halide Perovskite Photocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203836. [PMID: 35900361 DOI: 10.1002/adma.202203836] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Solar-energy-powered photocatalytic fuel production and chemical synthesis are widely recognized as viable technological solutions for a sustainable energy future. However, the requirement of high-performance photocatalysts is a major bottleneck. Halide perovskites, a category of diversified semiconductor materials with suitable energy-band-enabled high-light-utilization efficiencies, exceptionally long charge-carrier-diffusion-length-facilitated charge transport, and readily tailorable compositional, structural, and morphological properties, have emerged as a new class of photocatalysts for efficient hydrogen evolution, CO2 reduction, and various organic synthesis reactions. Despite the noticeable progress, the development of high-performance halide perovskite photocatalysts (HPPs) is still hindered by several key challenges: the strong ionic nature and high hydrolysis tendency induce instability and an unsatisfactory activity due to the need for a coactive component to realize redox processes. Herein, the recently developed advanced strategies to enhance the stability and photocatalytic activity of HPPs are comprehensively reviewed. The widely applicable stability enhancement strategies are first articulated, and the activity improvement strategies for fuel production and chemical synthesis are then explored. Finally, the challenges and future perspectives associated with the application of HPPs in efficient production of fuels and value-added chemicals are presented, indicating the irreplaceable role of the HPPs in the field of photocatalysis.
Collapse
Affiliation(s)
- Shan Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230039, P. R. China
| | - Huajie Yin
- Institute of Solid State Physics, Hefei Institutes of Physical ScienceChinese Academy of Sciences, 230031, Hefei, P. R. China
| | - Porun Liu
- Centre for Catalysis and Clean Energy, Gold Cost Campus, Griffith University, Queensland, 4222, Australia
| | - Yun Wang
- Centre for Catalysis and Clean Energy, Gold Cost Campus, Griffith University, Queensland, 4222, Australia
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, Gold Cost Campus, Griffith University, Queensland, 4222, Australia
| |
Collapse
|
47
|
Wu N, Zhai Y, Chang P, Mei H, Wang Z, Zhang H, Zhu Q, Liang P, Wang L. Rubidium ions doping to improve the photoluminescence properties of Mn doped CsPbCl 3perovskite quantum dots. NANOTECHNOLOGY 2023; 34:145701. [PMID: 36260977 DOI: 10.1088/1361-6528/ac9b62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
All-inorganic cesium lead halide CsPbX3(X = Cl, Br, I) perovskite quantum dots (PQDs) have shown promising potential in current Mini/Micro-LED display applications due to their excellent photoluminescence performance. However, lead ions in PQDs are easily to leak owing to the unstable structure of PQDs, which hinders their commercial applications. Herein, we adopt Rb+ions co-doping strategy to regulate the doping characteristics of Mn2+ions in CsPbCl3PQDs. The synthesized CsPbCl3:(Rb+, Mn2+) PQDs possess enhanced photoluminescence quantum yield of 71.1% due to the reduction of intrinsic defect states and Mn-Mn or Mn-traps in co-doped PQDs. Moreover, the white light emission of CsPb(Cl/Br)3:(Rb+, Mn2+) PQDs is achieved by anion exchange reaction and the constructed WLED exhibits the CIE coordinate of (0.33, 0.29) and the correlated color temperature of 5497 K. Benefiting from the substitution strategy, these doped CsPbX3PQDs can be widely used as fluorescence conversion materials for the construction of Mini/Micro-LED.
Collapse
Affiliation(s)
- Na Wu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Yue Zhai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Peng Chang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Hang Mei
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Ziyan Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Hong Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Qiangqiang Zhu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Le Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
48
|
Nazir G, Lee SY, Lee JH, Rehman A, Lee JK, Seok SI, Park SJ. Stabilization of Perovskite Solar Cells: Recent Developments and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204380. [PMID: 36103603 DOI: 10.1002/adma.202204380] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Exceptional power conversion efficiency (PCE) of 25.7% in perovskite solar cells (PSCs) has been achieved, which is comparable with their traditional rivals (Si-based solar cells). However, commercialization-worthy efficiency and long-term stability remain a challenge. In this regard, there are increasing studies focusing on the interface engineering in PSC devices to overcome their poor technical readiness. Herein, the roles of electrode materials and interfaces in PSCs are discussed in terms of their PCEs and perovskite stability. All the current knowledge on the factors responsible for the rapid intrinsic and external degradation of PSCs is presented. Then, the roles of carbonaceous materials as substitutes for noble metals are focused on, along with the recent research progress in carbon-based PSCs. Furthermore, a sub-category of PSCs, that is, flexible PSCs, is considered as a type of exceptional power source due to their high power-to-weight ratios and figures of merit for next-generation wearable electronics. Last, the future perspectives and directions for research in PSCs are discussed, with an emphasis on their commercialization.
Collapse
Affiliation(s)
- Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
- Department of Mechanical Engineering and Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jong-Hoon Lee
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| | - Adeela Rehman
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| | - Jung-Kun Lee
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Sang Il Seok
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| |
Collapse
|
49
|
Mu Y, He Z, Wang K, Pi X, Zhou S. Recent progress and future prospects on halide perovskite nanocrystals for optoelectronics and beyond. iScience 2022; 25:105371. [PMID: 36345343 PMCID: PMC9636552 DOI: 10.1016/j.isci.2022.105371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As an emerging new class of semiconductor nanomaterials, halide perovskite (ABX3, X = Cl, Br, or I) nanocrystals (NCs) are attracting increasing attention owing to their great potential in optoelectronics and beyond. This field has experienced rapid breakthroughs over the past few years. In this comprehensive review, halide perovskite NCs that are either freestanding or embedded in a matrix (e.g., perovskites, metal-organic frameworks, glass) will be discussed. We will summarize recent progress on the synthesis and post-synthesis methods of halide perovskite NCs. Characterizations of halide perovskite NCs by using a variety of techniques will be present. Tremendous efforts to tailor the optical and electronic properties of halide perovskite NCs in terms of manipulating their size, surface, and component will be highlighted. Physical insights gained on the unique optical and charge-carrier transport properties will be provided. Importantly, the growing potential of halide perovskite NCs for advancing optoelectronic applications and beyond including light-emitting devices (LEDs), solar cells, scintillators and X-ray imaging, lasers, thin-film transistors (TFTs), artificial synapses, and light communication will be extensively discussed, along with prospecting their development in the future.
Collapse
Affiliation(s)
- Yuncheng Mu
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ziyu He
- Department of Material Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| | - Kun Wang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiaodong Pi
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Advanced Semiconductors and Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Shu Zhou
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
50
|
Wu G, Li H, Chen S, Liu S(F, Zhang Y, Wang D. In-Depth Insight into the Effect of Hydrophilic-Hydrophobic Group Designing in Amidinium Salts for Perovskite Precursor Solution on Their Photovoltaic Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3881. [PMID: 36364658 PMCID: PMC9656357 DOI: 10.3390/nano12213881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Amidinium salts have been utilized in perovskite precursor solutions as additives to improve the quality of perovskite films. The design of hydrophilic or hydrophobic groups in amidinium salts is of great importance to photovoltaic device performance and stability in particular. Here we report a contrast study of a guanidinium iodide (GUI) additive with a hydrophilic NH2 group, and a N,1-diiodoformamidine (DIFA) additive with a hydrophobic C-I group, to investigate the group effect. The addition of GUI or DIFA was beneficial to achieve high quality perovskite film and superior photovoltaic device performance. Compared with GUI, the addition of the DIFA in a perovskite precursor solution enhanced the crystal quality, reduced the defect density, and protected the water penetration into perovskite film. The perovskite solar cell (PSC) devices showed the best power conversion efficiency (PCE) of 21.19% for those modified with DIFA, as compared to 18.85% for the control, and 20.85% for those modified with GUI. In benefit to the hydrophobic C-I group, the DIFA-modified perovskite films and PSC exhibited the best light stability, thermal stability, and humidity stability in comparison to the control films and GUI-modified films. Overall, the introduction of a hydrophobic group in the amidinium salts additive was demonstrated to be an efficient approach to achieve high quality and stable perovskite film and PSC devices.
Collapse
Affiliation(s)
- Guohua Wu
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Hua Li
- Department of Engineering Science, Faculty of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Shuai Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Shengzhong (Frank) Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Yaohong Zhang
- School of Physics, Northwest University, Xi’an 710127, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi’an 710127, China
| | - Dapeng Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|