1
|
Pattnaik A, Poonia AK, Ghosh P. Preparation of bismuth ferric oxide nanoparticles for the microwave-induced photo-degradation of organic pollutants in greywater. ENVIRONMENTAL RESEARCH 2024; 262:119814. [PMID: 39155038 DOI: 10.1016/j.envres.2024.119814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
This work demonstrates a thorough investigation into the synthesis and characterization of bismuth ferric oxide (BFO) photocatalyst for microwave-induced photodegradation of organic pollutants in greywater. Microwave (MW) irradiation was executed to enhance the generation of reactive oxygen species, contributing to the catalytic effectiveness of the synthesized photocatalyst. Through an efficient ultrasound-assisted synthesis process, perovskite BFO nanoparticles with a rhombohedral crystal structure and a crystallite size of around 15 nm were successfully manufactured. Comprehensive characterization employing various analytical techniques including X-ray diffraction (XRD), Energy Dispersive X-ray Analysis (EDAX), Fourier Transform Infrared and Raman Spectroscopy, UV-Visible Diffuse Reflectance Spectroscopy (UVDRS), photoluminescence spectroscopy, Scanning Electron Microscopy (SEM), and Brunauer-Emmett-Teller (BET) studies provided insights into the structural, elemental, spectral, optical, morphological, and surface area properties of the nanoparticles. The UV-vis spectroscopy and Tauc's plot were employed to elucidate the band structure of the photocatalyst, providing insights into its essential electronic properties for catalytic applications. With a narrow optical band gap of 2.13 eV, the synthesized photocatalyst demonstrated suitability for optical applications and exhibited substantial catalytic activity in the microwave-induced photocatalytic degradation of greywater. Remarkably, it achieved a 93.5% reduction in total organic carbon (TOC) within 180 min under moderate 50-W illumination. Refining process parameters through optimization studies notably augmented degradation efficiency. Scavenging investigations validated the efficient mineralization of total organic carbon content. Kinetic assessments provided mechanistic insights into improved catalytic activity of BFO, which was attributed to a changed band structure that allows for fast charge transfer across interfacial layers. Moreover, the stability and reusability of the BFO photocatalyst were assessed over five cycles, highlighting its potential practical application as an efficient and reusable photocatalyst for greywater treatment. These findings underscore the promising prospects of BFO in addressing environmental challenges and advancing sustainable wastewater treatment technologies.
Collapse
Affiliation(s)
- Amruta Pattnaik
- Department of Chemical Engineering, NIT Raipur, Raipur, Chhattisgarh, India
| | - Anil Kumar Poonia
- Department of Chemical Engineering, NIT Raipur, Raipur, Chhattisgarh, India
| | - Prabir Ghosh
- Department of Chemical Engineering, NIT Raipur, Raipur, Chhattisgarh, India.
| |
Collapse
|
2
|
Weyl B, Goujon G, Raggio L, Demey E, Vinh J, d'Espinose de Lacaillerie JB, Krafft JM, Laroche B. Visible Light Excitation of Poly-(para-Phenylene Ethynylene) Enables Heterogeneous Photocatalytic Oxidations of Amines in Flow. Angew Chem Int Ed Engl 2024:e202419169. [PMID: 39436200 DOI: 10.1002/anie.202419169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 10/23/2024]
Abstract
Heterogeneous visible light photocatalysis is a compelling approach to address sustainability in synthetic photochemistry. However, the use of solid-state photocatalysts remains very unpopular in organic synthesis because of their limited accessibility and the black-box effect associated to the lack of rational between their molecular structure and their photochemical properties. Herein, we disclose the synthesis, characterization, photocatalytic properties and synthetic applications of a simple and readily available solid-state conjugated organic polymer, poly-(para-phenylene ethynylene) 1, which exhibits a strong oxidative power upon irradiation with visible light (E(1*/1⋅-)=+1.67 V vs SCE). Comparisons with structural analogues highlighted the superior photocatalytic activity of this linear semiconductor, on account of its fully conjugated architecture. The associated excited-state reactivity enabled the transformation of various amines into imines in batch and continuous flow reactors together with straightforward photocatalyst recycling. Mechanistic investigations revealed concomitant photoredox and energy transfer pathways, that led to the formation of the desired products. Ultimately, the inline generation of imines was exploited in telescoped three-component Ugi reactions (3CR) in batch and flow toward biologically relevant α-acylaminoamides.
Collapse
Affiliation(s)
- Basile Weyl
- Chimie Moléculaire, Macromoléculaire et Matériaux (C3M), UMR CNRS 7167, ESPCI Paris PSL, 10 rue Vauquelin, 75005, Paris, France
| | - Gabriel Goujon
- Chimie Moléculaire, Macromoléculaire et Matériaux (C3M), UMR CNRS 7167, ESPCI Paris PSL, 10 rue Vauquelin, 75005, Paris, France
| | - Lucas Raggio
- Chimie Moléculaire, Macromoléculaire et Matériaux (C3M), UMR CNRS 7167, ESPCI Paris PSL, 10 rue Vauquelin, 75005, Paris, France
| | - Emmanuelle Demey
- Spectrométrie de Masse Biologique et Protéomique (SMBP), UMR CNRS 8249, ESPCI Paris PSL, 10 rue Vauquelin, 75005, Paris, France
| | - Joelle Vinh
- Spectrométrie de Masse Biologique et Protéomique (SMBP), UMR CNRS 8249, ESPCI Paris PSL, 10 rue Vauquelin, 75005, Paris, France
| | | | - Jean-Marc Krafft
- Laboratoire de Réactivité de Surface (LRS), UMR CNRS 7197, Sorbonne Université, 4 place Jussieu, 75005, Paris, France
| | - Benjamin Laroche
- Chimie Moléculaire, Macromoléculaire et Matériaux (C3M), UMR CNRS 7167, ESPCI Paris PSL, 10 rue Vauquelin, 75005, Paris, France
| |
Collapse
|
3
|
Tee SY, Kong J, Koh JJ, Teng CP, Wang X, Wang X, Teo SL, Thitsartarn W, Han MY, Seh ZW. Structurally and surficially activated TiO 2 nanomaterials for photochemical reactions. NANOSCALE 2024; 16:18165-18212. [PMID: 39268929 DOI: 10.1039/d4nr02342k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Renewable fuels and environmental remediation are of paramount importance in today's world due to escalating concerns about climate change, pollution, and the finite nature of fossil fuels. Transitioning to sustainable energy sources and addressing environmental pollution has become an urgent necessity. Photocatalysis, particularly harnessing solar energy to drive chemical reactions for environmental remediation and clean fuel production, holds significant promise among emerging technologies. As a benchmark semiconductor in photocatalysis, TiO2 photocatalyst offers an excellent solution for environmental remediation and serves as a key tool in energy conversion and chemical synthesis. Despite its status as the default photocatalyst, TiO2 suffers from drawbacks such as a high recombination rate of charge carriers, low electrical conductivity, and limited absorption in the visible light spectrum. This review provides an in-depth exploration of the fundamental principles of photocatalytic reactions and presents recent advancements in the development of TiO2 photocatalysts. It specifically focuses on strategic approaches aimed at enhancing the performance of TiO2 photocatalysts, including improving visible light absorption for efficient solar energy harvesting, enhancing charge separation and transportation efficiency, and ensuring stability for robust photocatalysis. Additionally, the review delves into the application of photodegradation and photocatalysis, particularly in critical processes such as water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide generation, and alcohol oxidation. It also highlights the novel use of TiO2 in plastic polymerization and degradation, showcasing its potential for converting plastic waste into valuable chemicals and fuels, thereby offering sustainable waste management solutions. By addressing these essential areas, the review offers valuable insights into the potential of TiO2 photocatalysis for addressing pressing environmental and energy challenges. Furthermore, the review encompasses the application of TiO2 photochromic systems, expanding its scope to include other innovative research and applications. Finally, it addresses the underlying challenges and provides perspectives on the future development of TiO2 photocatalysts. Through addressing these issues and implementing innovative strategies, TiO2 photocatalysis can continue to evolve and play a pivotal role in sustainable energy and environmental applications.
Collapse
Affiliation(s)
- Si Yin Tee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Junhua Kong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Justin Junqiang Koh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Choon Peng Teng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Xizu Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Xiaobai Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Siew Lang Teo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Ming-Yong Han
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China.
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| |
Collapse
|
4
|
Kim D, You J, Lee DH, Hong H, Kim D, Park Y. Photocatalytic furan-to-pyrrole conversion. Science 2024; 386:99-105. [PMID: 39361748 DOI: 10.1126/science.adq6245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 10/05/2024]
Abstract
The identity of a heteroatom within an aromatic ring influences the chemical properties of that heterocyclic compound. Systematically evaluating the effect of a single atom, however, poses synthetic challenges, primarily as a result of thermodynamic mismatches in atomic exchange processes. We present a photocatalytic strategy that swaps an oxygen atom of furan with a nitrogen group, directly converting the furan into a pyrrole analog in a single intermolecular reaction. High compatibility was observed with various furan derivatives and nitrogen nucleophiles commonly used in drug discovery, and the late-stage functionalization furnished otherwise difficult-to-access pyrroles from naturally occurring furans of high molecular complexity. Mechanistic analysis suggested that polarity inversion through single electron transfer initiates the redox-neutral atom exchange processes at room temperature.
Collapse
Affiliation(s)
- Donghyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaehyun You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Da Hye Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hojin Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Yoonsu Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Yan C, Qian Y, Liao Z, Le Z, Fan Q, Zhu H, Xie Z. Recent progress of metal halide perovskite materials in heterogeneous photocatalytic organic reactions. Photochem Photobiol Sci 2024; 23:1393-1415. [PMID: 38850494 DOI: 10.1007/s43630-024-00599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Photocatalytic technology is widely regarded as an important way to utilize solar energy and achieve carbon neutrality, which has attracted considerable attentions in various fields over the past decades. Metal halide perovskites (MHPs) are recognized as "superstar" materials due to their exceptional photoelectric properties, readily accessible and tunable structure, which made them intensively studied in solar cells, light-emitting diodes, and solar energy conversion fields. Since 2018, increased attention has been focused on applying the MHPs as a heterogeneous visible light photocatalyst in catalyzing organic synthesis reactions. In this review, we present an overview of photocatalytic technology and principles of heterogeneous photocatalysis before delving into the structural characteristics, stability, and classifications of MHPs. We then focus on recent developments of MHPs in photocatalyzing various organic synthesis reactions, such as oxidation, cyclization, C-C coupling etc., based on their classifications and reported reaction types. Finally, we discuss the main limitations and prospects regarding the application of metal halide perovskites in organic synthesis.
Collapse
Affiliation(s)
- Chunpei Yan
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Yan Qian
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Zhaohong Liao
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Qiangwen Fan
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China.
| | - Haibo Zhu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
6
|
Jiang Q, Liu Z, Wang X, Ma H, Pang H. Enhanced performance of a Na 3.5Co 4[Bi 2Co 2W 19.75O 70(H 2O) 6]/porous graphitic carbon nitride heterojunction based photocatalyst realized by the addition of copper sulfide nanoparticles. Dalton Trans 2024; 53:9844-9851. [PMID: 38804874 DOI: 10.1039/d4dt01010h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Photocatalytic hydrogen (H2) evolution can effectively solve the global energy problem, in which the key factor is the synthesis of efficient photocatalytic materials. In this study, we successfully synthesized a novel photocatalyst, BiWCo/CuS/PGCN, by functionalizing porous graphitic carbon nitride (PGCN) with sandwich-type polyoxometalate Na3.5Co4[Bi2Co2W19.75O70(H2O)6]·39.5H2O (BiWCo) and introducing copper sulfide (CuS) nanoparticles as a cocatalyst. This approach was aimed at enhancing the built inner electric field between interfaces, resulting in a significant improvement in photocatalytic H2 evolution performance. This research adopts a step-by-step method to synthesize BiWCo/CuS/PGCN composites with p-n heterojunctions, which has high visible light absorption and a synergistic effect of multiple elements. PGCN with a high specific surface area contributes to the uniform distribution of active sites. In addition, the nano-CuS cocatalyst provides abundant active sites and more electron transfer pathways for photocatalysis. Therefore, the H2 production efficiency of BiWCo/CuS/PGCN is 6.3 times that of PGCN, 4.5 times that of BiWCo and 2.5 times that of BiWCo/PGCN under visible light. The H2 production rate of BiWCo/CuS/PGCN reaches 3477.58 μmol g-1 h-1. At the same time, the ternary photocatalyst shows high stability after 30 hours and 5 cycles. This work demonstrates that BiWCo/CuS/PGCN has good application prospects in H2 evolution, and provides a new strategy for the design of efficient ternary photocatalytic materials.
Collapse
Affiliation(s)
- Qiushuang Jiang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China.
| | - Zhuopeng Liu
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China.
| | - Xinming Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China.
| | - Huiyuan Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China.
| | - Haijun Pang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China.
| |
Collapse
|
7
|
Deckers C, Rehm TH. In situ Diazonium Salt Formation and Photochemical Aryl-Aryl Coupling in Continuous Flow Monitored by Inline NMR Spectroscopy. Chemistry 2024; 30:e202303692. [PMID: 38462439 DOI: 10.1002/chem.202303692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 03/12/2024]
Abstract
A novel class of diazonium salts is introduced for the photochemical aryl-aryl coupling to produce (substituted) biphenyls. As common diazonium tetrafluoroborate salts fail, soluble and safe aryl diazonium trifluoroacetates are applied. In this mild synthesis route no catalysts are required to generate an aryl-radical by irradiation with UV-A light (365 nm). This reactive species undergoes direct C-H arylation at an arene, forming the product in reasonable reaction times. With the implementation of a continuous flow setup in a capillary photoreactor 13 different biphenyl derivatives are successfully synthesized. By integrating an inline 19F-NMR benchtop spectrometer, samples are reliably quantified as the fluorine-substituents act as a probe. Here, real-time NMR spectroscopy is a perfect tool to monitor the continuously operated system, which produces fine chemicals of industrial relevance even in a multigram scale.
Collapse
Affiliation(s)
- Christoph Deckers
- Division Chemistry, Sustainable Chemical Syntheses Group, Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Strasse 18-20, 55129, Mainz, Germany
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Thomas H Rehm
- Division Chemistry, Sustainable Chemical Syntheses Group, Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Strasse 18-20, 55129, Mainz, Germany
| |
Collapse
|
8
|
Debruyne M, Van Der Voort P, Van Speybroeck V, Stevens CV. The Application of Porous Organic Polymers as Metal Free Photocatalysts in Organic Synthesis. Chemistry 2024; 30:e202400311. [PMID: 38499471 DOI: 10.1002/chem.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Concerns about increasing greenhouse gas emissions and their effect on our environment highlight the urgent need for new sustainable technologies. Visible light photocatalysis allows the clean and selective generation of reactive intermediates under mild conditions. The more widespread adoption of the current generation of photocatalysts, particularly those using precious metals, is hampered by drawbacks such as their cost, toxicity, difficult separation, and limited recyclability. This is driving the search for alternatives, such as porous organic polymers (POPs). This new class of materials is made entirely from organic building blocks, can possess high surface area and stability, and has a controllable composition and functionality. This review focuses on the application of POPs as photocatalysts in organic synthesis. For each reaction type, a representative material is discussed, with special attention to the mechanism of the reaction. Additionally, an overview is given, comparing POPs with other classes of photocatalysts, and critical conclusions and future perspectives are provided on this important field.
Collapse
Affiliation(s)
- Maarten Debruyne
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pascal Van Der Voort
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Veronique Van Speybroeck
- Department of Applied Physics, Ghent University, Technologiepark Gent, 46, 9052, Zwijnaarde, Belgium
| | - Christian V Stevens
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
9
|
Wu J, Liu Y, Kozlowski MC. Visible-light TiO 2-catalyzed synthesis of dihydrobenzofurans by oxidative [3 + 2] annulation of phenols with alkenyl phenols. Chem Sci 2024; 15:7150-7159. [PMID: 38756810 PMCID: PMC11095367 DOI: 10.1039/d4sc00723a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/25/2024] [Indexed: 05/18/2024] Open
Abstract
An oxidative strategy for the preparation of dihydrobenzofurans via heterogeneous photocatalysis is reported. This method leverages the surface interaction between the alkenyl phenol and the TiO2 solid surface, which enables direct activation by visible light without the need for pre-functionalization or surface modification. The resulting alkenyl phenoxyl radical is proposed to be selectively captured by a neutral phenol nucleophile, rendering β-5' coupling with excellent chemo- and regio-selectivity. The reaction proceeds under benign conditions, using an inexpensive, nontoxic, and recyclable photocatalyst under visible light irradiation with air as the terminal oxidant at room temperature.
Collapse
Affiliation(s)
- Jingze Wu
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Yaning Liu
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Marisa C Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| |
Collapse
|
10
|
Laporte AAH, Masson TM, Zondag SDA, Noël T. Multiphasic Continuous-Flow Reactors for Handling Gaseous Reagents in Organic Synthesis: Enhancing Efficiency and Safety in Chemical Processes. Angew Chem Int Ed Engl 2024; 63:e202316108. [PMID: 38095968 DOI: 10.1002/anie.202316108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 12/29/2023]
Abstract
The use of reactive gaseous reagents for the production of active pharmaceutical ingredients (APIs) remains a scientific challenge due to safety and efficiency limitations. The implementation of continuous-flow reactors has resulted in rapid development of gas-handling technology because of several advantages such as increased interfacial area, improved mass- and heat transfer, and seamless scale-up. This technology enables shorter and more atom-economic synthesis routes for the production of pharmaceutical compounds. Herein, we provide an overview of literature from 2016 onwards in the development of gas-handling continuous-flow technology as well as the use of gases in functionalization of APIs.
Collapse
Affiliation(s)
- Annechien A H Laporte
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Tom M Masson
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D A Zondag
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Guan Y, Wen H, Cui K, Wang Q, Gao W, Cai Y, Cheng Z, Pei Q, Li Z, Cao H, He T, Guo J, Chen P. Light-driven ammonia synthesis under mild conditions using lithium hydride. Nat Chem 2024; 16:373-379. [PMID: 38228852 DOI: 10.1038/s41557-023-01395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/13/2023] [Indexed: 01/18/2024]
Abstract
Photon-driven chemical processes are usually mediated by oxides, nitrides and sulfides whose photo-conversion efficiency is limited by charge carrier recombination. Here we show that lithium hydride undergoes photolysis upon ultraviolet illumination to yield long-lived photon-generated electrons residing in hydrogen vacancies, known as F centres. We demonstrate that photon-driven dehydrogenation and dark rehydrogenation over lithium hydride can be fulfilled reversibly at room temperature, which is about 600 K lower than the corresponding thermal process. As light-driven F centre generation could provide an alternative approach to charge carrier separation to favour chemical transformations that are kinetically or thermodynamically challenging, we show that light-activated lithium hydride cleaves the N≡N triple bond to form a N-H bond under mild conditions. Co-feeding a N2/H2 mixture with low H2 partial pressure leads to photocatalytic ammonia formation at near ambient conditions. This work provides insights into the development of advanced materials and processes for light harvesting and conversion.
Collapse
Affiliation(s)
- Yeqin Guan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Wen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Kaixun Cui
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qianru Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Wenbo Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yongli Cai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Zibo Cheng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qijun Pei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Zhao Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hujun Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Teng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jianping Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Ping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Catalysis, Dalian, China.
| |
Collapse
|
12
|
Schuurmans JHA, Masson TM, Zondag SDA, Buskens P, Noël T. Solar-Driven Continuous CO 2 Reduction to CO and CH 4 using Heterogeneous Photothermal Catalysts: Recent Progress and Remaining Challenges. CHEMSUSCHEM 2024; 17:e202301405. [PMID: 38033222 DOI: 10.1002/cssc.202301405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
The urgent need to reduce the carbon dioxide level in the atmosphere and keep the effects of climate change manageable has brought the concept of carbon capture and utilization to the forefront of scientific research. Amongst the promising pathways for this conversion, sunlight-powered photothermal processes, synergistically using both thermal and non-thermal effects of light, have gained significant attention. Research in this field focuses both on the development of catalysts and continuous-flow photoreactors, which offer significant advantages over batch reactors, particularly for scale-up. Here, we focus on sunlight-driven photothermal conversion of CO2 to chemical feedstock CO and CH4 as synthetic fuel. This review provides an overview of the recent progress in the development of photothermal catalysts and continuous-flow photoreactors and outlines the remaining challenges in these areas. Furthermore, it provides insight in additional components required to complete photothermal reaction systems for continuous production (e. g., solar concentrators, sensors and artificial light sources). In addition, our review emphasizes the necessity of integrated collaboration between different research areas, like chemistry, material science, chemical engineering, and optics, to establish optimized systems and reach the full potential of this technology.
Collapse
Affiliation(s)
- Jasper H A Schuurmans
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Tom M Masson
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D A Zondag
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Pascal Buskens
- The Netherlands Organization for Applied Scientific Research (TNO), High Tech Campus 25, 5656 AE, Eindhoven, The Netherlands
- Design and Synthesis of Inorganic Materials (DESINe), Institute for Materials Research, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Sen B, Paul S, Krukowski P, Kundu D, Das S, Banerjee P, Mal Ecka M, Abbas SJ, Ali SI. CuAs 2O 4: Design, Hydrothermal Synthesis, Crystal Structure, Photocatalytic Dye Degradation, Hydrogen Evolution Reaction, Knoevenagel Condensation Reaction, and Thermal Studies. Inorg Chem 2024; 63:2919-2933. [PMID: 38297514 DOI: 10.1021/acs.inorgchem.3c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
CuAs2O4 has been explored as a heterogeneous catalyst in the fields of photocatalysis, electrocatalysis, and solvent-free organic transformation reactions. The homogeneity has been successfully attained for the first time by designing a pH-assisted hydrothermal synthesis technique. Single-crystal X-ray diffraction studies reveal that no phase transition has been observed by lowering the temperature up to 103 K with no existence of satellite reflections. The crystal structure exhibits tetragonal symmetry with space group P42/mbc and consists of [CuO6] octahedra and [AsO3E] tetrahedra (E represents the stereochemically active lone pair). Structural investigation shows a cylindrical void inside the structure, which could lead to interesting physical and chemical properties. The photocatalytic dye degradation efficiency with methylene blue (MB) showed ∼100% degradation, though the degradation efficiency increased by 2-fold with the addition of 6% H2O2. The reusability of the catalyst up to the 10th cycle with ∼35% MB dye degradation has been established. It can exhibit HER activity with a low overpotential of 165 mV with respect to RHE to attain the current density of j = 10 mA cm-2. SEM and TEM revealed rod-shaped particles, which supported the large number of catalytic active sites. The structural consistency of the catalyst after photodegradation and HER studies is confirmed by the PXRD pattern. XPS confirms the oxidation state of Cu and As in the compound. The catalytic activity toward the Knoevenagel condensation reaction at moderate temperature under solvent-free condition is also studied. TG-DTA shows an endothermic minimum (Tmin) at 436 °C due to the mass loss of As2O3.
Collapse
Affiliation(s)
- Bibaswan Sen
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Sayantani Paul
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Pawel Krukowski
- Department of Solid State Physics, University of Lodz, Lodz 90-236, Poland
| | - Debojyoti Kundu
- CSIR- Central Mechanical Engineering Research Institute (CMERI), Durgapur, West Bengal 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sangita Das
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Priyabrata Banerjee
- CSIR- Central Mechanical Engineering Research Institute (CMERI), Durgapur, West Bengal 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Magdalena Mal Ecka
- Department of Physical Chemistry, University of Lodz, Lodz 90-236, Poland
| | - Sk Jahir Abbas
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| |
Collapse
|
14
|
Gyawali S, Tirumala RTA, Loh H, Andiappan M, Bristow AD. Photocarrier Recombination Dynamics in Highly Scattering Cu 2O Nanocatalyst Clusters. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:2003-2011. [PMID: 38352855 PMCID: PMC10860136 DOI: 10.1021/acs.jpcc.3c06941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
Inversion analysis of transient absorption data to capture the photoexcited charge carrier population rate dynamics is a powerful technique for extracting realistic lifetimes and identifying recombination pathways. However, for highly scattering samples such as Cu2O nanoparticles (NPs) with associated dielectric Mie scattering, the scattering leads to an inaccurate measure of the excited photocarrier. This work studies methods to correct for the scattering to generalize the use of inversion analysis and provide secondary information about the nature of the scattering NPs. Scattering profiles of semitransparent disks containing Cu2O NPs with different shapes and sizes are measured to demonstrate that the inclusion of scattering in analysis reduces the photoexcited carrier density by 1 order of magnitude. It is found that the photocarrier density response is affected by shape rather than size. A Fourier transform of the scattering profiles produces a distribution of length scales within the sample characteristic of the mean separation of scatterers. This analysis reveals that NPs are forming clusters. Links are made between the scattering and carrier dynamics.
Collapse
Affiliation(s)
- Sunil Gyawali
- Department
of Physics and Astronomy, West Virginia
University, Morgantown, West Virginia 26506, United States
| | - Ravi Teja A. Tirumala
- School
of Chemical Engineering, Oklahoma State
University, Stillwater, Oklahoma 74078, United States
| | - Harrison Loh
- Department
of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Marimuthu Andiappan
- School
of Chemical Engineering, Oklahoma State
University, Stillwater, Oklahoma 74078, United States
| | - Alan D. Bristow
- Department
of Physics and Astronomy, West Virginia
University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
15
|
Dabbous A, Bauer P, Marcucci C, Périé S, Gahlot S, Lombard C, Caillat S, Ravanat JL, Mouesca JM, Kodjikian S, Barbara A, Dubois F, Maurel V. Hybrid CdSe/ZnS Quantum Dot-Gold Nanoparticle Composites Assembled by Click Chemistry: Toward Affordable and Efficient Redox Photocatalysts Working with Visible Light. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56167-56180. [PMID: 38058110 DOI: 10.1021/acsami.3c12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
A new modular, easy-to-synthesize photocatalyst was prepared by assembling colloidal CdSe/ZnS quantum dots (QD) and gold nanoparticles (AuNP) via their ligands thanks to copper-catalyzed azide to alkyne cycloaddition (CuAAC) click chemistry. The resulting composite (QD-AuNP) photocatalyst was tested with a benchmark photoredox system previously reported by our group, for which QD alone acted as a photocatalyst but with a modest quantum yield (QY = 0.06%) and turnover number (TON = 350 in 3 h) due to poor charge separation. After optimization, the QD-AuNP composites exhibited much improved photocatalytic performances: up to five times higher TON (2600 in 3 h) and up to 24 times faster reaction in the first 10 min of visible irradiation. Such an improvement is attributed to an efficient electron transfer from QD to AuNP in the photoexcited QD-AuNP composites, which ensures a much better charge separation than that in QD alone. This was confirmed by studying both (i) the quenching of the QD photoluminescence during the synthesis of the QD-AuNP composites and (ii) the blue shift of the AuNP plasmon absorption band due to the accumulation of up to 7400 electrons per AuNP in QD-AuNP composites under visible light irradiation in the presence of electron donors.
Collapse
Affiliation(s)
- Ali Dabbous
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | - Pierre Bauer
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Coralie Marcucci
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Sandy Périé
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Sapna Gahlot
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Christian Lombard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | - Sylvain Caillat
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | | | - Stéphanie Kodjikian
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Aude Barbara
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Fabien Dubois
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Vincent Maurel
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| |
Collapse
|
16
|
Roda D, Trzciński K, Łapiński M, Gazda M, Sawczak M, Nowak AP, Szkoda M. The new method of ZnIn 2S 4 synthesis on the titania nanotubes substrate with enhanced stability and photoelectrochemical performance. Sci Rep 2023; 13:21263. [PMID: 38040750 PMCID: PMC10692104 DOI: 10.1038/s41598-023-48309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023] Open
Abstract
In this work, ZnIn2S4 layers were obtained on fluorine doped tin oxide (FTO) glass and TiO2 nanotubes (TiO2NT) using a hydrothermal process as photoanodes for photoelectrochemical (PEC) water splitting. Then, samples were annealed and the effect of the annealing temperature was investigated. Optimization of the deposition process and annealing of ZnIn2S4 layers made it possible to obtain an FTO-based material generating a photocurrent of 1.2 mA cm-2 at 1.62 V vs. RHE in a neutral medium. In contrast, the highest photocurrent in the neutral electrolyte obtained for the TiO2NT-based photoanode reached 0.5 mA cm-2 at 1.62 V vs. RHE. In addition, the use of a strongly acidic electrolyte allowed the generated photocurrent by the TiO2NT-based photoanode to increase to 3.02 mA cm-2 at 0.31 V vs. RHE. Despite a weaker photoresponse in neutral electrolyte than the optimized FTO-based photoanode, the use of TiO2NT as a substrate allowed for a significant increase in the photoanode's operating time. After 2 h of illumination, the photocurrent response of the TiO2NT-based photoanode was 0.21 mA cm-2, which was 42% of the initial value. In contrast, the FTO-based photoanode after the same time generated a photocurrent of 0.02 mA cm-2 which was only 1% of the initial value. The results indicated that the use of TiO2 nanotubes as a substrate for ZnIn2S4 deposition increases the photoanode's long-term stability in photoelectrochemical water splitting. The proposed charge transfer mechanism suggested that the heterojunction between ZnIn2S4 and TiO2 played an important role in improving the stability of the material by supporting charge separation.
Collapse
Affiliation(s)
- D Roda
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - K Trzciński
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - M Łapiński
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - M Gazda
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - M Sawczak
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid Flow Machinery, Fiszera 14, 80-231, Gdańsk, Poland
| | - A P Nowak
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - M Szkoda
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
17
|
Kader DA. Green approach for the fabrication of a ternary nanocatalyst (Ag-ZnONPs@Cy) for visible light-induced photocatalytic reduction of nitroarenes to aminoarenes. RSC Adv 2023; 13:34904-34915. [PMID: 38035233 PMCID: PMC10687522 DOI: 10.1039/d3ra06448d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
In recent times, the incorporation of metal oxide nanoparticles with organic dyes has piqued the interest of numerous researchers due to their diverse applications under visible light instead of UV radiation. This investigation employed a three-step methodology to fabricate cyanidin-sensitized silver-doped zinc oxide nanoparticles (Ag-ZnO@Cy). Initially, cyanidin dye was extracted from fresh black mulberry fruit, followed by the eco-friendly synthesis of Ag-ZnO nanoparticles (Ag-ZnONPs). The successful integration of the prepared cyanidin dye with Ag-ZnONPs was achieved through a straightforward, environmentally benign, and cost-efficient procedure. The resultant ternary composite underwent comprehensive characterization and confirmation utilizing various techniques, such as SEM, FT-IR, EDX, DRS, elemental mapping, and XRD. The experimental results for Ag-ZnONPs@Cy demonstrated that the nanocrystalline wurtzite exhibited spherical shapes with an average crystal size of 27.42 nm. Moreover, the photocatalytic activity of the synthesized Ag-ZnONPs@Cy was meticulously investigated under blue LED light irradiation. This inquiry encompassed examinations of catalyst amount, regeneration, stability, reusability, and the influence of light source on the hydrogenation of nitroarenes to the corresponding aminoarenes. The findings shed light on the potential of this composite for diverse photocatalytic applications.
Collapse
Affiliation(s)
- Dana A Kader
- Department of Chemistry, College of Education, University of Sulaimani Old Campus, Kurdistan Region 46001 Iraq
- Pharmacy Department, Komar University of Science and Technology Kurdistan Region Sulaimani 46001 Iraq
| |
Collapse
|
18
|
Kumari N, Harsh TK, Bhattacharya AS, Gaurav K, Verma R, Samdarshi SK. Enhanced photocatalytic activity of ceria-doped zinc oxide under UV illumination prepared via chemical precipitation. LUMINESCENCE 2023; 38:1282-1286. [PMID: 36255132 DOI: 10.1002/bio.4396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/19/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022]
Abstract
Transition metal oxide has emerged as one of the most potential candidates for environment remediation by utilizing solar energy through photocatalysis. This study compares the optical characteristics of zinc oxide (ZnO) and ceria-doped zinc oxide (CeZnO) nanoparticles synthesized through a facile chemical precipitation method without using any assistant catalyst. The present work investigates the consequences of ceria (cerium dioxide, CeO2 ) intrusion on the photocatalytic activity of ZnO nanoparticles using methylene blue (MB) as a probe pollutant. The CeZnO showed an increase in photoactivity when compared to ZnO nanoparticles for degradation of MB in an aqueous solution under ultraviolet (UV) irradiance. The resulting heterojunction between ZnO and that of ceria enhances the charge separation efficiency showing a strong correlation between ZnO and CeO2 heterojunction on the charge transfer mechanism across the interface.
Collapse
Affiliation(s)
- Neha Kumari
- Centre for Excellence in Green and Efficient Energy Technology (CoE GEET), Central University of Jharkhand, Ranchi, Jharkhand, India
- Department of Energy Engineering, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Tripurari Kumar Harsh
- Department of Energy Engineering, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Arnab S Bhattacharya
- Centre for Excellence in Green and Efficient Energy Technology (CoE GEET), Central University of Jharkhand, Ranchi, Jharkhand, India
- Department of Nanoscience and Technology, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Kumar Gaurav
- Centre for Excellence in Green and Efficient Energy Technology (CoE GEET), Central University of Jharkhand, Ranchi, Jharkhand, India
- Department of Energy Engineering, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Ranjana Verma
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sanjoy K Samdarshi
- Centre for Excellence in Green and Efficient Energy Technology (CoE GEET), Central University of Jharkhand, Ranchi, Jharkhand, India
- Department of Energy Engineering, Central University of Jharkhand, Ranchi, Jharkhand, India
| |
Collapse
|
19
|
Wu J, Kozlowski MC. Visible-Light-Induced Oxidative Coupling of Phenols and Alkenylphenols with a Recyclable, Solid Photocatalyst. Org Lett 2023; 25:907-911. [PMID: 36744826 PMCID: PMC10015407 DOI: 10.1021/acs.orglett.2c04122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A photocatalytic method for phenol and alkenylphenol oxidative coupling is reported using an inexpensive heterogeneous titanium dioxide photocatalyst with air and visible light. During the coupling process, the Ti-substrate complex is activated under visible light through a ligand to metal charge transfer effect, and the diphenol adduct is proposed to form through a radical cation. The heterogeneous TiO2 catalyst remains stable throughout the reaction and can be easily removed and reused multiple times.
Collapse
Affiliation(s)
- Jingze Wu
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Marisa C. Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
20
|
Mubarokah ZR, Mahmed N, Norizan MN, Mohamad IS, Abdullah MMAB, Błoch K, Nabiałek M, Baltatu MS, Sandu AV, Vizureanu P. Near-Infrared (NIR) Silver Sulfide (Ag 2S) Semiconductor Photocatalyst Film for Degradation of Methylene Blue Solution. MATERIALS (BASEL, SWITZERLAND) 2023; 16:437. [PMID: 36614775 PMCID: PMC9822198 DOI: 10.3390/ma16010437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
A silver sulfide (Ag2S) semiconductor photocatalyst film has been successfully synthesized using a solution casting method. To produce the photocatalyst films, two types of Ag2S powder were used: a commercialized and synthesized powder. For the commercialized powder (CF/comAg2S), the Ag2S underwent a rarefaction process to reduce its crystallite size from 52 nm to 10 nm, followed by incorporation into microcrystalline cellulose using a solution casting method under the presence of an alkaline/urea solution. A similar process was applied to the synthesized Ag2S powder (CF/syntAg2S), resulting from the co-precipitation process of silver nitrate (AgNO3) and thiourea. The prepared photocatalyst films and their photocatalytic efficiency were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-visible spectroscopy (UV-Vis). The results showed that the incorporation of the Ag2S powder into the cellulose films could reduce the peak intensity of the oxygen-containing functional group, which indicated the formation of a composite film. The study of the crystal structure confirmed that all of the as-prepared samples featured a monoclinic acanthite Ag2S structure with space group P21/C. It was found that the degradation rate of the methylene blue dye reached 100% within 2 h under sunlight exposure when using CF/comAg2S and 98.6% for the CF/syntAg2S photocatalyst film, and only 48.1% for the bare Ag2S powder. For the non-exposure sunlight samples, the degradation rate of only 33-35% indicated the importance of the semiconductor near-infrared (NIR) Ag2S photocatalyst used.
Collapse
Affiliation(s)
- Zahrah Ramadlan Mubarokah
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 01000, Malaysia
| | - Norsuria Mahmed
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 01000, Malaysia
- Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 01000, Malaysia
| | - Mohd Natashah Norizan
- Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 01000, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Ili Salwani Mohamad
- Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 01000, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Mohd Mustafa Al Bakri Abdullah
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 01000, Malaysia
- Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 01000, Malaysia
| | - Katarzyna Błoch
- Faculty of Mechanical Engineering and Computer Science, Częstochowa University of Technology, 42-201 Częstochowa, Poland
| | - Marcin Nabiałek
- Faculty of Mechanical Engineering and Computer Science, Częstochowa University of Technology, 42-201 Częstochowa, Poland
| | - Madalina Simona Baltatu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania
| | - Andrei Victor Sandu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania
- National Institute for Research and Development in Environmental Protection INCDPM, Splaiul Independentei 294, 060031 Bucharest, Romania
- Romanian Inventors Forum, Str. Sf. P. Movila 3, 700089 Iasi, Romania
| | - Petrica Vizureanu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania
- Technical Sciences Academy of Romania, Dacia Blvd 26, 030167 Bucharest, Romania
| |
Collapse
|
21
|
Wang R, Gao L, Zhou C, Zhang X. Haloperfluoroalkylation of Unactivated Terminal Alkenes over Phenylphenothiazine-Based Porous Organic Polymers. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202211013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
22
|
Rapid photocatalytic mineralization of glyphosate by Pd@BiVO4/BiOBr nanosheets: Mechanistic studies and degradation pathways. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
23
|
Sustainable organic synthesis promoted on titanium dioxide using coordinated water and renewable energies/resources. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Okunaka S, Hitomi Y, Tokudome H. Boosting the visible-light-induced toluene oxidation via synergistic effect between nanoparticulate Pd/BiVO4 photocatalyst and a cyclic nitroxyl redox mediator. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
25
|
Hashimoto Y, Horiguchi G, Kamiya H, Okada Y. Design of a Photocatalytic [2+2] Cycloaddition Reaction Using Redox‐Tag Strategy. Chemistry 2022; 28:e202202018. [DOI: 10.1002/chem.202202018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yasuhiro Hashimoto
- Department of Chemical Engineering Tokyo University of Agriculture and Technology 2-24-16 Naka-cho 184-8588 Koganei Tokyo Japan
| | - Genki Horiguchi
- Energy Catalyst Technology Group Energy Process Research Institute (EPRI) National Institute of Advanced Industrial Science and Technology (AIST) 16-1 Onogawa 305-8559 Tsukuba Ibaraki Japan
| | - Hidehiro Kamiya
- Department of Chemical Engineering Tokyo University of Agriculture and Technology 2-24-16 Naka-cho 184-8588 Koganei Tokyo Japan
| | - Yohei Okada
- Department of Applied Biological Science Tokyo University of Agriculture and Technology 3-5-8 Saiwai-cho 183-8509 Fuchu Tokyo Japan
| |
Collapse
|
26
|
Prathibha E, Rangasamy R, Sridhar A, Lakshmi K. Rose Bengal Anchored Silica-Magnetite Nanocomposite as Photosensitizer for Visible- Light-Mediated Oxidation of Thioethers. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
27
|
Zhang T, Qiao C, Xia L, Yuan T, Wei Q, Yang Q, Chen S. Triphenylamine-based cadmium coordination polymer as a heterogeneous photocatalyst for visible-light-driven α-alkylation of aldehydes. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Zhao S, Song S, You Y, Zhang Y, Luo W, Han K, Ding T, Tian Y, Li X. Tuning redox ability of Zn3In2S6 with surfactant modification for highly efficient and selective photocatalytic C-C coupling. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Zhou C, Wang R, Gao L, Huang X, Zhang X. Unveiling the Synthetic Potential of 1,3,5-Tri(10 H-phenothiazin-10-yl)benzene-Based Optoelectronic Material: A Metal-Free and Recyclable Photocatalyst for Sequential Functionalization of C(sp 2)-H Bonds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30962-30968. [PMID: 35759530 DOI: 10.1021/acsami.2c08766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
1,3,5-Tri(10H-phenothiazin-10-yl)benzene (3PTZ) is endowed with unique redox and photoresponsive characteristics and has been utilized as a p-type redox center for organic battery cathode material and a room-temperature phosphorescence (RTP) material, respectively. Conversely, its exploration in other research fields, particularly organic synthesis, remains unknown. Here, we demonstrate that 3PTZ-POP synthesized via cross-linking of 3PTZ is capable of harvesting visible-light photons and selectively converting solar energy to chemical energy. Specifically, 3PTZ-POP functions as a metal-free and recyclable photocatalyst to promote the sequential C(sp2)-H functionalizations of N-arylacrylamides with readily available trifluoromethylsulfonyl chloride as the radical precursor. An array of 3,3-disubstituted 2-oxindoles bearing a pharmaceutically important CF3 moiety are delivered in moderate to excellent yields under mild and sustainable conditions.
Collapse
Affiliation(s)
- Cen Zhou
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Rui Wang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Lang Gao
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Xiaozhou Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| |
Collapse
|
30
|
Riente P, Fianchini M, Pericàs MA, Noel T. Accelerating the Photocatalytic Atom Transfer Radical Addition Reaction Induced by Bi2O3 with Amines: Experiment and Computation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Paola Riente
- University of Amsterdam Faculty of Science: Universiteit van Amsterdam Faculteit der Natuurwetenschappen Wiskunde en Informatica Chemistry NETHERLANDS
| | - Mauro Fianchini
- Institute of Chemical Research of Catalonia: Institut Catala d'Investigacio Quimica Chemistry SPAIN
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia: Institut Catala d'Investigacio Quimica Chemistry SPAIN
| | - Timothy Noel
- University of Amsterdam Van't Hoff Institute for Molecular Science PO Box 94157Science Park 904 1090 GD Amsterdam NETHERLANDS
| |
Collapse
|
31
|
Chaudhuri A, Zondag SDA, Schuurmans JHA, van der Schaaf J, Noël T. Scale-Up of a Heterogeneous Photocatalytic Degradation Using a Photochemical Rotor-Stator Spinning Disk Reactor. Org Process Res Dev 2022; 26:1279-1288. [PMID: 35464822 PMCID: PMC9017180 DOI: 10.1021/acs.oprd.2c00012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 11/28/2022]
Abstract
![]()
Many chemical reactions
contain heterogeneous reagents, products,
byproducts, or catalysts, making their transposition from batch to
continuous-flow processing challenging. Herein, we report the use
of a photochemical rotor–stator spinning disk reactor (pRS-SDR)
that can handle and scale solid-containing photochemical reaction
conditions in flow. Its ability to handle slurries was showcased for
the TiO2-mediated aerobic photodegradation of aqueous methylene
blue. The use of a fast rotating disk imposes high shear forces on
the multiphase reaction mixture, ensuring its homogenization, increasing
the mass transfer, and improving the irradiation profile of the reaction
mixture. The pRS-SDR performance was also compared to other lab-scale
reactors in terms of water treated per reactor volume and light power
input.
Collapse
Affiliation(s)
- Arnab Chaudhuri
- Department of Chemical Engineering and Chemistry, Sustainable Process Engineering, Eindhoven University of Technology (TU/e), 5612 AZ Eindhoven, The Netherlands
| | - Stefan D A Zondag
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), 1098 XH Amsterdam, The Netherlands
| | - Jasper H A Schuurmans
- Department of Chemical Engineering and Chemistry, Sustainable Process Engineering, Eindhoven University of Technology (TU/e), 5612 AZ Eindhoven, The Netherlands
| | - John van der Schaaf
- Department of Chemical Engineering and Chemistry, Sustainable Process Engineering, Eindhoven University of Technology (TU/e), 5612 AZ Eindhoven, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
32
|
Xu M, Hua Y, Fu X, Liu J. Efficient Photocatalytic Carbonyl Alkylative Amination Enabled by Titanium‐Dioxide‐Mediated Decarboxylation. Chemistry 2022; 28:e202104394. [DOI: 10.1002/chem.202104394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Mei Xu
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University 410082 Changsha P.R. China
| | - Ying Hua
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University 410082 Changsha P.R. China
| | - Xin Fu
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University 410082 Changsha P.R. China
| | - Jie Liu
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University 410082 Changsha P.R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University 410082 Changsha P.R. China
| |
Collapse
|
33
|
Zhang Z, Jia J, Zhi Y, Ma S, Liu X. Porous organic polymers for light-driven organic transformations. Chem Soc Rev 2022; 51:2444-2490. [PMID: 35133352 DOI: 10.1039/d1cs00808k] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a new generation of porous materials, porous organic polymers (POPs), have recently emerged as a powerful platform of heterogeneous photocatalysis. POPs are constructed using extensive organic synthesis methodologies, with various functional organic units being connected via high-energy covalent bonds. This review systematically presents the recent advances in POPs for visible-light driven organic transformations. Herein, we firstly summarize the common construction strategies for POP-based photocatalysts based on two major approaches: pre-design and post-modification; secondly, we categorize and summarize the synthesis methods and organic reaction types for constructing various types of POPs. We then classify and introduce the specific reactions of current light-driven POP-mediated organic transformations. Finally, we outline the current state of development and the problems faced in light-driven organic transformations by POPs, and we present some perspectives to motivate the reader to explore solutions to these problems and confront the present challenges in the development process.
Collapse
Affiliation(s)
- Zhenwei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Ji Jia
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Yongfeng Zhi
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China. .,Department of Materials Science & Engineering, National University of Singapore, Engineering Drive 1, Singapore 117575, Singapore
| | - Si Ma
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Xiaoming Liu
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
34
|
Liu R, Cheng SC, Xiao Y, Chan KC, Tong KM, Ko CC. Recyclable Polymer-Supported Iridium-Based Photocatalysts for Photoredox Organic Transformations. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 261] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Saikia BS, Borpatra PJ, Rahman I, Deb ML, Baruah PK. Visible-light-promoted sulfenylation of 6-aminouracils under catalyst-free conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj01941h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible-light-promoted reactions have proven to be a decent strategy for the synthesis of complex molecules.
Collapse
Affiliation(s)
- B. Shriya Saikia
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| | - Paran J. Borpatra
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| | - Iftakur Rahman
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| | - Mohit L. Deb
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| | - Pranjal K. Baruah
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| |
Collapse
|
37
|
Wen Z, Wan T, Vijeta A, Casadevall C, Buglioni L, Reisner E, Noël T. Photocatalytic C-H Azolation of Arenes Using Heterogeneous Carbon Nitride in Batch and Flow. CHEMSUSCHEM 2021; 14:5265-5270. [PMID: 34529334 PMCID: PMC9298336 DOI: 10.1002/cssc.202101767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/16/2021] [Indexed: 05/08/2023]
Abstract
The functionalization of aryl C(sp2 )-H bonds is a useful strategy for the late-stage modification of biologically active molecules, especially for the regioselective introduction of azole heterocycles to prepare medicinally-relevant compounds. Herein, we describe a practical photocatalytic transformation using a mesoporous carbon nitride (mpg-CNx ) photocatalyst, which enables the efficient azolation of various arenes through direct oxidation. The method exhibits a broad substrate scope and is amenable to the late-stage functionalization of several pharmaceuticals. Due to the heterogeneous nature and high photocatalytic stability of mpg-CNx , the catalyst can be easily recovered and reused leading to greener and more sustainable routes, using either batch or flow processing, to prepare these important compounds of interest in pharmaceutical and agrochemical research.
Collapse
Affiliation(s)
- Zhenghui Wen
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
| | - Ting Wan
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
| | - Arjun Vijeta
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUnited Kingdom
| | - Carla Casadevall
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUnited Kingdom
| | - Laura Buglioni
- Department of Chemical Engineering and ChemistrySustainable Process EngineeringEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUnited Kingdom
| | - Timothy Noël
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
38
|
Li X, Ma X, Lang X. Blue light-powered hydroxynaphthoic acid-titanium dioxide photocatalysis for the selective aerobic oxidation of amines. J Colloid Interface Sci 2021; 602:534-543. [PMID: 34144307 DOI: 10.1016/j.jcis.2021.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 06/02/2021] [Indexed: 01/26/2023]
Abstract
Solar photocatalysis is the key to resolve many environmental challenges but is usually hard to achieve over a metal oxide semiconductor. Therefore, assembling π-conjugated molecules onto semiconductors becomes an efficient approach to solar conversion via ligand-to-metal charge transfer. Here, a rational design of ligands for titanium dioxide (TiO2) is presented to produce robust visible light photocatalysts. Three hydroxynaphthoic acids (HNAs) were selected as ligands by extending an extra benzene ring of salicylic acid (SA) at 3,4 or 4,5 or 5,6 positions. These ligands could regulate the performance of TiO2 in which 2-hydroxy-1-naphthoic acid (2H1NA) endows the best outcome. In detail, blue light-powered cooperative photocatalysis of 2H1NA-TiO2 with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO, 5 mol%) inaugurates the expeditious formation of imines by oxidation of amines with atmospheric oxygen (O2). Interestingly, the increase of the O2 pressure from 1 atm to 0.4 MPa promoted the selective oxidation of benzylamine but thereafter declined with a further boost to 0.6 MPa. Notably, an electron transfer between the oxidatively quenched 2H1NA-TiO2 and TEMPO is established, offering a new pathway for environmental applications. This work presents a strategy in designing cutting-edge visible light photocatalysts via altering semiconductors with surface ligands.
Collapse
Affiliation(s)
- Xia Li
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoming Ma
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
39
|
Bano K, Mittal SK, Singh PP, Kaushal S. Sunlight driven photocatalytic degradation of organic pollutants using a MnV 2O 6/BiVO 4 heterojunction: mechanistic perception and degradation pathways. NANOSCALE ADVANCES 2021; 3:6446-6458. [PMID: 36133498 PMCID: PMC9419509 DOI: 10.1039/d1na00499a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/01/2021] [Indexed: 05/06/2023]
Abstract
In the field of photocatalysis, fabrication of a heterojunction structure with effective charge separation at the interface and charge shift to enhance the photocatalytic activity has acquired extensive consideration. In the present investigation, MnV2O6/BiVO4 heterojunction samples with excellent photocatalytic performance under sunlight irradiation were conveniently synthesized by a hydrothermal technique, and characterized by UV-Vis, FTIR, XRD, FESEM, HRTEM, PL, BET and XPS techniques. The prepared samples were investigated as photocatalysts for degrading MB and RhB dyes under sunlight. Among various samples of MnV2O6/BiVO4, the S-V hetero-junction sample exhibited maximum photocatalytic activity with 98% and 96% degradation of MB and RhB dyes, respectively, in 6 and 35 min. The high photocatalytic activity of MnV2O6/BiVO4 may be due to the successful generation and shift of charges in the presence of visible light. The average reduction of chemical oxygen demand (COD) was found to be 75% after irradiation with direct sunlight. In the degradation process of dyes, superoxide anion radicals were the main responsive species, as revealed by trapping experiments. The degradation efficiency of MnV2O6/BiVO4 heterojunction did not diminish even after four cycles. In addition, the catalytic performance of the fabricated heterojunction was also explored for reducing 4-nitrophenols (4-NP) by using NaBH4. Absolute conversion of 4-NP to 4-aminophenol (4-AP) occurred without the production of intermediate byproducts.
Collapse
Affiliation(s)
- Karina Bano
- Department of Chemistry, Sri Guru Granth Sahib World University Fatehgarh Sahib Punjab India
| | - Susheel K Mittal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering and Technology Patiala India
| | - Prit Pal Singh
- Department of Chemistry, Sri Guru Granth Sahib World University Fatehgarh Sahib Punjab India
| | - Sandeep Kaushal
- Department of Chemistry, Sri Guru Granth Sahib World University Fatehgarh Sahib Punjab India
| |
Collapse
|
40
|
Fabrication, characterization and exploration of cobalt (II) ion doped, modified zinc oxide thick film sensor for gas sensing characteristics of some pernicious gases. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
41
|
Dandia A, Saini P, Sethi M, Kumar K, Saini S, Meena S, Meena S, Parewa V. Nanocarbons in quantum regime: An emerging sustainable catalytic platform for organic synthesis. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1985866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Anshu Dandia
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Pratibha Saini
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Mukul Sethi
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Krishan Kumar
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Surendra Saini
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Savita Meena
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Swati Meena
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Vijay Parewa
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| |
Collapse
|
42
|
Fallah S, Hadadzadeh H, Farrokhpour H, Shakeri J, Weil M, Foelske A, Sauer M. Enhancement of photocatalytic oxidation of benzyl alcohol by edge-functionalized modified carbon nitride: A DFT evaluation. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Wang Z, Hojo H, Einaga H. Photocatalytic hydroxylation of benzene to phenol with dioxygen using sodium decatungstate. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Krylov IB, Lopat’eva ER, Subbotina IR, Nikishin GI, Yu B, Terent’ev AO. Mixed hetero-/homogeneous TiO2/N-hydroxyimide photocatalysis in visible-light-induced controllable benzylic oxidation by molecular oxygen. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63831-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Zhu P, Sun X, Wang Y, Zhang J, Gu X, Zheng Z. Multifunctional oxygen vacancies in WO3– for catalytic alkylation of C–H by alcohols under red-light. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Das P, Tantubay K, Ghosh R, Dam S, Baskey Sen M. Transformation of CuS/ZnS nanomaterials to an efficient visible light photocatalyst by 'photosensitizer' graphene and the potential antimicrobial activities of the nanocomposites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49125-49138. [PMID: 33932204 DOI: 10.1007/s11356-021-14068-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
We report the growth of CuS/ZnS (CZS) nanoparticles (NPs) on the graphene sheet by a facile green synthesis process. The CuS/ZnS-graphene (CZSG) nanocomposites exhibit enhanced visible light photocatalytic activity towards organic dye (methylene blue) degradation than that of CZS nanoparticles. To find the reason for the enhanced photo-activity, we propose a new photocatalytic mechanism where graphene in the CZSG nanocomposites acts as a 'photosensitizer' for CZS nanoparticles. This distinctive photocatalytic mechanism is noticeably different from all other previous research works on semiconductor-graphene hybrid photocatalysts where graphene behaves as an electron reservoir to capture the electrons from photo-excited semiconductor. This novel idea of the photocatalytic mechanism in semiconductor-graphene photocatalysts could draw a new track in thinking for designing of graphene-based photocatalysts for solving environmental pollution problems and they also show remarkable antimicrobial activities.
Collapse
Affiliation(s)
- Piu Das
- Materials Research Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Kartik Tantubay
- Materials Research Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Raktim Ghosh
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Moni Baskey Sen
- Materials Research Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
47
|
Zuluaga-Hernandez EA, Mora-Ramos ME, Correa JD, Flórez E. Phosphorene and phosphorene oxides as a toxic gas sensor materials: a theoretical study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:455501. [PMID: 34375965 DOI: 10.1088/1361-648x/ac1c2f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
A systematic study of the adsorption of several harmful gases (CO2, NO, SO2, NH3y H2S) onto black phosphorene and three different black phosphorene oxides (BPO) is carried out through density functional theory calculations. In general, it is shown that BPOs are more suitable adsorbents than pure black phosphorene. Smaller values of adsorption energy correspond to CO2molecules, whilst those exhibiting larger ones are NH3, H2S, NO y SO2. It is found that SO2shows the greater difference in electronic charge transfer as well as the longer time of recovery among all species, being an electron acceptor molecule. Besides, it is revealed that physisorption induces changes of different order in the electronic, magnetic and optical responses of phosphorene systems involved. Greater changes in the electronic structure are produced in the case of NO adsorption. In that case, semiconductor nature and magnetization features of black phosphorene band structure become significantly modified. Moreover, a notorious effect of an externally applied electric field on the molecule adsorption onto BPOs has been detected. In accordance, adsorption energy changes with the applied electric field direction, in such a way that the higher value is favored through an upwards-directed orientation of NO y SO2adsorbates. Results presented could help to enhancing the understanding of BPOs as possible candidates for applications in gas sensing.
Collapse
Affiliation(s)
| | - M E Mora-Ramos
- Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209, Cuernavaca, Morelos, Mexico
| | - J D Correa
- Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
| | - E Flórez
- Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
| |
Collapse
|
48
|
Gu J, Wan Y, Ma H, Zhu H, Bu H, Zhou Y, Zhang W, Wu ZG, Li Y. Ferric ion concentration-controlled aerobic photo-oxidation of benzylic C–H bond with high selectivity and conversion. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Wolski L, Lebedev OI, Harmer CP, Kovnir K, Abdelli H, Grzyb T, Daturi M, El-Roz M. Unraveling the Origin of Photocatalytic Deactivation in CeO 2/Nb 2O 5 Heterostructure Systems during Methanol Oxidation: Insight into the Role of Cerium Species. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:12650-12662. [PMID: 34276865 PMCID: PMC8279704 DOI: 10.1021/acs.jpcc.1c02812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Indexed: 06/13/2023]
Abstract
The study provides deep insight into the origin of photocatalytic deactivation of Nb2O5 after modification with ceria. Of particular interest was to fully understand the role of ceria species in diminishing the photocatalytic performance of CeO2/Nb2O5 heterostructures. For this purpose, ceria was loaded on niobia surfaces by wet impregnation. The as-prepared materials were characterized by powder X-ray diffraction, nitrogen physisorption, UV-visible spectroscopy, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. Photocatalytic activity of parent metal oxides (i.e., Nb2O5 and CeO2) and as-prepared CeO2/Nb2O5 heterostructures with different ceria loadings were tested in methanol photooxidation, a model gas-phase reaction. Deep insight into the photocatalytic process provided by operando-IR techniques combined with results of photoluminescence studies revealed that deactivation of CeO2/Nb2O5 heterostructures resulted from increased recombination of photo-excited electrons and holes. The main factor contributing to more efficient recombination of the charge carriers in the heterostructures was the ultrafine size of the ceria species. The presence of such highly dispersed ceria species on the niobia surface provided a strong interface between these two semiconductors, enabling efficient charge transfer from Nb2O5 to CeO2. However, the ceria species supported on niobia exhibited a high defect site concentration, which acted as highly active recombination centers for the photo-induced charge carriers.
Collapse
Affiliation(s)
- Lukasz Wolski
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, Poznań 61-614, Poland
- Normandie
Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen 14050, France
| | - Oleg I. Lebedev
- Normandie
Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire CRISMAT, Caen 14050, France
| | - Colin P. Harmer
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S.
Department of Energy, Ames Laboratory, Ames, Iowa 50011, United States
| | - Kirill Kovnir
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S.
Department of Energy, Ames Laboratory, Ames, Iowa 50011, United States
| | - Hanen Abdelli
- Normandie
Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen 14050, France
| | - Tomasz Grzyb
- Department
of Rare Earths, Faculty of Chemistry, Adam
Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Marco Daturi
- Normandie
Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen 14050, France
| | - Mohamad El-Roz
- Normandie
Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen 14050, France
| |
Collapse
|
50
|
Liu H, Fu H, Liu Y, Chen X, Yu K, Wang L. Synthesis, characterization and utilization of oxygen vacancy contained metal oxide semiconductors for energy and environmental catalysis. CHEMOSPHERE 2021; 272:129534. [PMID: 33465617 DOI: 10.1016/j.chemosphere.2021.129534] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Developing novel functional materials with promising desired properties in enhancing energy conversion and lowering the catalytic reaction barriers is essential for the demand to solve the increasingly severe energy and environmental crisis nowadays. Metal oxide semiconductors (MOS) are widely used in the field of catalysis because of its excellent catalytic characteristics. Introduction of defects, in addition to the adjustment of composition and atomic arrangement in the materials can effectively improve the materials' catalytic performance. Especially, introducing oxygen vacancies (OVs) into the lattice structure of MOS has been developed as a facile route to improve MOS's optical and electronic transmission characteristics. And a large number of metal oxides with rich OVs have been served in oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2-RR) photo-degradation of organic pollutants, etc. This small review briefly outlines some preparation techniques to introduce OVs into MOS, and the characterization techniques to identify and quantify the OVs in MOS. The applications of OVs contained MOS especially in energy and environmental catalysis areas are also discussed. The effects of OVs types and concentrations on the catalytic performances are deliberated. Finally, the defective structure-catalytic property relationship is highlighted, and the future status and opportunities of MOS containing OVs in the catalytic field are suggested.
Collapse
Affiliation(s)
- Hongjie Liu
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning, 530004, China; MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Hao Fu
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning, 530004, China; MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yuchang Liu
- School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Xiyong Chen
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| | - Kefu Yu
- School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Liwei Wang
- School of Marine Sciences, Guangxi University, Nanning, 530004, China; MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| |
Collapse
|