1
|
Sinuhaji TRF, Ramadhani S, Setiawan VK, Baroroh U. Targeting diabetes with flavonoids from Indonesian medicinal plants: a review on mechanisms and drug discovery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04139-2. [PMID: 40202673 DOI: 10.1007/s00210-025-04139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
The rich biodiversity of Indonesia provides a wide variety of plants rich in flavonoids, which show promising potential as antidiabetic agents. Flavonoids are polyphenolic compounds recognized for their broad biological activities, such as antioxidant, anti-inflammatory, and antidiabetic effects. Traditional Indonesian medicinal plants such as Syzygium cumini, Moringa oleifera, and Curcuma longa are currently being studied for their flavonoid content and potential in diabetes treatment. Studies suggest that flavonoids can influence crucial pathways in diabetes management, including enhancing insulin sensitivity, boosting insulin production, and safeguarding pancreatic β cells against damage caused by oxidative stress. For example, quercetin and kaempferol, flavonoids in many Indonesian plants, have demonstrated potential for managing glucose metabolism and lowering high blood sugar levels. Additionally, these substances have been shown to inhibit enzymes such as α-glucosidase and α-amylase, which are involved in the breakdown of carbohydrates, thus aiding in the regulation of blood sugar levels after meals. The antioxidant qualities of flavonoids play a crucial role in fighting oxidative stress and are a significant contributor to the development of diabetes and related complications. Flavonoids help neutralize free radicals and enhance the body's antioxidant protection, reducing oxidative harm and promoting metabolic wellness. Additionally, their anti-inflammatory properties aid in reducing the chronic inflammation linked to insulin resistance and β-cell dysfunction. Formulation advancements, such as nanocarrier technology, have been explored to boost the effectiveness of flavonoid-based therapies. Due to its vast plant diversity, Indonesia offers a potential reservoir for new antidiabetic drugs, meriting additional research and development with the aim of this review providing new knowledge on the potential of flavonoids that can play a role in the treatment of diabetes.
Collapse
Affiliation(s)
- Tubagus Rayyan Fitra Sinuhaji
- Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, 50275, Semarang, Indonesia.
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia.
| | - Sintha Ramadhani
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Prof. Dr. Hamka, 13460, Jakarta, Indonesia
| | - Volta Kellik Setiawan
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia
- Department of Biology Education, Faculty of Teacher Training and Education, Mulawarman University, 75119, Samarinda, Indonesia
| | - Umi Baroroh
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia
- Department of Biotechnology Pharmacy, Indonesian School of Pharmacy, 40266, Bandung, Indonesia
| |
Collapse
|
2
|
Ma S, Chen Y, Yan T, Qin J, Li G. Ultrasound-laccase pre-treatment enhances agarwood essential oil extraction and bioactivity. Int J Biol Macromol 2025; 295:139654. [PMID: 39793841 DOI: 10.1016/j.ijbiomac.2025.139654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Agarwood essential oil is prized for its elegant aroma and pharmacological properties; however, the traditional hydrodistillation method suffers from inefficiencies, constraining the industrial potential of agarwood. We proposed an ultrasonic-assisted laccase synergistic pretreatment technique that enhanced extraction throughput by 70.90 % compared to the traditional method by facilitating pore formation in agarwood and expediting the release of essential oil. The essential oil extracted using this method retained a similar aromatic profile to the traditional method but achieved a higher sesquiterpene oxide concentration (95.3 % vs. 89.6 %). Additionally, it exhibited notable improvements in antioxidant activity, acetylcholinesterase inhibition, and α-glucosidase inhibition, attributed to the increased affinity of sesquiterpene oxides for enzymes through hydrogen bonding, covalent interactions, and hydrophobic effects with amino acid residues. This approach not only maximises the efficiency of agarwood essential oil extraction and amplifies its bioactive properties, but also offers a sustainable and eco-friendly alternative, promoting the long-term vitality of the agarwood industry.
Collapse
Affiliation(s)
- Sheng Ma
- Research Institute of Wood Industry of Chinese Academy of Forestry, 100091, Beijing, PR China
| | - Yuan Chen
- Research Institute of Wood Industry of Chinese Academy of Forestry, 100091, Beijing, PR China
| | - Tingting Yan
- Research Institute of Wood Industry of Chinese Academy of Forestry, 100091, Beijing, PR China
| | - Jiahui Qin
- Research Institute of Wood Industry of Chinese Academy of Forestry, 100091, Beijing, PR China
| | - Gaiyun Li
- Research Institute of Wood Industry of Chinese Academy of Forestry, 100091, Beijing, PR China.
| |
Collapse
|
3
|
Choudhary D, Kumar B, Chandrasekaran B, Singh TG, Kaur R, Aldahish A, Vasudevan R, Balaji P. Microwave-Assisted Synthesis of Morpholine-Based Chalcones as Reversible MAO-A Inhibitors in the Management of Mental Depression. Pharmaceuticals (Basel) 2025; 18:309. [PMID: 40143088 PMCID: PMC11945657 DOI: 10.3390/ph18030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Depression is one of the most serious and common health problems among the youth population and is responsible for the initiation of many diseases. As per the World Health Organization, 3.8% of the population suffers from mental depression, globally. The monoamine oxidase-A (MAO-A) enzyme is responsible for the degradation of neurotransmitters leading to lower levels of neurotransmitters. Methods: Chalcones (C1-C15) were synthesized by reacting substituted acetophenone with various benzaldehydes in a basic ethanolic solvent at 80 °C under microwave irradiation conditions. To compare the reaction time and product yield, a conventional method of synthesis of chalcones was also performed. The synthesized chalcones (C1-C15) were spectroscopically characterized and screened initially for inhibitory activities against MAO-A and MAO-B. The best active compounds were undertaken for IC50 determination against MAO-A enzyme followed by the reversibility of inhibition analysis and the antioxidant assay. Moreover, in silico molecular docking and ADME pharmacokinetic investigations were accomplished. Results: Most of the compounds inhibited MAO-A, specifically, compounds C14 and C6 exhibited the highest inhibition at IC50 values of 7.91 ± 0.08 μM and 8.45 ± 0.19 μM, respectively. Both these compounds exhibited a reversible MAO-A inhibition displaying up to 60% recovery of enzymatic activity when diluted with substrate (Tyramine). The results of the in silico study indicated docking scores of -9.56 Kcal/mol (C14) and -9.45 Kcal/mol (C6) and exhibited a π-π stacking interaction with the crucial amino acid Trp-397. The compounds were determined to cross the blood-brain barrier (BBB) and displayed favorable gastrointestinal (GI) absorption. Further, the antioxidant assay results demonstrated that the synthesized compounds possess modest free radical scavenging potential. Conclusions: This study displayed the MAO-A inhibitory potential of morpholine-substituted chalcones as a promising pharmacophore for the development of novel antidepressant lead compounds.
Collapse
Affiliation(s)
- Diksha Choudhary
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar 246174, Jammu and Kashmir, India
| | | | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Afaf Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia (R.V.)
| | - Rajalakshimi Vasudevan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia (R.V.)
| | - Prasanalakshmi Balaji
- Department of Computer Science, College of Computer Science, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
4
|
Sabarathinam S, Ganamurali N. Chalcones reloaded: an integration of network pharmacology and molecular docking for type 2 diabetes therapy. J Biomol Struct Dyn 2024; 42:9505-9517. [PMID: 37643025 DOI: 10.1080/07391102.2023.2252085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Chalcones have various biological effects, from immune boosting to anti-cancer and anti-diabetic. Structurally modified chalcones (SMC) are clinically relevant for diabetes and cardiometabolic complications. From the original research articles, a structurally proven and biologically outstanding 14 structurally modified chalcones were screened and inducted in this study. This study evaluated the effects of SMC towards diabetes via network pharmacology analysis. The network data shows compounds S2, S3, S5, S9 &S12 suit the diabetes target. Especially Compounds S5 and S9 have a higher binding affinity towards the targets of TNF, PI3K, MAPK1 and AKT1 active sites. Compound S9 [(E)-3-(4-(1H-imidazol-1-yl)phenyl)-1-(4-(2,4-difluorobenz-yloxy)phenyl)prop-2-en-1-one] have identified with stronger binding affinities towards the active sites of MAPK3 (PDB:4QTB) -10.5(Kcal/mol). To provide a more effective mechanism for demonstrating protein-ligand interaction, one of the molecular docking complex (ERK2 kinase-S5) was subjected to a molecular dynamic at 300K for 100 ns. In term of structural stability, structure compactness, residual flexibility and hydrogen bond interaction of the complex was evaluated Integrating network pharmacology, in silico virtual screening, and molecular docking analysis shows that structurally modified compounds are effective and may help identify lead compounds towards glycemic control.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sarvesh Sabarathinam
- Drug Testing Laboratory (DTL), Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
- Clinical Trial Unit, Metabolic Ward, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
- Certificate Programme-Analytical Techniques in Herbal Drug Industry, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Nila Ganamurali
- Certificate Programme-Analytical Techniques in Herbal Drug Industry, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Zhang YL, Sun SJ, Zeng L. Biological effects and mechanisms of dietary chalcones: latest research progress, future research strategies, and challenges. Food Funct 2024; 15:10582-10599. [PMID: 39392421 DOI: 10.1039/d4fo03618b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Dietary plants are an indispensable part of the human diet, and the various natural active compounds they contain, especially polyphenols, polysaccharides, and amino acids, have always been a hot topic of research among nutritionists. As precursors to polyphenolic substances in dietary plants, chalcones are not only widely distributed but also possess a variety of biological activities due to their unique structure. However, there has not yet been a comprehensive article summarizing the biological activities and mechanisms of dietary chalcones. This review began by discussing the dietary sources and bioavailability of chalcones, providing a comprehensive description of their biological activities and mechanisms of action in antioxidation, anti-inflammation, anti-tumor, and resistance to pathogenic microbes. Additionally, based on the latest research findings, some future research strategies and challenges for dietary chalcones have been proposed, including computer-aided design and molecular docking, targeted biosynthesis and derivative design, interactions between the gut microbiota and chalcones, as well as clinical research. It is expected that this review will contribute to supplementing the scientific understanding of dietary chalcones and promoting their practical application and the development of new food products.
Collapse
Affiliation(s)
- Yun Liang Zhang
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Shuang Jiao Sun
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Li Zeng
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| |
Collapse
|
6
|
Nkoana JK, Mphahlele MJ, More GK, Choong YS. Exploring the 3,5-Dibromo-4,6-dimethoxychalcones and Their Flavone Derivatives as Dual α-Glucosidase and α-Amylase Inhibitors with Antioxidant and Anticancer Potential. Antioxidants (Basel) 2024; 13:1255. [PMID: 39456508 PMCID: PMC11505200 DOI: 10.3390/antiox13101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The rising levels of type 2 diabetes mellitus (T2DM) and the poor medical effects of the commercially available antidiabetic drugs necessitate the development of potent analogs to treat this multifactorial metabolic disorder. It has been demonstrated that targeting two or more biochemical targets associated with the onset and progression of diabetes along with oxidative stress and/or cancer could be a significant strategy for treating complications related to this metabolic disorder. The 3,5-dibromo-4,6-dimethoxychalcones (2a-f) and the corresponding flavone derivatives (3a-f) were synthesized and characterized using spectroscopic (NMR, HR-MS and FT-IR) techniques. The inhibitory effect of both series of compounds against α-glucosidase and α-amylase was evaluated in vitro through enzymatic assays. Selected compounds were also evaluated for potential to activate or inhibit superoxide dismutase. Compound 3c was selected as a representative model for the flavone series and evaluated spectrophotometrically for potential to coordinate Cu(II) and/or Zn(II) ions implicated in the metal-catalyzed free radical generation. A plausible mechanism for metal-chelation of the test compounds is presented. Furthermore, the most active compounds from each series against the test carbohydrate-hydrolyzing enzymes were selected and evaluated for their antigrowth effect on the human breast (MCF-7) and lung (A549) cancer cell lines and for cytotoxicity against the African Green Monkey kidney (Vero) cell line. The parent chalcone 2a and flavone derivatives 3a, 3c and 3e exhibited relatively high inhibitory activity against the MCF-7 cells with IC50 values of 4.12 ± 0.55, 8.50 ± 0.82, 5.10 ± 0.61 and 6.96 ± 0.66 μM, respectively. The chalcones 2a and 2c exhibited significant cytotoxicity against the A549 cells with IC50 values of 7.40 ± 0.67 and 9.68 ± 0.80 μM, respectively. Only flavone 3c exhibited relatively strong and comparable cytotoxicity against the MCF-7 and A549 cell lines with IC50 values of 6.96 ± 0.66 and 6.42 ± 0.79 μM, respectively. Both series of compounds exhibited strong activity against the MCF-7 and A549 cell lines compared to the analogous quercetin (IC50 = 35.40 ± 1.78 and 35.38 ± 1.78 μM, respectively) though moderate compared to nintedanib (IC50 = 0.53 ± 0.11 and 0.74 ± 0.15 μM, respectively). The test compounds generally exhibited reduced cytotoxicity against the Vero cells compared to this anticancer drug. Molecular docking revealed strong alignment of the test compounds with the enzyme backbone to engage in hydrogen bonding interaction/s and hydrophobic contacts with the residues in the active sites of α-glucosidase and α-amylase. The test compounds possess favorable drug-likeness properties, supporting their potential as therapeutic candidates against T2DM.
Collapse
Affiliation(s)
- Jackson K. Nkoana
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Malose J. Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Garland K. More
- College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, George Town 11800, Penang, Malaysia;
| |
Collapse
|
7
|
Arshad U, Shafiq N, Parveen S, Rashid M. Discovery of novel dihydro-pyrimidine hybrids: insight into the design, synthesis, biological evaluation and absorption, distribution, metabolism and excretion studies. Future Med Chem 2024; 16:1949-1969. [PMID: 39263831 PMCID: PMC11485738 DOI: 10.1080/17568919.2024.2389767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
Aim: By keeping in aspects, the pharmacological potential of heterocyclic compounds, pyrimidine-based compounds were designed, synthesized and evaluated for α-amylase inhibitory potential.Materials & methods: Five new series 1a-l, 2a-d, 3a-d, 4a-d and 5a-d of 1,2,3,4-tetrahydroprimidine-5-carboxylate derivatives were designed by de novo method by taking Alogliptin as reference compound. Here in we describe synthesis and characterization of compounds as potential α-amylase inhibitor.Results: Structure activity relationship (SAR), in vitro analysis and molecular modelling approaches generate compounds 1 h, 1i, 1k and 4c as potential lead with good α-amylase inhibitory selection. However, compound 1k failed the criteria of optimization as drug lead by ADME studies while all other compounds showed optimum range for all in silico ADME parameters.Conclusion: Therefore, these compounds can serve as potential lead candidate in developing anti-diabetic therapy.
Collapse
Affiliation(s)
- Uzma Arshad
- Synthetic & Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Nusrat Shafiq
- Synthetic & Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Shagufta Parveen
- Synthetic & Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Maryam Rashid
- Synthetic & Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| |
Collapse
|
8
|
Santos CMM, Silva AMS. Transition Metal-Catalyzed Transformations of Chalcones. CHEM REC 2024; 24:e202400060. [PMID: 39008887 DOI: 10.1002/tcr.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Indexed: 07/17/2024]
Abstract
Chalcones are a class of naturally occurring flavonoid compounds associated to a variety of biological and pharmacological properties. Several reviews have been published describing the synthesis and biological properties of a vast array of analogues. However, overviews on the reactivity of chalcones has only been explored in a few accounts. To fill this gap, a systematic survey on the most recent developments in the transition metal-catalyzed transformation of chalcones was performed. The chemistry of copper, palladium, zinc, iron, manganese, nickel, ruthenium, cobalt, rhodium, iridium, silver, indium, gold, titanium, platinum, among others, as versatile catalysts will be highlighted, covering the literature from year 2000 to 2023, in more than 380 publications.
Collapse
Affiliation(s)
- Clementina M M Santos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Bragança, Apolónia, 5300-253, Bragança, Portugal
| | - Artur M S Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
9
|
Feng M, Liang B, Sun J, Min X, Wang SH, Lu Y, Xu X. Synthesis, anti-α-glucosidase activity, inhibition interaction, and anti-diabetic activity of novel cryptolepine derivatives. J Mol Struct 2024; 1310:138311. [DOI: 10.1016/j.molstruc.2024.138311] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Lv SY, Cheng LP. Design, synthesis and inhibition evaluation of novel chalcone amide α-glucosidase inhibitors. Future Med Chem 2024; 16:1333-1345. [PMID: 39109435 PMCID: PMC11318676 DOI: 10.1080/17568919.2024.2347092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/09/2024] [Indexed: 08/15/2024] Open
Abstract
Aim: The purpose of this study is to design and synthesize a series of novel chalcone amide α-glucosidase (AG) inhibitors (L1-L10) based on virtual screening and molecular dynamics (MD) simulation. Materials & methods: Target compounds (L1-L10) were synthesized from 2-hydroxyacetophenone and methyl 4-formylbenzoate. Results: In vitro activity test shows that most compounds have good AG inhibition. Specially, compound L4 (IC50 = 8.28 ± 0.04 μM) had the best inhibitory activity, superior to positive control acarbose (IC50 = 8.36 ± 0.02 μM). Molecular docking results show that the good potency of L4 maybe attributed to strong interactions between chalcone skeleton and active site, and the torsion of carbon nitrogen bond in amide group. Conclusion: Compound L4 maybe regard as a good anti-Type II diabetes candidate to preform further study.
Collapse
Affiliation(s)
- Song Yao Lv
- School of Chemical & Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Li Ping Cheng
- School of Chemical & Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| |
Collapse
|
11
|
Mai TT, Phan MH, Thai TT, Lam TP, Lai NVT, Nguyen TT, Nguyen TVP, Vo CVT, Thai KM, Tran TD. Discovery of novel flavonoid derivatives as potential dual inhibitors against α-glucosidase and α-amylase: virtual screening, synthesis, and biological evaluation. Mol Divers 2024; 28:1629-1650. [PMID: 37369956 DOI: 10.1007/s11030-023-10680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Diabetes mellitus is one of the top ten causes of death worldwide, accounting for 6.7 million deaths in 2021, and is one of the most rapidly growing global health emergencies of this century. Although several classes of therapeutic drugs have been invented and applied in clinical practice, diabetes continues to pose a serious and growing threat to public health and places a tremendous burden on those affected and their families. The strategy of reducing carbohydrate digestibility by inhibiting the activities of α-glucosidase and α-amylase is regarded as a promising preventative treatment for type 2 diabetes. In this study, we investigated the dual inhibitory effect against two polysaccharide hydrolytic enzymes of flavonoid derivatives from an in-house chemical database. By combining molecular docking and structure-activity relationship analysis, twelve compounds with docking energies less than or equal to - 8.0 kcal mol-1 and containing required structural features for dual inhibition of the two enzymes were identified and subjected to chemical synthesis and in vitro evaluation. The obtained results showed that five compounds exhibited dual inhibitory effects on the target enzymes with better IC50 values than the approved positive control acarbose. Molecular dynamics simulations were performed to elucidate the binding of these flavonoids to the enzymes. The predicted pharmacokinetic and toxicological properties suggest that these compounds are viable for further development as type 2 diabetes drugs.
Collapse
Affiliation(s)
- Tan Thanh Mai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Minh-Hoang Phan
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Thao Thi Thai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Thua-Phong Lam
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Nghia Vo-Trong Lai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Thanh-Thao Nguyen
- Faculty of Medicine and Pharmacy, Tay Nguyen University, Buon Ma Thuot, Dak Lak, 630000, Vietnam
| | - Thuy-Viet-Phuong Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Cam-Van Thi Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Khac-Minh Thai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Thanh-Dao Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
12
|
Xu Z, Hileuskaya K, Kraskouski A, Yang Y, Huang Z, Zhao Z. Inhibition of α-glucosidase activity and intestinal glucose transport to assess the in vivo anti-hyperglycemic potential of dodecyl-acylated phlorizin and polydatin derivatives. Food Funct 2024; 15:4785-4804. [PMID: 38511466 DOI: 10.1039/d3fo05233h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A diet containing natural active compounds that can inhibit the hydrolytic activity of α-glucosidase on carbohydrates and intestinal glucose absorption is an effective means of controlling postprandial hyperglycemia. Phlorizin and polydatin as phenolic glycosides have a high affinity for the catalytic site of α-glucosidase, but exhibited unsatisfactory competitive inhibitory capacity, with an IC50 of 0.97 and >2 mM, respectively. However, dodecyl-acylated derivatives of phlorizin and polydatin exerted α-glucosidase inhibitory capacity, with an IC50 of 55.10 and 70.95 μM, respectively, which were greatly enhanced and much stronger than that of acarbose with an IC50 of 2.46 mM. The SPR assay suggested the high affinity of dodecyl phlorizin and dodecyl polydatin to α-glucosidase with equilibrium dissociation constant (KD) values of 12.0 and 7.9 μM, respectively. Both dodecyl phlorizin and dodecyl polydatin reduced the catalytic ability of α-glucosidase by reversible noncompetitive and uncompetitive mixed inhibition, which bind noncovalently to the allosteric site 2 through hydrogen bonds and hydrophobic interactions, thereby inducing the secondary structure unfolding and intrinsic fluorescence quenching of α-glucosidase. Confocal microscopy detection visually showed significant inhibitory effects on FITC-labeled glucose uptake in intestinal Caco-2 cells by phlorizin, polydatin, dodecyl phlorizin and dodecyl polydatin. In addition, based on the differentiated Caco-2 cell monolayer model, dodecyl phlorizin and dodecyl polydatin suppressed intestinal glucose transport more effectively than phlorizin and polydatin, suggesting that they were promising in vivo hypoglycemic active compounds.
Collapse
Affiliation(s)
- Zhengming Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Aliaksandr Kraskouski
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Yujiao Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Zhe Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Zhengang Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
13
|
Lam TP, Tran NVN, Pham LHD, Lai NVT, Dang BTN, Truong NLN, Nguyen-Vo SK, Hoang TL, Mai TT, Tran TD. Flavonoids as dual-target inhibitors against α-glucosidase and α-amylase: a systematic review of in vitro studies. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:4. [PMID: 38185713 PMCID: PMC10772047 DOI: 10.1007/s13659-023-00424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
Diabetes mellitus remains a major global health issue, and great attention is directed at natural therapeutics. This systematic review aimed to assess the potential of flavonoids as antidiabetic agents by investigating their inhibitory effects on α-glucosidase and α-amylase, two key enzymes involved in starch digestion. Six scientific databases (PubMed, Virtual Health Library, EMBASE, SCOPUS, Web of Science, and WHO Global Index Medicus) were searched until August 21, 2022, for in vitro studies reporting IC50 values of purified flavonoids on α-amylase and α-glucosidase, along with corresponding data for acarbose as a positive control. A total of 339 eligible articles were analyzed, resulting in the retrieval of 1643 flavonoid structures. These structures were rigorously standardized and curated, yielding 974 unique compounds, among which 177 flavonoids exhibited inhibition of both α-glucosidase and α-amylase are presented. Quality assessment utilizing a modified CONSORT checklist and structure-activity relationship (SAR) analysis were performed, revealing crucial features for the simultaneous inhibition of flavonoids against both enzymes. Moreover, the review also addressed several limitations in the current research landscape and proposed potential solutions. The curated datasets are available online at https://github.com/MedChemUMP/FDIGA .
Collapse
Affiliation(s)
- Thua-Phong Lam
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Uppsala University, 75105, Uppsala, Sweden
| | - Ngoc-Vi Nguyen Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Uppsala University, 75105, Uppsala, Sweden
| | - Long-Hung Dinh Pham
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Nghia Vo-Trong Lai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Bao-Tran Ngoc Dang
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Ngoc-Lam Nguyen Truong
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Song-Ky Nguyen-Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Thuy-Linh Hoang
- California Northstate University College of Pharmacy, California, 95757, USA
| | - Tan Thanh Mai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam.
| | - Thanh-Dao Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam.
| |
Collapse
|
14
|
Khalid A, Naseem I. Increased therapeutic effect of nanotized silibinin against glycation and diabetes: An in vitro and in silico-based approach. Biochim Biophys Acta Gen Subj 2023; 1867:130364. [PMID: 37088248 DOI: 10.1016/j.bbagen.2023.130364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND The global prevalence of diabetes has increased sharply, with the number of cases expected to rise from 424.9 million in 2017 to 628.6 million by 2045. Flavonoids are plant derived molecules with well-established antioxidant potential in addition to other therapeutic properties. Silibinin is a naturally occurring flavonoid with antioxidant and antidiabetic properties. However, its rapid metabolism and low bioavailability limit its therapeutic effects. AIMS & OBJECTIVES In this study, we have synthesized the nanoformulation of silibinin and compared its antiglycating and antidiabetic potential with the soluble form. METHODOLOGY The inhibitory effect was tested on carbohydrate-hydrolyzing enzymes as well as glycation of human serum albumin (HSA). The structural and biochemical changes in HSA were assessed by spectroscopic analyses and different assays. KEY FINDINGS The nanoforms were found to be better inhibitors of α-amylase and α-glucosidase compared to the bulk forms. Glycation of HSA in the presence of nano-silibinin resulted in the formation of lower level of early and advanced glycation products. This was also confirmed by spectroscopic studies and by estimating protein oxidation and free lysine residues. Molecular docking studies further supported the experimental outcomes. These results indicate that the nano form has significantly stronger antidiabetic and antiglycating effects than the bulk form. Nano-silibinin could therefore be recommended as a dietary supplement for diabetics to help control glycation and other associated complications.
Collapse
Affiliation(s)
- Asimah Khalid
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
15
|
Tran TD, Tu VL, Hoang TM, Dat TV, Tam DNH, Phat NT, Hung DT, Huynh HH, Do TC, Le HH, Minh LHN. A Review of the In Vitro Inhibition of α-Amylase and α-Glucosidase by Chalcone Derivatives. Cureus 2023; 15:e37267. [PMID: 37162770 PMCID: PMC10164439 DOI: 10.7759/cureus.37267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/11/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disease relating to steady hyperglycemia resulting from the impairment of the endocrine and non-endocrine systems. Many new drugs having varied targets were discovered to treat this disease, especially type 2 diabetes. Among those, α-glucosidase inhibitors showed their effects by preventing the digestion of carbohydrates through their inhibition against α-amylase and α-glucosidase. Recently, chalcones have attracted considerable attention as they have a simple structure, are easily synthesized as well as have a variety of derivatives. Some reports suggested that chalcone and its derivates could inhibit α-amylase and α-glucosidase. This narrative review provides a comprehensive evaluation of the inhibition of chalcone and its derivatives against α-amylase and α-glucosidase that were reviewed and reported in published scientific articles. Twenty-eight articles were reviewed after screening 207 articles found in four databases, including PubMed, Google Scholar, VHL (Virtual Health Library), and GHL (Global Health Library). This review presented the inhibitory effects of varied chalcones, including chalcones with a basic structural framework, azachalcones, bis-chalcones, chalcone oximes, coumarin-chalcones, cyclohexane chalcones, dihydrochalcones, and flavanone-coupled chalcones. Many of these chalcones had significant inhibition against α-amylase as well as α-glucosidase that were comparable to or even stronger than standard inhibitors. This suggested that such compounds could be potential candidates for the discovery of new anti-diabetic remedies in the years to come.
Collapse
Affiliation(s)
- Thanh-Dao Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Vo Linh Tu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Thai Minh Hoang
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Truong Van Dat
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Dao Ngoc Hien Tam
- Regulatory Affairs Department, Asia Shine Trading & Service Company Limited, Ho Chi Minh City, VNM
| | - Nguyen Tuan Phat
- Faculty of Medicine, Hue University of Medicine and Pharmacy, Hue, VNM
| | - Dang The Hung
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Hong-Han Huynh
- School of Biotechnology, Tan Tao University, Long An, VNM
| | - Thanh C Do
- Faculty of Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, VNM
| | - Huu-Hoai Le
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Le Huu Nhat Minh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, TWN
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, TWN
| |
Collapse
|
16
|
Ezati M, Ghavamipour F, Adibi H, Pouraghajan K, Arab SS, Sajedi RH, Khodarahmi R. Design, synthesis, spectroscopic characterizations, antidiabetic, in silico and kinetic evaluation of novel curcumin-fused aldohexoses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121806. [PMID: 36108405 DOI: 10.1016/j.saa.2022.121806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Curcumin (bis-α,β-unsaturated β-diketone) plays an important role in the prevention of numerous diseases, including diabetes. Curcumin, as an enzyme inhibitor, has ideal structural properties including hydrophobic nature, flexible backbone, and several available hydrogen bond (H-bond) donors and acceptors. In this study, curcumin-fused aldohexose derivatives 3(a-c) were synthesized and used as influential agents in the treatment of diabetes with inhibitory properties against two carbohydrate-hydrolyzing enzymes α-glucosidase (α-Gls) and α-amylase (α-Amy) which are known to be significant therapeutic targets for the reduction of postprandial hyperglycemia. These compounds were isolated, purified, and then spectrally characterized via FT-IR, Mass, 1H, and 13C NMR, which strongly confirmed the targeted product's formation. Also, their inhibitory properties against α-Gls and α-Amy were evaluated spectroscopically. The Results indicated that all compounds strongly inhibited α-Amy and α-Gls by mixed and competitive mechanisms, respectively. The intrinsic fluorescence of α-Amy was quenched by the interaction with compounds 1 and 3b through a dynamic quenching mechanism, and the 1 and 3b/α-Amy complexes were spontaneously formed, mainly driven by the hydrophobic interaction and hydrogen bonding. Fourier transform infrared spectra (FT-IR) comprehensively verified that the binding of compounds 1 and 3b to α-Amy would change the conformation and microenvironment of α-Amy, thereby inhibiting the enzyme activity. Docking and molecular dynamics (MD) simulations showed that all compounds interacted with amino acid residues located in the active pocket site of the proteins. In vivo studies confirmed the plasma glucose diminution after the administration of compound 3b to Wistar rats. Accordingly, the results of the current work may prompt the scientific communities to investigate the possibility of compound 3b application in the clinic.
Collapse
Affiliation(s)
- Mohammad Ezati
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fahimeh Ghavamipour
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khadijeh Pouraghajan
- Bioinformatics Laboratory, Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
17
|
An in vitro study of the 5-methyl- and 5-bromo/chloro substituted 2-hydroxy-3-nitrochalcones as α-glucosidase and/or α-amylase inhibitors with potential anti-inflammatory activity. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02980-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Vassal M, Pereira CD, Martins F, Silva VLM, Silva AMS, Senos AMR, Costa MEV, Pereira MDL, Rebelo S. Different Strategies to Attenuate the Toxic Effects of Zinc Oxide Nanoparticles on Spermatogonia Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3561. [PMID: 36296751 PMCID: PMC9607034 DOI: 10.3390/nano12203561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are one of the most used nanoparticles due to their unique physicochemical and biological properties. There is, however, a growing concern about their negative impact on male reproductive health. Therefore, in the present study, two different strategies were used to evaluate the recovery ability of spermatogonia cells from the first stage of spermatogenesis (GC-1 spg cell line) after being exposed to a cytotoxic concentration of ZnO NPs (20 µg/mL) for two different short time periods, 6 and 12 h. The first strategy was to let the GC-1 cells recover after ZnO NPs exposure in a ZnO NPs-free medium for 4 days. At this phase, cell viability assays were performed to evaluate whether this period was long enough to allow for cell recovery. Exposure to ZnO NPs for 6 h and 12 h induced a decrease in viability of 25% and 41%, respectively. However, the recovery period allowed for an increase in cell viability from 16% to 25% to values as high as 91% and 84%. These results strongly suggest that GC-1 cells recover, but not completely, given that the cell viability does not reach 100%. Additionally, the impact of a synthetic chalcone (E)-3-(2,6-dichlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (1) to counteract the reproductive toxicity of ZnO NPs was investigated. Different concentrations of chalcone 1 (0-12.5 µM) were used before and during exposure of GC-1 cells to ZnO NPs to mitigate the damage induced by NPs. The protective ability of this compound was evaluated through viability assays, levels of DNA damage, and cytoskeleton dynamics (evaluating the acetylated α-tubulin and β-actin protein levels). The results indicated that the tested concentrations of chalcone 1 can attenuate the genotoxicity induced by ZnO NPs for shorter exposure periods (6 h). Chalcone 1 supplementation also increased cell viability and stabilized the microtubules. However, the antioxidant potential of this compound remains to be elucidated. In conclusion, this work addressed the main cytotoxic effects of ZnO NPs on a spermatogonia cell line and analyzed two different strategies to mitigate this damage, which represent a significant contribution to the field of male fertility.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cátia D. Pereira
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipa Martins
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera L. M. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana M. R. Senos
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Elisabete V. Costa
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sandra Rebelo
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
19
|
Huang Z, Chen Y, Huang R, Zhao Z. Identification and Structure–Activity Relationship of Recovered Phenolics with Antioxidant and Antihyperglycemic Potential from Sugarcane Molasses Vinasse. Foods 2022; 11:foods11193131. [PMID: 36230205 PMCID: PMC9563075 DOI: 10.3390/foods11193131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022] Open
Abstract
Sugarcane molasses vinasse is the residue of the fermentation of molasses and the water and soil environmental pollutants from distilleries. However, its recycling value has been neglected. The chemical analysis of the molasses vinasse led to the isolation of a new benzoyl chloride called 2,3,4-trihydroxy-5-methoxy benzoyl chloride, as well as thirteen known compounds, including six benzoic acids. The structure of the new benzoyl chloride was elucidated on the basis of extensive spectroscopic analysis. The antioxidant activity of all isolated compounds was measured using the ORAC assay. Moreover, we compared the cellular antioxidant activity (CAA) and inhibitory activity against α-amylase and α-glucosidase for structure–activity analysis. The results showed that only vanillic acid had CAA (8.64 μmol QE/100 μmol in the no PBS wash protocol and 6.18 μmol QE/100 μmol in the PBS wash protocol), although other benzoic acid derivatives had high ORAC values ranging between 1879.9 and 32,648.1 μmol TE/g. Additional methoxy groups at the ortho-positions of the p-hydroxy group of benzoic acids enhanced the inhibition of α-glucosidase but reduced the ORAC activity unless at the para-position. This work indicated that phenolics, especially phenolic acids in the sugarcane molasses vinasse, possessed potential antioxidant and antihyperglycemic activity, which improved the utilization rate of resources and reduced the discharge of pollutants.
Collapse
Affiliation(s)
- Zhe Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yinning Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510640, China
| | - Zhengang Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
- Correspondence: ; Tel./Fax: +86-189-2500-8785
| |
Collapse
|
20
|
Wei R, Lin L, Li T, Li C, Chen B, Shen Y. Separation, identification, and design of α-glucosidase inhibitory peptides based on the molecular mechanism from Paeonia ostii 'Feng Dan' seed protein. J Food Sci 2022; 87:4892-4904. [PMID: 36205483 DOI: 10.1111/1750-3841.16340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022]
Abstract
Peptides are considered promising sources of nutraceuticals. In this study, a mixture of peptides was prepared from Paeonia ostii 'Feng Dan' seed meal protein by continuous enzymolysis. Successive separation and purification procedures, including ultrafiltration and reversed-phase high-performance liquid chromatography (RP-HPLC), were performed, and six novel peptides were identified by liquid chromatography-electrospray ionization source-mass spectrometry/mass spectrometry (LC-ESI-MS/MS). In an in vitro antidiabetic activity test, Tyr-Phe-Phe-Met exhibited stronger α-glucosidase inhibitory activity (48.17 ± 3.34% at 1 mg/mL) than the other peptides. Docking studies of this peptide into the active site of α-glucosidase showed that the formation of hydrogen bonds could be critical for the enzymatic trapping of inhibitory peptides. Furthermore, two novel peptides, Phe-Phe-Phe-Met (IC50 = 245.46 ± 44.01 µM) and Tyr-Tyr-Phe-Met (IC50 = 306.71 ± 48.17 µM), with improved α-glucosidase inhibitory activity, were designed based on molecular docking. Therefore, the seed meal of Paeonia ostii could be considered a functional food ingredient for the management of hyperglycemia, and three novel peptides were identified as α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Ruiting Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, China
| | - Like Lin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, China
| | - Tingting Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
21
|
Zafar S, Faisal S, Jan H, Ullah R, Rizwan M, Abdullah, Alotaibi A, Bibi N, Rashid AU, Khattak A. Development of Iron Nanoparticles (FeNPs) Using Biomass of Enterobacter: Its Characterization, Antimicrobial, Anti-Alzheimer's, and Enzyme Inhibition Potential. MICROMACHINES 2022; 13:1259. [PMID: 36014181 PMCID: PMC9414903 DOI: 10.3390/mi13081259] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 09/07/2023]
Abstract
Nanotechnology is a new field that has gained considerable importance due to its potential uses in the field of biosciences, medicine, engineering, etc. In the present study, bio-inspired metallic iron nanoparticles (FeNPs) were prepared using biomass of Enterobacter train G52. The prepared particles were characterized by UV-spectroscopy, TGA, XRD, SEM, EDX, and FTIR techniques. The crystalline nature of the prepared FeNPs was confirmed by XRD. The SEM techniques revealed the particles size to be 23 nm, whereas in FTIR spectra the peaks in the functional group region indicated the involvement of bioactive compounds of selected bacterial strains in the capping of FeNPs. The EDX confirmed the presence of iron in the engineered FeNPs. The FeNPs were then evaluated for its antibacterial, antifungal, antioxidant, anti-inflammatory, anti-Alzheimer's, anti-larvicidal, protein kinase inhibition, anti-diabetic, and biocompatibility potentials using standard protocols. Substantial activities were observed in almost all biological assays used. The antioxidant, anti-cholinesterase, and anti-diabetic potential of the prepared nanoparticles were high in comparison to other areas of biological potential, indicating that the FeNPs are capable of targeting meditators of oxidative stress leading to diabetes and Alzheimer's disease. However, the claim made needs some further experimentation to confirm the observed potential in in vivo animal models.
Collapse
Affiliation(s)
- Sania Zafar
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Shah Faisal
- Department of Life Science, National Tsing Hua University, Hsinchu City 30071, Taiwan
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda 24460, KPK, Pakistan
| | - Hasnain Jan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 12211, Saudi Arabia
| | - Muhammad Rizwan
- Center for Biotechnology and Microbiology, University of Swat, Odigram, Mingora 19130, Pakistan
| | - Abdullah
- Department of Microbiology, Abdul Wali Khan University, Mardan 23200, KPK, Pakistan
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Nadia Bibi
- Department of Microbiology, Shaheed Benazir University, Peshawar 25000, KPK, Pakistan
| | - Amin Ur Rashid
- Department of Applied Physical and Material Sceinces, University of Swat, Odigram, Mingora 19130, Pakistan
| | - Aishma Khattak
- Department of Bioinformatics, Shaheed Benazir University, Peshawar 00384, KPK, Pakistan
| |
Collapse
|
22
|
Nunes da Rocha M, Marinho MM, Magno Rodrigues Teixeira A, Marinho ES, dos Santos HS. Predictive ADMET study of rhodanine-3-acetic acid chalcone derivatives. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Hu CM, Luo YX, Wang WJ, Li JP, Li MY, Zhang YF, Xiao D, Lu L, Xiong Z, Feng N, Li C. Synthesis and Evaluation of Coumarin-Chalcone Derivatives as α-Glucosidase Inhibitors. Front Chem 2022; 10:926543. [PMID: 35832461 PMCID: PMC9271751 DOI: 10.3389/fchem.2022.926543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Coumarin and chalcone, two important kinds of natural product skeletons, both exhibit α-glucosidase inhibitory activity. In this work, coumarin-chalcone derivatives 3 (a∼v) were synthesized, and their α-glucosidase inhibitory activity was screened. The results showed that all synthetic derivatives (IC50: 24.09 ± 2.36 to 125.26 ± 1.18 μM) presented better α-glucosidase inhibitory activity than the parent compounds 3-acetylcoumarin (IC50: 1.5 × 105 μM) and the positive control acarbose (IC50: 259.90 ± 1.06 μM). Among them, compound 3t displayed the highest α-glucosidase inhibitory activity (IC50: 24.09 ± 2.36 μM), which was approximately 10 times stronger than that of acarbose. The kinetic assay of 3t (KI = 18.82 μM, KIS = 59.99 μM) revealed that these compounds inhibited α-glucosidase in a mixed-type manner. Molecular docking was used to simulate the interaction between α-glucosidase and compound 3t.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhuang Xiong
- *Correspondence: Zhuang Xiong, ; Na Feng, ; Chen Li,
| | - Na Feng
- *Correspondence: Zhuang Xiong, ; Na Feng, ; Chen Li,
| | - Chen Li
- *Correspondence: Zhuang Xiong, ; Na Feng, ; Chen Li,
| |
Collapse
|
24
|
Lin J, Liang QM, Ye YN, Xiao D, Lu L, Li MY, Li JP, Zhang YF, Xiong Z, Feng N, Li C. Synthesis and Biological Evaluation of 5-Fluoro-2-Oxindole Derivatives as Potential α-Glucosidase Inhibitors. Front Chem 2022; 10:928295. [PMID: 35815213 PMCID: PMC9261963 DOI: 10.3389/fchem.2022.928295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
α-Glucosidase inhibitors are known to prevent the digestion of carbohydrates and reduce the impact of carbohydrates on blood glucose. To develop novel α-glucosidase inhibitors, a series of 5-fluoro-2-oxindole derivatives (3a ∼ 3v) were synthesized, and their α-glucosidase inhibitory activities were investigated. Biological assessment results showed that most synthesized compounds presented potential inhibition on α-glucosidase. Among them, compounds 3d, 3f, and 3i exhibited much better inhibitory activity with IC50 values of 49.89 ± 1.16 μM, 35.83 ± 0.98 μM, and 56.87 ± 0.42 μM, respectively, which were about 10 ∼ 15 folds higher than acarbose (IC50 = 569.43 ± 43.72 μM). A kinetic mechanism study revealed that compounds 3d, 3f, and 3i inhibited the α-glucosidase in a reversible and mixed manner. Molecular docking was carried out to simulate the affinity between the compound and α-glucosidase.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhuang Xiong
- *Correspondence: Zhuang Xiong, ; Na Feng, ; Chen Li,
| | - Na Feng
- *Correspondence: Zhuang Xiong, ; Na Feng, ; Chen Li,
| | - Chen Li
- *Correspondence: Zhuang Xiong, ; Na Feng, ; Chen Li,
| |
Collapse
|
25
|
Wu Y, Han Z, Wen M, Ho CT, Jiang Z, Wang Y, Xu N, Xie Z, Zhang J, Zhang L, Wan X. Screening of α-glucosidase inhibitors in large-leaf yellow tea by offline bioassay coupled with liquid chromatography tandem mass spectrometry. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Simone MI, Wood A, Campkin D, Kiefel MJ, Houston TA. Recent results from non-basic glycosidase inhibitors: How structural diversity can inform general strategies for improving inhibition potency. Eur J Med Chem 2022; 235:114282. [DOI: 10.1016/j.ejmech.2022.114282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 01/01/2023]
|
27
|
Nisar J, Shah SMA, Akram M, Ayaz S, Rashid A. Phytochemical Screening, Antioxidant, and Inhibition Activity of Picrorhiza kurroa Against α-Amylase and α-Glucosidase. Dose Response 2022; 20:15593258221095960. [PMID: 35558871 PMCID: PMC9087273 DOI: 10.1177/15593258221095960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/01/2022] [Indexed: 11/24/2022] Open
Abstract
Picrorhiza kurroa (P.K) usually familiar as kutki is a
well-known plant in the Ayurvedic system of medicine due to its reported
activities including antidiabetic, antibacterial, antioxidant, antitumor,
anti-inflammatory, and hepatoprotective. The current research was intended to
evaluate the antioxidant, inhibition activity of the ethanolic, methanolic, and
aqueous extracts of P.K roots against α-amylase and α-glucosidase in vitro,
after the phytochemical analysis. For this purpose, P.K roots
were extracted with ethanol (EthPk), methanol (MthPk), and distilled water
(AqPk) and phytochemical study of the extracts were performed to recognize the
total phenolic content (TPC) and total flavonoids content (TFC). Antioxidant
capability of the extracts was assessed by FRAP, ABTS, and DPPH assay. α-amylase
inhibitory and α-glucosidase inhibitory activities were also determined.
Software SPSS-23 was used to statistically analyze with One Way ANOVA and
results were stated as mean standard deviation. Result of the study showed that
MthPk contained the maximum concentration of TPC and TFC than EthPk and AqEh.
Antioxidants in terms of DPPH (lowest IC50 = .894 ± .57), FRAP
(612.54 ± 11.73) and ABTS (406.42 ± 4.02) assay was also maximum in MthPk. MthPk
was also showed maximum inhibition activity against α-amylase and α-glucosidase
with lowest IC50 (.39 ± .41; .61 ± .24), respectively. The extracts
α-amylase and α-glucosidase inhibitory activities order was as MthPk >
EthPk> AqPk. Results clearly specified that the methanolic extract of
Picrorhiza kurroa have the maximum antioxidant, α-amylase,
and α-glucosidase inhibitory activities. A positive correlation of TPC, TFC with
antioxidant, and α-amylase and α-glucosidase inhibition activities of the P.K
roots were also shown. The plant has capability to diminish the oxidative stress
and can be used to treat diabetes by inhibiting α-amylase and α-glucosidase
actions.
Collapse
Affiliation(s)
- Jaweria Nisar
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Syed Muhammad A. Shah
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sultan Ayaz
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abid Rashid
- Faculty of Medical Science, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
28
|
Zhao M, Luo L, Guo Y, Zhao B, Chen X, Shi X, Khan M, Lin JM, Hu Q. Viscosity-Based Flow Sensor on Paper for Quantitative and Label-Free Detection of α-Amylase and Its Inhibitor. ACS Sens 2022; 7:593-600. [PMID: 35050602 DOI: 10.1021/acssensors.1c02489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
α-Amylase (AMS) in human serum is a critical biomarker for the early diagnosis of pancreatic damage. In addition, the inhibition of α-amylase has long been thought to decrease the occurrence of diabetes. Thus, it is critical to construct a facile and convenient method for the determination of AMS and its inhibitor. In this study, we demonstrate a novel amylase sensor based on translating the viscosity change of the aqueous solution into the difference of the water diffusion length on a pH paper strip. AMS can be quantitatively detected by measuring the viscosity change of the amylopectin solution in the presence of AMS with different concentrations. The paper-based AMS sensor has a very high sensitivity with a detection limit of 0.017 U/mL and also shows excellent specificity. In addition, the inhibitory effect of acarbose on AMS is demonstrated with the IC50 value determined to be 21.66 ± 1.13 μg/mL. Furthermore, it is also evaluated for the detection of AMS in human serum samples of healthy people and acute pancreatitis patients. The difference in amylase levels between the two groups is unambiguously distinguished. Overall, this study provides a very simple, cost-effective, equipment-free, high-throughput, and label-free method for rapid and quantitative detection of α-amylase and may have significant applications in the diagnosis of acute pancreatitis and the screening of AMS inhibitors.
Collapse
Affiliation(s)
- Mei Zhao
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Limei Luo
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital, Jinan 250014, China
| | - Yongxian Guo
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Binglu Zhao
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiangfeng Chen
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xingang Shi
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Mashooq Khan
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiongzheng Hu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
29
|
Santos CMM, Proença C, Freitas M, Araújo A, Silva AMS, Fernandes E. Inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by hydroxylated xanthones. Food Funct 2022; 13:7930-7941. [DOI: 10.1039/d2fo00023g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Xanthones are oxygen-containing heterocyclic compounds that exhibit a wide range of biological and pharmacological properties. Some natural and synthetic derivatives have been identified for their antidiabetic profile, mainly as α-glucosidase...
Collapse
|
30
|
Dej-adisai S, Rais IR, Wattanapiromsakul C, Pitakbut T. Alpha-Glucosidase Inhibitory Assay-Screened Isolation and Molecular Docking Model from Bauhinia pulla Active Compounds. Molecules 2021; 26:molecules26195970. [PMID: 34641514 PMCID: PMC8512368 DOI: 10.3390/molecules26195970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this research was to establish the constituents of Bauhinia pulla as anti-diabetic agents. A phytochemistry analysis was conducted by chromatographic and spectroscopic techniques. The alpha-glucosidase inhibitory assay screening resulted in the isolation of eight known compounds of quercetin, quercitrin, luteolin, 5-deoxyluteolin, 4-methyl ether isoliquiritigenin, 3,2',4'-trihydroxy-4-methoxychalcone, stigmasterol and β-sitosterol. Ethanol leaf extracts showed potential effects, which led to a strong inhibitory activity of isolated quercetin at 138.95 µg/mL and 5.41 µg/mL of IC50, respectively. The docking confirmed that flavonoids and chalcones had the same potential binding sites and responsibilities for their activity. This study was the first report of Bauhinia pulla chemical constituents and its alpha-glucosidase inhibition.
Collapse
Affiliation(s)
- Sukanya Dej-adisai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand; (I.R.R.); (C.W.)
- Correspondence: ; Tel.: +66-74-288888; Fax: +66-74-288891
| | - Ichwan Ridwan Rais
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand; (I.R.R.); (C.W.)
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta 55164, Indonesia
| | - Chatchai Wattanapiromsakul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand; (I.R.R.); (C.W.)
| | - Thanet Pitakbut
- Department of Biochemical and Chemical Engineering, Technical University of Dortmund, 44227 Dortmund, Germany;
| |
Collapse
|
31
|
Bello M, Jiddah-kazeem B, Fatoki TH, Ibukun EO, Akinmoladun AC. Antioxidant property of Eucalyptus globulus Labill. Extracts and inhibitory activities on carbohydrate metabolizing enzymes related to type-2 diabetes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Ansari S, Azizian H, Pedrood K, Yavari A, Mojtabavi S, Faramarzi MA, Golshani S, Hosseini S, Biglar M, Larijani B, Rastegar H, Hamedifar H, Mohammadi-Khanaposhtani M, Mahdavi M. Design, synthesis, and α-glucosidase-inhibitory activity of phenoxy-biscoumarin-N-phenylacetamide hybrids. Arch Pharm (Weinheim) 2021; 354:e2100179. [PMID: 34467580 DOI: 10.1002/ardp.202100179] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/30/2022]
Abstract
Thirteen new phenoxy-biscoumarin-N-phenylacetamide derivatives (7a-m) were designed based on a molecular hybridization approach as new α-glucosidase inhibitors. These compounds were synthesized with high yields and evaluated in vitro for their inhibitory activity against yeast α-glucosidase. The obtained results revealed that a significant proportion of the synthesized compounds showed considerable α-glucosidase-inhibitory activity in comparison to acarbose as a positive control. Representatively, 2-(4-(bis(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl)phenoxy)-N-(4-bromophenyl)acetamide (7f), with IC50 = 41.73 ± 0.38 µM against α-glucosidase, was around 18 times more potent than acarbose (IC50 = 750.0 ± 10.0 µM). This compound was a competitive α-glucosidase inhibitor. Molecular modeling and dynamic simulation of these compounds confirmed the obtained results through in vitro experiments. Prediction of the druglikeness/ADME/toxicity of the compound 7f and comparison with the standard drug acarbose showed that the new compound 7f was probably better than the standard drug in terms of toxicity.
Collapse
Affiliation(s)
- Samira Ansari
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Keyvan Pedrood
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Yavari
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad A Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Golshani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Eid AM, Hawash M. Biological evaluation of Safrole oil and Safrole oil Nanoemulgel as antioxidant, antidiabetic, antibacterial, antifungal and anticancer. BMC Complement Med Ther 2021; 21:159. [PMID: 34051782 PMCID: PMC8164802 DOI: 10.1186/s12906-021-03324-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/13/2021] [Indexed: 11/26/2022] Open
Abstract
Background Safrole is a natural compound extracted from various plants, and has shown various biological activities. The current study aimed to investigate the antioxidant, antidiabetic, antimicrobial, and anticancer activity of safrole oil and to study the influence of safrole nanoemulgel on these activities. Methods The antioxidant and antidiabetic in-vitro assays were conducted using standard biomedical methods. The safrole oil nanoemulgel was developed using a self-emulsifying technique. Then the antimicrobial activity of the safrole oil and safrole nanoemulgel were performed on different microbial species, and cytotoxicity was determined against Hep3B cancer cell lines using the MTS assay. Results Safrole oil showed moderate antioxidant activity compared with standard Trolox, with IC50 value 50.28 ± 0.44 and 1.55 ± 0.32 μg/ml, respectively. Moreover, it had potent α-amylase inhibitory activity (IC50 11.36 ± 0.67 μg/ml) compared with Acarbose (IC50 value 5.88 ± 0.63). The safrole nanoemulgel had pseudo-plastic behaviour, droplet sizes below 200 nm, a polydispersity index (PDI) below 0.3, and a zeta potential of less than − 30 mV. Safrole oil has potential antimicrobial and anticancer activities, and these activities were improved with safrole nanoemulgel. Conclusion The safrole oil may be applied for the prevention and treatment of oxidative stress, diabetes, different microbial species and cancer, and these activities could be improved by nano-carriers.
Collapse
Affiliation(s)
- Ahmad M Eid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box 7, Palestine, Nablus.
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box 7, Palestine, Nablus.
| |
Collapse
|
34
|
Cao Q, Teng J, Wei B, Huang L, Xia N. Phenolic compounds, bioactivity, and bioaccessibility of ethanol extracts from passion fruit peel based on simulated gastrointestinal digestion. Food Chem 2021; 356:129682. [PMID: 33812196 DOI: 10.1016/j.foodchem.2021.129682] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 03/04/2021] [Accepted: 03/19/2021] [Indexed: 11/28/2022]
Abstract
Passion fruit peel, a potential source of bioactive compounds, has been used as food stabilizing agent. However, the phenolic composition and bioactivity of passion fruit peel have rarely been reported. The effects of simulated gastrointestinal digestion on the bioactive components, bioactivity and bioaccessibility of passion fruit peel ethanol extracts (PFPE) were investigated using high performance liquid chromatography-tandem mass spectrometry analysis (quasi-targeted metabolomics). Phenols (178) were identified, of which 25 inhibited alpha-glucosidase activity. The stabilities of PFPE phenols were significantly affected by pH changes and digestive enzymes during simulated digestion. The 1,1-diphenyl-2-picrylhydrazyl free radical scavenging capacity and ferric ion reducing antioxidant power were decreased by 32% and 30%, respectively, while 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) free radical scavenging capacity increased by 17%. Alpha-glucosidase inhibition decreased with decreased PFPE phenolic content. Therefore, passion fruit peel could be considered a source of natural antioxidants and alpha-glucosidase inhibitors.
Collapse
Affiliation(s)
- Qiqi Cao
- Department of Food Science and Engineering, Faculty of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530000, China
| | - Jianwen Teng
- Department of Food Science and Engineering, Faculty of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530000, China.
| | - Baoyao Wei
- Department of Food Science and Engineering, Faculty of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530000, China
| | - Li Huang
- Department of Food Science and Engineering, Faculty of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530000, China
| | - Ning Xia
- Department of Food Science and Engineering, Faculty of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530000, China
| |
Collapse
|
35
|
Pharmacological Potential and Chemical Characterization of Bridelia ferruginea Benth.-A Native Tropical African Medicinal Plant. Antibiotics (Basel) 2021; 10:antibiotics10020223. [PMID: 33672329 PMCID: PMC7926895 DOI: 10.3390/antibiotics10020223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/19/2022] Open
Abstract
To avail the possible pharmacological actions of Brideliaferruginea Benth., the present investigation was designed to quantitatively analyze the total flavonoid and phenolic contents and assess the various antioxidant and enzyme inhibition properties of leaf and stem bark extracts (ethyl acetate, water and methanolic) of B. ferruginea. Anti-proliferative effect was also investigated against human colon cancer cells (HCT116) as well as the antimicrobial potential against multiple bacterial and fungal (yeasts and dermatophytes) strains. The methanolic and water extracts of the stem bark demonstrated the highest phenolic content (193.58 ± 0.98 and 187.84 ± 1.88 mg/g, respectively), while the leaf extracts showed comparatively higher flavonoid contents (24.37-42.31 mg/g). Overall, the methanolic extracts were found to possess the most significant antioxidant potency. Compared to the other extracts, methanolic extracts of the B. ferruginea were revealed to be most potent inhibitors of acetyl- and butyryl-cholinesterases, tyrosinase α-amylase, except α-glucosidase. Only the ethyl acetate extracts were found to inhibit glucosidase. Additionally, the stem bark methanolic extract also showed potent inhibitory activity against E. coli and gram-positive bacteria (MIC (minimum inhibitory concentration): 2.48-62.99 µg/mL), as well as all the tested fungi (MIC: 4.96-62.99 µg/mL). In conclusion, B. ferruginea can be regarded as a promising source of bioactive compounds displaying multifunctional pharmacological activities and thus is a potential candidate for further investigations in the endeavor to develop botanical formulations for pharmaceutical and cosmeceutical industries.
Collapse
|
36
|
Keleszade E, Patterson M, Trangmar S, Guinan KJ, Costabile A. Clinical Efficacy of Brown Seaweeds Ascophyllum nodosum and Fucus vesiculosus in the Prevention or Delay Progression of the Metabolic Syndrome: A Review of Clinical Trials. Molecules 2021; 26:714. [PMID: 33573121 PMCID: PMC7866543 DOI: 10.3390/molecules26030714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS) is a global public health problem affecting nearly 25.9% of the world population characterised by a cluster of disorders dominated by abdominal obesity, high blood pressure, high fasting plasma glucose, hypertriacylglycerolaemia and low HDL-cholesterol. In recent years, marine organisms, especially seaweeds, have been highlighted as potential natural sources of bioactive compounds and useful metabolites, with many biological and physiological activities to be used in functional foods or in human nutraceuticals for the management of MetS and related disorders. Of the three groups of seaweeds, brown seaweeds are known to contain more bioactive components than either red and green seaweeds. Among the different brown seaweed species, Ascophyllum nodosum and Fucus vesiculosus have the highest antioxidant values and highest total phenolic content. However, the evidence base relies mainly on cell line and small animal models, with few studies to date involving humans. This review intends to provide an overview of the potential of brown seaweed extracts Ascophyllum nodosum and Fucus vesiculosus for the management and prevention of MetS and related conditions, based on the available evidence obtained from clinical trials.
Collapse
Affiliation(s)
- Enver Keleszade
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK; (E.K.); (M.P.); (S.T.)
| | - Michael Patterson
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK; (E.K.); (M.P.); (S.T.)
| | - Steven Trangmar
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK; (E.K.); (M.P.); (S.T.)
| | | | - Adele Costabile
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK; (E.K.); (M.P.); (S.T.)
| |
Collapse
|
37
|
Salehi B, Quispe C, Chamkhi I, El Omari N, Balahbib A, Sharifi-Rad J, Bouyahya A, Akram M, Iqbal M, Docea AO, Caruntu C, Leyva-Gómez G, Dey A, Martorell M, Calina D, López V, Les F. Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence. Front Pharmacol 2021; 11:592654. [PMID: 33536909 PMCID: PMC7849684 DOI: 10.3389/fphar.2020.592654] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Chalcones are among the leading bioactive flavonoids with a therapeutic potential implicated to an array of bioactivities investigated by a series of preclinical and clinical studies. In this article, different scientific databases were searched to retrieve studies depicting the biological activities of chalcones and their derivatives. This review comprehensively describes preclinical studies on chalcones and their derivatives describing their immense significance as antidiabetic, anticancer, anti-inflammatory, antimicrobial, antioxidant, antiparasitic, psychoactive, and neuroprotective agents. Besides, clinical trials revealed their use in the treatment of chronic venous insufficiency, skin conditions, and cancer. Bioavailability studies on chalcones and derivatives indicate possible hindrance and improvement in relation to its nutraceutical and pharmaceutical applications. Multifaceted and complex underlying mechanisms of chalcone actions demonstrated their ability to modulate a number of cancer cell lines, to inhibit a number of pathological microorganisms and parasites, and to control a number of signaling molecules and cascades related to disease modification. Clinical studies on chalcones revealed general absence of adverse effects besides reducing the clinical signs and symptoms with decent bioavailability. Further studies are needed to elucidate their structure activity, toxicity concerns, cellular basis of mode of action, and interactions with other molecules.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Iquique, Chile
| | - Imane Chamkhi
- Faculty of Sciences, Mohammed V University of Rabat, Rabat, Morocco.,Laboratory of Plant-Microbe Interactions, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University Rabat, Rabat, Morocco
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, Pakistan
| | - Mehwish Iqbal
- Institute of Health Management, Dow University of Health Sciences, Karachi, Pakistan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Constantin Caruntu
- Department of Physiology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition, and Metabolic Diseases, Bucharest, Romania
| | - Gerardo Leyva-Gómez
- Departamento De Farmacia, Facultad De Química, Universidad Nacional Autónoma De México, Ciudad De México, Mexico
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile.,Unidad De Desarrollo Tecnológico, UDT, Universidad De Concepción, Concepción, Chile
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain.,Instituto Agroalimentario De Aragón-IA2 CITA-Universidad De Zaragoza, Zaragoza, Spain
| | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain.,Instituto Agroalimentario De Aragón-IA2 CITA-Universidad De Zaragoza, Zaragoza, Spain
| |
Collapse
|
38
|
Martins T, Silva VLM, Silva AMS, Lima JLFC, Fernandes E, Ribeiro D. Chalcones as Scavengers of HOCl and Inhibitors of Oxidative Burst: Structure-Activity Relationship Studies. Med Chem 2020; 18:88-96. [PMID: 33380306 DOI: 10.2174/1573406417666201230093207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022]
Abstract
AIMS Evaluate the ability of chalcones to scavenge hypochlorous acid (HOCl) and modulate oxidative burst. BACKGROUND The chemistry of chalcones has long been a matter of interest to the scientific community due to the phenolic groups often present and to the various replaceable hydrogens that allow the formation of a broad number of derivatives. Due to this chemical diversity, several biological activities have been attributed to chalcones, namely anti-diabetic, anti-inflammatory and antioxidant. OBJECTIVES Evaluate the ability of a panel of 34 structurally related chalcones to scavenge HOCl and/or suppress its produc-tion through the inhibition of human neutrophils' oxidative burst, followed by the establishment of the respective structure-activity relationships. METHODS The ability of chalcones to scavenge HOCl was evaluated by fluorimetric detection of the inhibition of dihydro-rhodamine 123 oxidation. The ability of chalcones to inhibit neutrophils' oxidative burst was evaluated by chemiluminomet-ric detection of the inhibition of luminol oxidation. RESULTS It was observed that the ability to scavenge HOCl depends on the position and number of hydroxy groups on both aromatic rings. Chalcone 5b was the most active with an IC50 value of 1.0 ± 0.1 μM. The ability to inhibit neutrophils' oxi-dative burst depends on the presence of a 2'-hydroxy group on A-ring and on other substituents groups, e.g. methoxy, hy-droxy, nitro and/or chlorine atom(s) at C-2, C-3 and/or C-4 on B-ring, as in chalcones 2d, 2f, 2j, 2i, 4b, 2n and 1d, which were the most actives with IC50 values ranging from 0.61 ± 0.02 μM to 1.7 ± 0.2 μM. CONCLUSION The studied chalcones showed high activity at a low micromolar range, indicating their potential as antioxidant agents and to be used as a molecular structural scaffold for the design of new anti-inflammatory compounds.
Collapse
Affiliation(s)
- Thaise Martins
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto. Portugal
| | - Vera L M Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro. Portugal
| | - Artur M S Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro. Portugal
| | - José L F C Lima
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto. Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto. Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto. Portugal
| |
Collapse
|
39
|
Exploring the binding interactions of structurally diverse dichalcogenoimidodiphosphinate ligands with α-amylase: Spectroscopic approach coupled with molecular docking. Biochem Biophys Rep 2020; 24:100837. [PMID: 33251341 PMCID: PMC7677685 DOI: 10.1016/j.bbrep.2020.100837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/13/2023] Open
Abstract
Postprandial hyperglycemia has orchestrated untimely death among diabetic patients over the decades and regulation of α-amylase activity is now becoming a promising management option for type 2 diabetes. The present study investigated the binding interactions of three structurally diverse dichalcogenoimidodiphosphinate ligands with α-amylase to ascertain the affinity of the ligands for α-amylase using spectroscopic and molecular docking methods. The ligands were characterized using 1H and 31P NMR spectroscopy and CHN analysis. Diselenoimidodiphosphinate ligand (DY300), dithioimidodiphosphinate ligand (DY301), and thioselenoimidodiphosphinate ligand (DY302) quenched the intrinsic fluorescence intensity of α-amylase via a static quenching mechanism with bimolecular quenching constant (Kq) values in the order of x1011 M-1s-1, indicating formation of enzyme-ligand complexes. A binding stoichiometry of n≈1 was observed for α-amylase, with high binding constants (Ka). α-Amylase inhibition was as follow: Acarbose > DY301>DY300>DY302. Values of thermodynamic parameters obtained at temperatures investigated (298, 304 and 310 K) revealed spontaneous complex formation (ΔG<0) between the ligands and α-amylase; the main driving forces were hydrophobic interactions (with DY300, DY301, except DY302). UV–visible spectroscopy and Förster resonance energy transfer (FRET) affirmed change in enzyme conformation and binding occurrence. Molecular docking revealed ligands interaction with α-amylase via some key catalytic site amino acid residues (Asp197, Glu233 and Asp300). DY301 perhaps showed highest α-amylase inhibition (IC50, 268.11 ± 0.74 μM) due to its moderately high affinity and composition of two sulphide bonds unlike the others. This study might provide theoretical basis for development of novel α-amylase inhibitors from dichalcogenoimidodiphosphinate ligands for management of postprandial hyperglycemia. Interaction of α-amylase with dichalcogenoimidodiphosphinate ligands was studied. Spectroscopy and molecular docking explored the interaction mechanisms. The main driving forces were hydrophobic interactions with DY300 and DY301. The ligands quenched α-amylase fluorescence intensity by static mechanism. Dichalcogenoimidodiphosphinate ligands inhibited α-amylase activity.
Collapse
|
40
|
Sousa A, Lucas M, Ribeiro D, Correia CM, Silva VLM, Silva AMS, Fernandes E, Freitas M. Chalcones as Modulators of Neutrophil Oxidative Burst under Physiological and High Glucose Conditions. JOURNAL OF NATURAL PRODUCTS 2020; 83:3131-3140. [PMID: 33006891 DOI: 10.1021/acs.jnatprod.0c00728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Several epidemiological studies indicate that neutrophils, under hyperglycemic conditions, are involved in the perpetuation of the inflammatory status, a characteristic of diabetes mellitus, leading to the production of prodigious quantities of reactive species and the release of neutrophil extracellular traps (NETs). Accordingly, our aim was to study the ability of a panel of 25 structurally related chalcones to modulate human neutrophil oxidative burst and the production of NETs under physiological and high glucose conditions. In general, all chalcones presented similar effects under physiological and high glucose conditions. 2',4-Dihydroxy-3-methoxychalcone (3), here studied for the first time, was the most active (IC50 ≤ 5 μM) on the inhibition of neutrophil oxidative burst, showing the importance of the presence of hydroxy substituents at the C-2' and C-4 positions of the A and B rings, respectively, and a 3-methoxy substituent at B ring of the chalcone scaffold. In the present experimental conditions, NETs release only occurred under high glucose levels. The pentahydroxylated chalcone 1 was the only one that was able to modulate the NETs release. This study provided important considerations about the chalcones' scaffold and their modulatory effect on human neutrophil activities at physiological and high glucose conditions, evidencing their potential use as complementary antidiabetic agents.
Collapse
Affiliation(s)
- Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Mariana Lucas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Catarina M Correia
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Vera L M Silva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Artur M S Silva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| |
Collapse
|
41
|
Abdullah MA, Lee YR, Mastuki SN, Leong SW, Wan Ibrahim WN, Mohammad Latif MA, Ramli ANM, Mohd Aluwi MFF, Mohd Faudzi SM, Kim CH. Development of diarylpentadienone analogues as alpha-glucosidase inhibitor: Synthesis, in vitro biological and in vivo toxicity evaluations, and molecular docking analysis. Bioorg Chem 2020; 104:104277. [PMID: 32971414 DOI: 10.1016/j.bioorg.2020.104277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/31/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
Abstract
A series of aminated- (1-9) and sulfonamide-containing diarylpentadienones (10-18) were synthesized, structurally characterized, and evaluated for their in vitro anti-diabetic potential on α-glucosidase and DPP-4 enzymes. It was found that all the new molecules were non-associated PAINS compounds. The sulfonamide-containing series (compounds 10-18) selectively inhibited α-glucosidase over DPP-4, in which compound 18 demonstrated the highest activity with an IC50 value of 5.69 ± 0.5 µM through a competitive inhibition mechanism. Structure-activity relationship (SAR) studies concluded that the introduction of the trifluoromethylbenzene sulfonamide moiety was essential for the suppression of α-glucosidase. The most active compound 18, was then further tested for in vivo toxicities using the zebrafish animal model, with no toxic effects detected in the normal embryonic development, blood vessel formation, and apoptosis of zebrafish. Docking simulation studies were also carried out to better understand the binding interactions of compound 18 towards the homology modeled α -glucosidase and the human lysosomal α -glucosidase enzymes. The overall results suggest that the new sulfonamide-containing diarylpentadienones, compound 18, could be a promising candidate in the search for a new α-glucosidase inhibitor, and can serve as a basis for further studies involving hit-to-lead optimization, in vivo efficacy and safety assessment in an animal model and mechanism of action for the treatment of T2DM patients.
Collapse
Affiliation(s)
- Maryam Aisyah Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yu-Ri Lee
- Department of Biology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Siti Nurulhuda Mastuki
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sze Wei Leong
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wan Norhamidah Wan Ibrahim
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Muhammad Alif Mohammad Latif
- Department of Chemistry, Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Aizi Nor Mazila Ramli
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, 26300 Pahang, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, 26300 Pahang, Malaysia
| | - Siti Munirah Mohd Faudzi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea.
| |
Collapse
|
42
|
Effect of Aqueous Extract and Polyphenol Fraction Derived from Thymus atlanticus Leaves on Acute Hyperlipidemia in the Syrian Golden Hamsters. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3282596. [PMID: 32308705 PMCID: PMC7142347 DOI: 10.1155/2020/3282596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/01/2020] [Accepted: 03/03/2020] [Indexed: 01/10/2023]
Abstract
Thymus atlanticus, an endemic plant of Morocco, is traditionally used as a liniment or a drink to treat various diseases. However, there are few available scientific data regarding its biological effects. In this connection, the present study aimed to investigate the hypolipidemic and antioxidant effects of aqueous extract and polyphenol fraction of Thymus atlanticus in Syrian golden hamsters treated with Triton WR-1339 (triton, 20 mg/100 g body weight). The hamsters orally received the extracts (400 mg/kg), and blood samples were collected after 24 h of treatment to determine plasma lipid, insulin, and fasting blood glucose levels. Plasma malondialdehyde level and plasma total antioxidant (TAS) were also evaluated. The T. atlanticus extracts significantly decreased triglycerides, total cholesterol, VLDL-C, and LDL-C and increased HDL-C when compared with the hyperlipidemic group. Both extracts suppressed the effect of the triton injection on TAS and reduced the level of plasma malondialdehyde. The extracts produced no significant change in the blood glucose level but effectively prevented the mild hyperinsulinemia induced by triton. These findings suggest that T. atlanticus may be a useful alternative treatment for the control of hyperlipidemia and its related diseases.
Collapse
|
43
|
Xu XT, Deng XY, Chen J, Liang QM, Zhang K, Li DL, Wu PP, Zheng X, Zhou RP, Jiang ZY, Ma AJ, Chen WH, Wang SH. Synthesis and biological evaluation of coumarin derivatives as α-glucosidase inhibitors. Eur J Med Chem 2020; 189:112013. [DOI: 10.1016/j.ejmech.2019.112013] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
|
44
|
Zeng A, Yang R, Yu S, Zhao W. A novel hypoglycemic agent: polysaccharides from laver (Porphyra spp.). Food Funct 2020; 11:9048-9056. [DOI: 10.1039/d0fo01195a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The laver crude polysaccharides were extracted, purified, and subsequently degraded using H2O2. One low-molecular-weight polysaccharide PD-1 showing the highest inhibition activity against α-amylase might be used as a novel agent for T2DM management.
Collapse
Affiliation(s)
- Aoqiong Zeng
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P.R. China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P.R. China
| | - Shuhuai Yu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P.R. China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P.R. China
| |
Collapse
|