1
|
Zeng Z, Zhu Y, Li Y, Chang X, Lin J, Chen L, Lyu Q, Chen X, Ding W. Examination of the Bioavailability and Bioconversion of Wheat Bran-Bound Ferulic Acid: Insights into Gastrointestinal Processing and Colonic Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1331-1344. [PMID: 39750057 DOI: 10.1021/acs.jafc.4c09492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The postingestion journey and bioconversion of wheat bran-bound ferulic acid, a known beneficial phytochemical, remain insufficiently understood. This study aims to systematically investigate its bioaccessibility, bioavailability, excretion, and colonic metabolism, both in vitro and in vivo. Initial analysis confirmed the abundance and bioactivity of ferulic acid in wheat bran. Using a simulated gastrointestinal model, 1.7% of the ferulic acid was found to be bioaccessible, in contrast to 43.4% for total phenolics. In vivo bioavailability was assessed in rats via oral gavage of cooked wheat bran, with a plasma ferulic acid level peaking at 32.5 ± 4.9 ng/mL, corresponding to an absorption rate of 0.3%, while 1% was excreted in urine. Fecal metabolomic analysis revealed extensive colonic bioconversion, with elevated levels of ferulic acid and its metabolites, including 3-phenylpropionic acid, dihydroferulic acid, 5-hydroxyferulic acid, and hippuric acid. Novel metabolites, such as 3-(2,5-dimethoxyphenyl)propionic acid and N-(2-furoyl)glycine, were detected for the first time. These findings shed light on the complex biotransformation of wheat bran-bound ferulic acid and its potential health implications.
Collapse
Affiliation(s)
- Zichang Zeng
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yijun Zhu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yiyun Li
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xianhui Chang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
- Key Laboratory of Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, National Engineering Research Center of Grain Storage and Logistics, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jing Lin
- Hubei Provincial Institute for Food Supervision and Test, Hubei Shizhen Laboratory, Wuhan 430075, China
| | - Lei Chen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
- Key Laboratory of Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, National Engineering Research Center of Grain Storage and Logistics, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qingyun Lyu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
- Key Laboratory of Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, National Engineering Research Center of Grain Storage and Logistics, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xi Chen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
- Key Laboratory of Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, National Engineering Research Center of Grain Storage and Logistics, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenping Ding
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
- Key Laboratory of Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, National Engineering Research Center of Grain Storage and Logistics, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
2
|
Anwer EKE, Ajagbe M, Sherif M, Musaibah AS, Mahmoud S, ElBanbi A, Abdelnaser A. Gut Microbiota Secondary Metabolites: Key Roles in GI Tract Cancers and Infectious Diseases. Biomedicines 2025; 13:100. [PMID: 39857684 PMCID: PMC11762448 DOI: 10.3390/biomedicines13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The gut microbiota, a dynamic ecosystem of trillions of microorganisms, produces secondary metabolites that profoundly influence host health. Recent research has highlighted the significant role of these metabolites, particularly short-chain fatty acids, indoles, and bile acids, in modulating immune responses, impacting epigenetic mechanisms, and contributing to disease processes. In gastrointestinal (GI) cancers such as colorectal, liver, and gastric cancer, microbial metabolites can drive tumorigenesis by promoting inflammation, DNA damage, and immune evasion. Conversely, these same metabolites hold therapeutic promise, potentially enhancing responses to chemotherapy and immunotherapy and even directly suppressing tumor growth. In addition, gut microbial metabolites play crucial roles in infectious disease susceptibility and resilience, mediating immune pathways that impact pathogen resistance. By consolidating recent insights into the gut microbiota's role in shaping disease and health, this review underscores the therapeutic potential of targeting microbiome-derived metabolites for treating GI cancers and infectious diseases and calls for further research into microbiome-based interventions.
Collapse
Affiliation(s)
- Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Muhammad Ajagbe
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Moustafa Sherif
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Abobaker S. Musaibah
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Shuaib Mahmoud
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Ali ElBanbi
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| |
Collapse
|
3
|
Hanafy NA. Chitosan nanoparticles as drug carriers and gene delivery systems: Advances and challenges. FUNDAMENTALS AND BIOMEDICAL APPLICATIONS OF CHITOSAN NANOPARTICLES 2025:267-308. [DOI: 10.1016/b978-0-443-14088-4.00015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Martins BT, Faria NA, Macedo AC, Miragaia M, Serra AT, Bronze MR, Ventura MR. Exploring the Biological Potential of Hydroxytyrosol and Derivatives: Synthetic Strategies and Evaluation of Antiproliferative, Antioxidant, and Antimicrobial Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39561326 DOI: 10.1021/acs.jafc.4c06179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Phenolic compounds found in Extra Virgin Olive Oil (EVOO) have been associated with various health benefits. Bioavailability studies indicate that the phase I and II metabolites of these phenolic compounds can be detected in human urine and plasma following EVOO consumption. To contribute to the understanding of the biological potential of these phenolic compounds and their metabolites, this study delves into the synthesis, stability, and biological activities of hydroxytyrosol (HT), tyrosol (Tyr), and homovanillic alcohol (HVA), as well as their glucuronide, sulfate, and acetylated metabolites. For the first time, an effective synthesis was developed to allow the selective obtention of 3'- and 4'-glucuronides, as well as sulfates of HT. HT and its acetylated derivative emerged as the most potent compounds across antioxidant assessments, antiproliferative studies against human colorectal adenocarcinoma cell lines, and antimicrobial assays.
Collapse
Affiliation(s)
- Beatriz T Martins
- ITQB NOVA─Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Nuno Alexandre Faria
- ITQB NOVA─Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Catarina Macedo
- ITQB NOVA─Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- IBET─Instituto de Biologia Experimental e Tecnológica, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Maria Miragaia
- ITQB NOVA─Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Teresa Serra
- ITQB NOVA─Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- IBET─Instituto de Biologia Experimental e Tecnológica, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - M Rosário Bronze
- ITQB NOVA─Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- IBET─Instituto de Biologia Experimental e Tecnológica, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
- FFULisboa─Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal
| | - M Rita Ventura
- ITQB NOVA─Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
5
|
Zhu X, Ding G, Ren S, Xi J, Liu K. The bioavailability, absorption, metabolism, and regulation of glucolipid metabolism disorders by quercetin and its important glycosides: A review. Food Chem 2024; 458:140262. [PMID: 38944925 DOI: 10.1016/j.foodchem.2024.140262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Quercetin and its glycosides (QG), vitally natural flavonoid, have been popular for health benefits. However, the absorption and metabolism affect their bioavailability, and the metabolic transformation alters their biological activities. This review systematically summarizes the bioavailability and pathways for the absorption and metabolism of quercetin/QG in vivo and in vitro, the biological activities and mechanism of quercetin/QG and their metabolites in treating glucolipid metabolism are discussed. After oral administration, quercetin/QG are mainly absorbed by the intestine, undergo phase II metabolism in the small intestine and liver to form conjugates and are metabolized into small phenolic acids by intestinal microbiota. Quercetin/QG and their metabolites exert beneficial effects on regulating glucolipid metabolism disorders, including improving insulin resistance, inhibiting lipogenesis, enhancing thermogenesis, modulating intestinal microbiota, relieving oxidative stress, and attenuating inflammation. This review enhances understanding of the mechanism of quercetin/QG regulate glucolipid metabolism and provides scientific support for the development of functional foods.
Collapse
Affiliation(s)
- Xiaoai Zhu
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Guiyuan Ding
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Shuncheng Ren
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Jun Xi
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Kunlun Liu
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| |
Collapse
|
6
|
Rodriguez L, Muñoz-Bernal ÓA, Fuentes E, Alvarez-Parrilla E, Palomo I. Antiplatelet Activity of Phenolic Compounds-Fortified Merlot Wine and Pure Phenolic Compounds. APPLIED SCIENCES 2024; 14:5707. [DOI: 10.3390/app14135707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Red wines and their pomace are valuable sources of phenolic compounds (PCs), which have been proposed as potential contributors to their cardioprotective effect through the inhibition of platelet aggregation. The antiplatelet activity of an extract depends on its chemical composition, specifically the presence of certain phenolic compounds, as well as the interactions between them affecting biological activity. In order to assess the effect on platelet aggregation, we investigated the effect of the grape pomace PC enrichment of a Merlot wine, as well as the effect of the five major phenolic compounds present in wine extracts: caffeic acid, gallic acid, quercetin, epicatechin, and catechin. We analyzed how their combination influenced platelet aggregation. We found that the fortified wine sample with the highest PC content (W8) exhibited a potent antiplatelet effect in aggregation and platelet activation assays induced by the agonists TRAP-6, collagen, and ADP, with its activity being most potent against the latter agonist (78 ± 4%). Among the evaluated phenolic compounds, quercetin showed the highest antiplatelet potential against all three agonists studied, while gallic acid showed minimal antiplatelet effect. These findings suggest that the cardioprotective effect of wines is related to their chemical composition and the synergy among phenolic compounds. However, further research is required to fully understand the underlying mechanisms and clinical relevance of this activity.
Collapse
Affiliation(s)
- Lyanne Rodriguez
- Thrombosis and Healthy Aging Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 34460000, Chile
| | - Óscar A. Muñoz-Bernal
- Institute of Biomedical Sciences, Department of Chemical Biological Sciences, Authonomus University of Ciudad Juarez, Ciudad Juarez 32310, Chihuahua, Mexico
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 34460000, Chile
| | - Emilio Alvarez-Parrilla
- Institute of Biomedical Sciences, Department of Chemical Biological Sciences, Authonomus University of Ciudad Juarez, Ciudad Juarez 32310, Chihuahua, Mexico
| | - Iván Palomo
- Thrombosis and Healthy Aging Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 34460000, Chile
| |
Collapse
|
7
|
Ouyang J, Lin D, Chen X, Li Y, Liu Q, Li D, Quan H, Fu X, Wu Q, Wang X, Wu S, Li C, Feng Y, Mao W. Analysis of the chemical constituents and their metabolites in Orthosiphon stamineus Benth. via UHPLC-Q exactive orbitrap-HRMS and AFADESI-MSI techniques. PLoS One 2024; 19:e0304852. [PMID: 38917120 PMCID: PMC11198764 DOI: 10.1371/journal.pone.0304852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Known for its strong diuretic properties, the perennial herbaceous plant Orthosiphon stamineus Benth. is believed to preserve the kidney disease. This study compared the boiling water extract with powdered Orthosiphon stamineus Benth. and used a highly sensitive and high resolution UHPLC-Q-Exactive-Orbitrap-HRMS technology to evaluate its chemical composition. RESULTS Furthermore, by monitoring the absorption of prototype components in rat plasma following oral treatment, the beneficial ingredients of the Orthosiphon stamineus Benth. decoction was discovered. Approximately 92 substances underwent a preliminary identification utilizing relevant databases, relevant literature, and reference standards. As the compound differences between the powdered Orthosiphon stamineus Benth. and its water decoction were analyzed, it was found that boiling produced additional compounds, 48 of which were new. 45 blood absorption prototype components and 49 OS metabolites were discovered from rat serum, and a kidney tissue homogenate revealed an additional 28 prototype components. Early differences in the distribution of ferulic acid, cis 4 coumaric acid, and rosmarinic acid were shown using spatial metabolomics. It was elucidated that the renal cortex region is where rosmarinic acid largely acts, offering a theoretical foundation for further studies on the application of OS in the prevention and treatment of illness as well as the preservation of kidney function. SIGNIFICANCE In this study, UHPLC-Q Exactive Orbitrap-HRMS was employed to discern OS's chemical composition, and a rapid, sensitive, and broad-coverage AFADESI-MSI method was developed to visualize the spatial distribution of compounds in tissues.
Collapse
Affiliation(s)
- Jianting Ouyang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Danyao Lin
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xuesheng Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Yimeng Li
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Qin Liu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Delun Li
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Haohao Quan
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xinwen Fu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Qiaoru Wu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xiaowan Wang
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Shouhai Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Chuang Li
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Yi Feng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Department of Pharmacokinetics of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Wei Mao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
8
|
Kasapoğlu KN, Sus N, Kruger J, Frank J, Özçelik B. Fabrication of phenolic loaded spray-dried nanoliposomes stabilized by chitosan and whey protein: Digestive stability, transepithelial transport and bioactivity retention of phenolics. Int J Biol Macromol 2024; 271:132676. [PMID: 38821805 DOI: 10.1016/j.ijbiomac.2024.132676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Low bioavailability of phenolic compounds (phenolics) results in low in vivo bioactivity, thus their co-encapsulation could enhance potential health benefits. In this study, reconstitutable nanoliposomes loaded with phenolics varying in solubility were fabricated using spray drying after stabilized by chitosan (CH) or whey protein (WP). The physicochemical properties, biocompatibility, digestive fate, and bioactivity retention of phenolics in different forms were investigated. The surface charge of nanoliposomes (NL) shifted from -18.7 mV to positive due to conjugation with cationic CH (53.1 mV) and WP (14 mV) after spray drying while it was -26.6 mV for only spray-dried phenolics (SDP). Encapsulation efficiency of the tested phenolics ranged between 64.7 % and 95.1 %. Simulated gastrointestinal digestion/Caco-2 cell model was used to estimate the digestive fate of the phenolics yielding up to 3-fold higher bioaccessibility for encapsulated phenolics compared to their native form, combined or individually. However, the cellular uptake or transepithelial transport of phenolics did not differ significantly among formulations, except trans-resveratrol in WP-NL. On the contrary, the suppressive effect of phenolics on fatty acid induced hepatocellular lipid accumulation was strongly dependent on the encapsulation method, no activity was retained by SDP. These findings suggested that reconstitutable nanoliposomes can improve the absorption of phenolics by facilitating their bioaccessibility and thermal and/or processing stability during spray drying.
Collapse
Affiliation(s)
- Kadriye Nur Kasapoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany.
| | - Nadine Sus
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany.
| | - Johanita Kruger
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany.
| | - Jan Frank
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany.
| | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; BIOACTIVE Research & Innovation Food Manufacturing Industry Trade LTD Co, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
9
|
Acito M, Varfaj I, Brighenti V, Cengiz EC, Rondini T, Fatigoni C, Russo C, Pietrella D, Pellati F, Bartolini D, Sardella R, Moretti M, Villarini M. A novel black poplar propolis extract with promising health-promoting properties: focus on its chemical composition, antioxidant, anti-inflammatory, and anti-genotoxic activities. Food Funct 2024; 15:4983-4999. [PMID: 38606532 DOI: 10.1039/d3fo05059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Propolis is a resinous mixture produced by honeybees which has been used since ancient times for its useful properties. However, its chemical composition and bioactivity may vary, depending on the geographical area of origin and the type of tree bees use for collecting pollen. In this context, this research aimed to investigate the total phenolic content (using the Folin-Ciocalteu assay) and the total antioxidant capacity (using the FRAP, DPPH, and ABTS assays) of three black poplar (Populus nigra L.) propolis (BPP) solutions (S1, S2, and S3), as well as the chemical composition (HPLC-ESI-MSn) and biological activities (effect on cell viability, genotoxic/antigenotoxic properties, and anti-inflammatory activity, and effect on ROS production) of the one which showed the highest antioxidant activity (S1). The hydroalcoholic BPP solution S1 was a prototype of an innovative, research-type product by an Italian nutraceutical manufacturer. In contrast, hydroalcoholic BPP solutions S2 and S3 were conventional products purchased from local pharmacy stores. For the three extracts, 50 phenolic compounds, encompassing phenolic acids and flavonoids, were identified. In summary, the results showed an interesting chemical profile and the remarkable antioxidant, antigenotoxic, anti-inflammatory and ROS-modulating activities of the innovative BPP extract S1, paving the way for future research. In vivo investigations will be a possible line to take, which may help corroborate the hypothesis of the potential health benefits of this product, and even stimulate further ameliorations of the new prototype.
Collapse
Affiliation(s)
- Mattia Acito
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Ina Varfaj
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Emine Ceren Cengiz
- Department of Toxicology, Faculty of Pharmacy, Gazi University, 06560 Ankara, Turkey
| | - Tommaso Rondini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Cristina Fatigoni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Carla Russo
- Department of Medicine and Surgery, University of Perugia, Piazzale S. Gambuli 1, 06132 Perugia, Italy
| | - Donatella Pietrella
- Department of Medicine and Surgery, University of Perugia, Piazzale S. Gambuli 1, 06132 Perugia, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Milena Villarini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| |
Collapse
|
10
|
Zodio S, Serreli G, Melis MP, Franchi B, Boronat A, de la Torre R, Deiana M. Protective effect of hydroxytyrosol and tyrosol metabolites in LPS-induced vascular barrier derangement in vitro. Front Nutr 2024; 11:1350378. [PMID: 38706564 PMCID: PMC11066181 DOI: 10.3389/fnut.2024.1350378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction The maintenance of endothelial barrier function is essential for vasal homeostasis and prevention of cardiovascular diseases. Among the toxic stimuli involved in the initiation of atherosclerotic lesions, Gram negative lipopolysaccharide (LPS) has been reported to be able to trigger endothelial dysfunction, through the alteration of barrier permeability and inflammatory response. Hydroxytyrosol (HT) and tyrosol (Tyr), the major phenolic compounds of extra virgin olive oil (EVOO), as wells as their circulating sulphated and glucuronidated metabolites have been shown to exert anti-inflammatory effects at endothelial level. Methods In this study we investigated the protective effects of HT and Tyr metabolites on LPS-induced alteration of permeability in Human Umbilical Vein Endothelial Cells (HUVEC) monolayers and examined underlying signaling pathways, focusing on tight junction (TJ) proteins, mitogen-activated protein kinase (MAPK) and NOD-, LRR-and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. Results It was shown that LPS-increased permeability in HUVEC cells was due to the alteration of TJ protein level, following the activation of MAPK and NLRP3. HT and Tyr sulphated and glucuronidated metabolites were able to limit the effects exerted by LPS, acting as signaling molecules with an efficacy comparable to that of their precursors HT and Tyr. Discussion The obtained results add a further piece to the understanding of HT and Tyr metabolites mechanisms of action in vascular protection.
Collapse
Affiliation(s)
- Sonia Zodio
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Gabriele Serreli
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Paola Melis
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Benedetta Franchi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Anna Boronat
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Research Institute, Barcelona, Spain
| | - Rafael de la Torre
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Research Institute, Barcelona, Spain
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBEROBN), Madrid, Spain
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
11
|
Wróblewska B, Kuliga A, Wnorowska K. Bioactive Dairy-Fermented Products and Phenolic Compounds: Together or Apart. Molecules 2023; 28:8081. [PMID: 38138571 PMCID: PMC10746084 DOI: 10.3390/molecules28248081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fermented dairy products (e.g., yogurt, kefir, and buttermilk) are significant in the dairy industry. They are less immunoreactive than the raw materials from which they are derived. The attractiveness of these products is based on their bioactivity and properties that induce immune or anti-inflammatory processes. In the search for new solutions, plant raw materials with beneficial effects have been combined to multiply their effects or obtain new properties. Polyphenols (e.g., flavonoids, phenolic acids, lignans, and stilbenes) are present in fruit and vegetables, but also in coffee, tea, or wine. They reduce the risk of chronic diseases, such as cancer, diabetes, or inflammation. Hence, it is becoming valuable to combine dairy proteins with polyphenols, of which epigallocatechin-3-gallate (EGCG) and chlorogenic acid (CGA) show a particular predisposition to bind to milk proteins (e.g., α-lactalbumin β-lactoglobulin, αs1-casein, and κ-casein). Reducing the allergenicity of milk proteins by combining them with polyphenols is an essential issue. As potential 'metabolic prebiotics', they also contribute to stimulating the growth of beneficial bacteria and inhibiting pathogenic bacteria in the human gastrointestinal tract. In silico methods, mainly docking, assess the new structures of conjugates and the consequences of the interactions that are formed between proteins and polyphenols, as well as to predict their action in the body.
Collapse
Affiliation(s)
- Barbara Wróblewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland; (A.K.); (K.W.)
| | | | | |
Collapse
|
12
|
Porto FG, Tanaka LY, de Bessa TC, Oliveira PVS, Souza JMFD, Kajihara D, Fernandes CG, Santos PN, Laurindo FRM. Evidence for a protective role of Protein Disulfide Isomerase-A1 against aortic dissection. Atherosclerosis 2023; 382:117283. [PMID: 37774430 DOI: 10.1016/j.atherosclerosis.2023.117283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND AND AIMS Redox signaling is involved in the pathophysiology of aortic aneurysm/dissection. Protein Disulfide Isomerases and its prototype PDIA1 are thiol redox chaperones mainly from endoplasmic reticulum (ER), while PDIA1 cell surface pool redox-regulates thrombosis, cytoskeleton remodeling and integrin activation, which are mechanisms involved in aortic disease. Here we investigate the roles of PDIA1 in aortic dissection. METHODS Initially, we assessed the outcome of aortic aneurysm/dissection in transgenic PDIA1-overexpressing FVB mice using a model of 28-day exposure to lysyl oxidase inhibitor BAPN plus angiotensin-II infusion. In a second protocol, we assessed the effects of PDIA1 inhibitor isoquercetin (IQ) against aortic dissection in C57BL/6 mice exposed to BAPN for 28 days. RESULTS Transgenic PDIA1 overexpression associated with ca. 50% (p = 0.022) decrease (vs.wild-type) in mortality due to abdominal aortic rupture and protected against elastic fiber breaks in thoracic aorta. Conversely, exposure of mice to IQ increased thoracic aorta dissection-related mortality rates, from ca. 18%-50% within 28-days (p = 0.019); elastic fiber disruption and collagen deposition were also enhanced. The structurally-related compound diosmetin, which does not inhibit PDI, had negligible effects. In parallel, stretch-tension curves indicated that IQ amplified a ductile-type of biomechanical failure vs. control or BAPN-exposed mice aortas. IQ-induced effects seemed unassociated with nonspecific antioxidant effects or ER stress. In both models, echocardiographic analysis of surviving mice suggested that aortic rupture was dissociated from progressive dilatation. CONCLUSIONS Our data indicate a protective role of PDIA1 against aortic dissection/rupture and potentially uncovers a novel integrative mechanism coupling redox and biomechanical homeostasis in vascular remodeling.
Collapse
Affiliation(s)
- Fernando Garcez Porto
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Leonardo Yuji Tanaka
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Tiphany Coralie de Bessa
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Percillia Victoria Santos Oliveira
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Júlia Martins Felipe de Souza
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniela Kajihara
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Carolina Gonçalves Fernandes
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Patricia Nolasco Santos
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Francisco Rafael Martins Laurindo
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
13
|
Boronat A, Serreli G, Rodríguez-Morató J, Deiana M, de la Torre R. Olive Oil Phenolic Compounds' Activity against Age-Associated Cognitive Decline: Clinical and Experimental Evidence. Antioxidants (Basel) 2023; 12:1472. [PMID: 37508010 PMCID: PMC10376491 DOI: 10.3390/antiox12071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Epidemiological studies have shown that consuming olive oil rich in phenolic bioactive compounds is associated with a lower risk of neurodegenerative diseases and better cognitive performance in aged populations. Since oxidative stress is a common hallmark of age-related cognitive decline, incorporating exogenous antioxidants could have beneficial effects on brain aging. In this review, we firstly summarize and critically discuss the current preclinical evidence and the potential neuroprotective mechanisms. Existing studies indicate that olive oil phenolic compounds can modulate and counteract oxidative stress and neuroinflammation, two relevant pathways linked to the onset and progression of neurodegenerative processes. Secondly, we summarize the current clinical evidence. In contrast to preclinical studies, there is no direct evidence in humans of the bioactivity of olive oil phenolic compounds. Instead, we have summarized current findings regarding nutritional interventions supplemented with olive oil on cognition. A growing body of research indicates that high consumption of olive oil phenolic compounds is associated with better preservation of cognitive performance, conferring an additional benefit, independent of the dietary pattern. In conclusion, the consumption of olive oil rich in phenolic bioactive compounds has potential neuroprotective effects. Further research is needed to understand the underlying mechanisms and potential clinical applications.
Collapse
Affiliation(s)
- Anna Boronat
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Gabriele Serreli
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy
| | - Jose Rodríguez-Morató
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBEROBN), 28029 Madrid, Spain
| |
Collapse
|
14
|
Hemdan BA, Mostafa A, Elbatanony MM, El-Feky AM, Paunova-Krasteva T, Stoitsova S, El-Liethy MA, El-Taweel GE, Abu Mraheil M. Bioactive Azadirachta indica and Melia azedarach leaves extracts with anti-SARS-CoV-2 and antibacterial activities. PLoS One 2023; 18:e0282729. [PMID: 36888689 PMCID: PMC9994683 DOI: 10.1371/journal.pone.0282729] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
The leaves of Azadirachta indica L. and Melia azedarach L., belonging to Meliaceae family, have been shown to have medicinal benefits and are extensively employed in traditional folk medicine. Herein, HPLC analysis of the ethyl acetate fraction of the total methanolic extract emphasized the enrichment of both A. indica L., and M. azedarach L. leaves extracts with phenolic and flavonoids composites, respectively. Besides, 4 limonoids and 2 flavonoids were isolated using column chromatography. By assessing the in vitro antiviral activities of both total leaves extracts against Severe Acute Respiratory Syndrome Corona virus 2 (SARS-CoV-2), it was found that A. indica L. and M. azedarach L. have robust anti-SARS-CoV-2 activities at low half-maximal inhibitory concentrations (IC50) of 8.451 and 6.922 μg/mL, respectively. Due to the high safety of A. indica L. and M. azedarach L. extracts with half-maximal cytotoxic concentrations (CC50) of 446.2 and 351.4 μg/ml, respectively, both displayed extraordinary selectivity indices (SI>50). A. indica L. and M. azedarach L. leaves extracts could induce antibacterial activities against both Gram-negative and positive bacterial strains. The minimal inhibitory concentrations of A. indica L. and M. azedarach L. leaves extracts varied from 25 to 100 mg/mL within 30 min contact time towards the tested bacteria. Our findings confirm the broad-spectrum medicinal value of A. indica L. and M. azedarach L. leaves extracts. Finally, additional in vivo investigations are highly recommended to confirm the anti-COVID-19 and antimicrobial activities of both plant extracts.
Collapse
Affiliation(s)
- Bahaa A. Hemdan
- Water Pollution Research Department, Environmental Microbiology Laboratory, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, Cairo, Egypt
- * E-mail: (AM); (MAM)
| | | | - Amal M. El-Feky
- Pharmacognosy Department, National Research Centre, Dokki, Cairo, Egypt
| | | | - Stoyanka Stoitsova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohamed Azab El-Liethy
- Water Pollution Research Department, Environmental Microbiology Laboratory, National Research Centre, Dokki, Cairo, Egypt
| | - Gamila E. El-Taweel
- Water Pollution Research Department, Environmental Microbiology Laboratory, National Research Centre, Dokki, Cairo, Egypt
| | - Mobarak Abu Mraheil
- Institute of Medical Microbiology, German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, Germany
- * E-mail: (AM); (MAM)
| |
Collapse
|
15
|
Synthesis and Characterization of a Novel Resveratrol Xylobioside Obtained Using a Mutagenic Variant of a GH10 Endoxylanase. Antioxidants (Basel) 2022; 12:antiox12010085. [PMID: 36670947 PMCID: PMC9855058 DOI: 10.3390/antiox12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Resveratrol is a natural polyphenol with antioxidant activity and numerous health benefits. However, in vivo application of this compound is still a challenge due to its poor aqueous solubility and rapid metabolism, which leads to an extremely low bioavailability in the target tissues. In this work, rXynSOS-E236G glycosynthase, designed from a GH10 endoxylanase of the fungus Talaromyces amestolkiae, was used to glycosylate resveratrol by using xylobiosyl-fluoride as a sugar donor. The major product from this reaction was identified by NMR as 3-O-ꞵ-d-xylobiosyl resveratrol, together with other glycosides produced in a lower amount as 4'-O-ꞵ-d-xylobiosyl resveratrol and 3-O-ꞵ-d-xylotetraosyl resveratrol. The application of response surface methodology made it possible to optimize the reaction, producing 35% of 3-O-ꞵ-d-xylobiosyl resveratrol. Since other minor glycosides are obtained in addition to this compound, the transformation of the phenolic substrate amounted to 70%. Xylobiosylation decreased the antioxidant capacity of resveratrol by 2.21-fold, but, in return, produced a staggering 4,866-fold improvement in solubility, facilitating the delivery of large amounts of the molecule and its transit to the colon. A preliminary study has also shown that the colonic microbiota is capable of releasing resveratrol from 3-O-ꞵ-d-xylobiosyl resveratrol. These results support the potential of mutagenic variants of glycosyl hydrolases to synthesize highly soluble resveratrol glycosides, which could, in turn, improve the bioavailability and bioactive properties of this polyphenol.
Collapse
|
16
|
Vasilakopoulou PB, Gousgouni AT, Yanni AE, Kostomitsopoulos N, Karathanos VT, Chiou A. Polar Phenol Detection in Plasma and Serum: Insights on Sample Pre-Treatment for LC/MS Analysis and Application on the Serum of Corinthian Currant-Fed Rats. Biomolecules 2022; 12:biom12121838. [PMID: 36551268 PMCID: PMC9775334 DOI: 10.3390/biom12121838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Analysis of plasma and serum provides valuable information on the amounts of polar phenols' circulating after ingestion. In the present study, protein precipitation (PPT), liquid-liquid extraction (LLE), solid phase extraction (SPE), enzymatic hydrolysis and their combinations were meticulously evaluated for the extraction of a variety of polar phenolic moieties from plasma and serum. The recovery values of the above methods were compared; satisfactory recoveries (>60%) were attained for most analytes. Polar phenol aglycones undergo degradation with enzymatic hydrolysis; however, their extended phase II metabolism makes enzymatic hydrolysis a mandated process for their analysis in such biofluids. Hence, enzymatic hydrolysis followed by LLE was used for the identification of polar phenols in rats' serum, after the long-term oral consumption of Corinthian Currant. Corinthian Currant is a Greek dried vine product rich in bioactive polar phenolics. Flavonoids and phenolic acids, detected as aglycones, ranged from 0.57 ± 0.08 to 181.66 ± 48.95 and 3.45 ± 1.20 to 897.81 ± 173.96 ng/mL, respectively. The majority of polar phenolics were present as phase II metabolites, representing their fasting state in the blood stream. This is the first study evaluating the presence of polar phenolics in the serum of rats following a long-term diet supplemented with Corinthian Currant as a whole food.
Collapse
Affiliation(s)
- Paraskevi B. Vasilakopoulou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
| | - Aimilia-Tatiana Gousgouni
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
| | - Amalia E. Yanni
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Vaios T. Karathanos
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
- Agricultural Cooperatives’ Union of Aeghion, Corinthou 201, 251 00 Aeghion, Greece
| | - Antonia Chiou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
- Correspondence: ; Tel.: +30-210-9549-157; Fax: +30-210-9577050
| |
Collapse
|
17
|
Chitosan-Polyphenol Conjugates for Human Health. Life (Basel) 2022; 12:life12111768. [DOI: 10.3390/life12111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Human health deteriorates due to the generation and accumulation of free radicals that induce oxidative stress, damaging proteins, lipids, and nucleic acids; this has become the leading cause of many deadly diseases such as cardiovascular, cancer, neurodegenerative, diabetes, and inflammation. Naturally occurring polyphenols have tremendous therapeutic potential, but their short biological half-life and rapid metabolism limit their use. Recent advancements in polymer science have provided numerous varieties of natural and synthetic polymers. Chitosan is widely used due to its biomimetic properties which include biodegradability, biocompatibility, inherent antimicrobial activity, and antioxidant properties. However, due to low solubility in water and the non-availability of the H-atom donor, the practical use of chitosan as an antioxidant is limited. Therefore, chitosan has been conjugated with polyphenols to overcome the limitations of both chitosan and polyphenol, along with increasing the potential synergistic effects of their combination for therapeutic applications. Though many methods have been evolved to conjugate chitosan with polyphenol through activated ester-modification, enzyme-mediated, and free radical induced are the most widely used strategies. The therapeutic efficiency of chitosan-polyphenol conjugates has been investigated for various disease treatments caused by ROS that have shown favorable outcomes and tremendous results. Hence, the present review focuses on the recent advancement of different strategies of chitosan-polyphenol conjugate formation with their advantages and limitations. Furthermore, the therapeutic applicability of the combinatorial efficiency of chitosan-based conjugates formed using Gallic Acid, Curcumin, Catechin, and Quercetin in human health has been described in detail.
Collapse
|
18
|
Upgrading the Functional Potential of Apple Pomace in Value-Added Ingredients with Probiotics. Antioxidants (Basel) 2022; 11:antiox11102028. [PMID: 36290751 PMCID: PMC9598324 DOI: 10.3390/antiox11102028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Emerging customized designs to upgrade the functional potential of freeze-dried apple pomace was used in this study, in order to transform the industrial by-products into ingredients containing probiotics, for a better and healthier food composition. The freeze-dried apple pomace was analyzed for free and bounded phenolic contents, highlighting a significant level of caffeic acid (4978.00 ± 900.00 mg/100 g dry matter (DM)), trans-cinnamic acid (2144.20 ± 37.60 mg/100 g DM) and quercetin 3-β-D-glucoside (236.60 ± 3.12 mg/100 g DM). The pectin extraction yield was approximatively 24%, with a degree of esterification of 37.68 ± 1.74%, and a methoxyl content of 5.58 ± 0.88%. The freeze-dried apple pomace was added in a different ratio as a supplement to cultural medium of Loigolactobacillus bifermentans MIUG BL 16, suggesting a significant prebiotic effect (p < 0.05) at concentration between 1% and 2%. The apple pomace was used to design three freeze-dried ingredients containing probiotic, with a high level of polyphenolic content (6.38 ± 0.14 mg gallic acid equivalents/g DM) and antioxidant activity (42.25 ± 4.58 mMol Trolox/g DM) for the powder containing apple pomace ethanolic extract. When inulin was used as a prebiotic adjuvant, the obtained powder showed a 6 log/g DM viable cell count. The ingredients were added to fermented vegetable soy milk-based products, allowing us to improve the polyphenolic content, antioxidant activity and viable cell counts. The approach designed in this study allowed us to obtain ingredients suitable to add value to food, whereas premises to align with the current circular economy premises, by reintegrating the industrial waste as sources of high added value compounds, are also provided.
Collapse
|
19
|
Gogoi NG, Rahman A, Saikia J, Dutta P, Baruah A, Handique JG. Enhanced biological activity of Curcumin Cinnamates: an experimental and computational analysis. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Ramarao KDR, Somasundram C, Razali Z, Kunasekaran W, Jin TL, Musa S, Achari VM. Antiproliferative effects of dried Moringa oleifera leaf extract on human Wharton's Jelly mesenchymal stem cells. PLoS One 2022; 17:e0274814. [PMID: 36197921 PMCID: PMC9534417 DOI: 10.1371/journal.pone.0274814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have seen an elevated use in clinical works like regenerative medicine. Its potential therapeutic properties increases when used in tandem with complementary agents like bio-based materials. Therefore, the present study is the first to investigate the cytotoxicity of a highly valued medicinal plant, Moringa oleifera, on human Wharton's Jelly mesenchymal stem cells (hWJMSCs) and its effects on the cells' gene expression when used as a pre-treatment agent in vitro. M. oleifera leaves (MOL) were dried and subjected to UHPLC-QTOF/MS analysis, revealing several major compounds like apigenin, kaempferol, and quercetin in the MOL, with various biological activities like antioxidant and anti-cancer properties. We then treated the hWJMSCs with MOL and noticed a dose-dependant inhibition on the cells' proliferation. RNA-sequencing was performed to explain the possible mechanism of action and revealed genes like PPP1R1C, SULT2B1, CDKN1A, mir-154 and CCNB1, whose expression patterns were closely associated with the negative cell cycle regulation and cell cycle arrest process. This is also evident from gene set enrichment analysis where the GO and KEGG terms for down-regulated pathways were closely related to the cell cycle regulation. The Ingenuity pathway analysis (IPA) software further predicted the significant activation of (p < 0.05, z-score > 2) of the G2/M DNA damage checkpoint regulation pathway. The present study suggests that MOL exhibits an antiproliferative effect on hWJMSCs via cell cycle arrest and apoptotic pathways. We believe that this study provides an important baseline reference for future works involving MOL's potential to accompany MSCs for clinical works. Future works can take advantage of the cell's strong anti-cancer gene expression found in this study, and evaluate our MOL treatment on various cancer cell lines.
Collapse
Affiliation(s)
- Kivaandra Dayaa Rao Ramarao
- Institute of Biological Sciences, Faculty of Science and The Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Chandran Somasundram
- Institute of Biological Sciences, Faculty of Science and The Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Zuliana Razali
- Institute of Biological Sciences, Faculty of Science and The Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | | | - Tan Li Jin
- Cytonex Sdn. Bhd., Menara UOA Bangsar, Bangsar, Kuala Lumpur, Malaysia
| | - Sabri Musa
- Department of Paediatric Dentistry & Orthodontics, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Vijayan Manickam Achari
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Capozzi A, Saucier C, Bisbal C, Lambert K. Grape Polyphenols in the Treatment of Human Skeletal Muscle Damage Due to Inflammation and Oxidative Stress during Obesity and Aging: Early Outcomes and Promises. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196594. [PMID: 36235130 PMCID: PMC9573747 DOI: 10.3390/molecules27196594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
Today, inactivity and high-calorie diets contribute to the development of obesity and premature aging. In addition, the population of elderly people is growing due to improvements in healthcare management. Obesity and aging are together key risk factors for non-communicable diseases associated with several co-morbidities and increased mortality, with a major impact on skeletal muscle defect and/or poor muscle mass quality. Skeletal muscles contribute to multiple body functions and play a vital role throughout the day, in all our activities. In our society, limiting skeletal muscle deterioration, frailty and dependence is not only a major public health challenge but also a major socio-economic issue. Specific diet supplementation with natural chemical compounds such as grape polyphenols had shown to play a relevant and direct role in regulating metabolic and molecular pathways involved in the prevention and treatment of obesity and aging and their related muscle comorbidities in cell culture and animal studies. However, clinical studies aiming to restore skeletal muscle mass and function with nutritional grape polyphenols supplementation are still very scarce. There is an urgent need for clinical studies to validate the very encouraging results observed in animal models.
Collapse
Affiliation(s)
- Adriana Capozzi
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CEDEX 5, 34295 Montpellier, France
- SPO, INRAE, Institute Agro, University of Montpellier, 34000 Montpellier, France
| | - Cédric Saucier
- SPO, INRAE, Institute Agro, University of Montpellier, 34000 Montpellier, France
| | - Catherine Bisbal
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CEDEX 5, 34295 Montpellier, France
- Correspondence: (C.B.); (K.L.); Tel.: +33-(0)4-1175-9891 (C.B. & K.L.)
| | - Karen Lambert
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CEDEX 5, 34295 Montpellier, France
- Correspondence: (C.B.); (K.L.); Tel.: +33-(0)4-1175-9891 (C.B. & K.L.)
| |
Collapse
|
22
|
Chemical Composition, Antioxidant and Antiproliferative Activities of Taraxacum officinale Essential Oil. Molecules 2022; 27:molecules27196477. [PMID: 36235013 PMCID: PMC9572089 DOI: 10.3390/molecules27196477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Taraxacum officinale (TO) has been historically used for medicinal purposes due to its biological activity against specific disorders. To investigate the antioxidant and the antiproliferativepotential of TO essential oil in vitro and in vivo, the chemical composition of the essential oil was analyzed by GC-MS. The in vivo antioxidant capacity was assessed on liver and kidney homogenate samples from mice subjected to acetaminophen-induced oxidative stress and treated with TO essential oil (600 and 12,000 mg/kg BW) for 14 days. The in vitro scavenging activity was assayed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the reducing power methods. The cytotoxic effects against the HeLa cancer cell line were analyzed. The GC-MS analysis showed the presence of 34 compounds, 8 of which were identified as major constituents. The TO essential oil protected mice’s liver and kidneys from acetaminophen-induced oxidative stress by enhancing antioxidant enzymes (catalase, superoxide dismutase, and glutathione) and lowering malondialdehyde levels. In vitro, the TO essential oil demonstrated low scavenging activity against DPPH (IC50 = 2.00 ± 0.05 mg/mL) and modest reducing power (EC50 = 0.963 ± 0.006 mg/mL). The growth of the HeLa cells was also reduced by the TO essential oil with an inhibition rate of 83.58% at 95 µg/mL. Current results reveal significant antioxidant and antiproliferative effects in a dose-dependent manner and suggest that Taraxacum officinale essential oil could be useful in formulations for cancer therapy.
Collapse
|
23
|
Cranberry Ingestion Modulated Drug Transporters and Metabolizing Enzymes: Gefitinib Used as a Probe Substrate in Rats. Molecules 2022; 27:molecules27185772. [PMID: 36144507 PMCID: PMC9501900 DOI: 10.3390/molecules27185772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Cranberry, a polyphenol-rich functional food, is commonly used for the prophylaxis of urinary tract infections. Gefitinib, an anticancer agent clinically prescribed to treat non-small-cell lung cancer, is a substrate of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), and metabolized mainly by cytochrome P450 (CYP) 3A4 and CYP2D6. This study used gefitinib as a probe substrate to investigate the modulation of cranberry on P-gp, BCRP, CYP3A4 and CYP2D6. Rats were administered gefitinib with and without 5.0 g/kg of cranberry as juice (CJ). The concentration of gefitinib in serum was determined by LC-MS/MS. The results showed that CJ significantly increased the Cmax and AUC0-t of gefitinib by 28% and 55%, respectively. Mechanism studies indicated that CJ activated P-gp, and cranberry metabolites (CM) inhibited CYP2D6. Moreover, the protein level of P-gp in rat enterocytes was decreased, whereas that in hepatocytes was increased. In addition, the protein levels of BCRP, CYP3A4 and CYP2D6 in enterocytes and hepatocytes were decreased. In conclusion, CJ ingestion affected the activities and protein levels of P-gp, BCRP, CYP3A4 and CYP2D6.
Collapse
|
24
|
Abd El-Aziz YM, Hendam BM, Al-Salmi FA, Qahl SH, Althubaiti EH, Elsaid FG, Shati AA, Hosny NM, Fayad E, Abu Almaaty AH. Ameliorative Effect of Pomegranate Peel Extract (PPE) on Hepatotoxicity Prompted by Iron Oxide Nanoparticles (Fe 2O 3-NPs) in Mice. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3074. [PMID: 36080111 PMCID: PMC9457799 DOI: 10.3390/nano12173074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
An evaluation of the ameliorative effect of pomegranate peel extract (PPE) in counteracting the toxicity of iron oxide nanoparticles (Fe2O3-NPs) that cause hepatic tissue damage is focused on herein. Forty male albino mice were haphazardly grouped into four groups as follows: the first control group was orally gavage daily with physiological saline; the second group received 100 mg/kg of PPE by the oral route day after day; the third group received 30 mg/kg Fe2O3-NPs orally; and the fourth group received both PPE and Fe2O3-NPs by the oral route, the same as the second and third sets. Later, after the completion of the experiment, we collected the liver, blood, and bone marrow of bone specimens that were obtained for further laboratory tests. For instance, exposure to Fe2O3-NPs significantly altered serum antioxidant biomarkers by decreasing the levels of total antioxidant capacity (TAC), catalase (CAT), and glutathione s-transferase (GST). Additionally, it caused changes in the morphology of hepatocytes, hepatic sinusoids, and inflammatory Kupffer cells. Furthermore, they significantly elevated the number of chromosomal aberrations including gaps, breaks, deletions, fragments, polyploidies, and ring chromosomes. Moreover, they caused a significant overexpression of TIMP-1, TNF-α, and BAX mRNA levels. Finally, the use of PPE alleviates the toxicity of Fe2O3-NPs that were induced in the hepatic tissues of mice. It is concluded that PPE extract has mitigative roles against the damage induced by Fe2O3-NPs, as it serves as an antioxidant and hepatoprotective agent. The use of PPE as a modulator of Fe2O3-NPs' hepatotoxicity could be considered as a pioneering method in the use of phytochemicals against the toxicity of nanoparticles.
Collapse
Affiliation(s)
- Yasmin M. Abd El-Aziz
- Department of Zoology, Faculty of Science, Port Said University, Port Said 42526, Egypt
| | - Basma M. Hendam
- Department of Husbandry & Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., Mansoura 35516, Egypt
| | - Fawziah A. Al-Salmi
- Department of Biology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Eman H. Althubaiti
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Fahmy G. Elsaid
- Biology Department, Science College, King Khalid University, Abha 61421, Saudi Arabia
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ali A. Shati
- Biology Department, Science College, King Khalid University, Abha 61421, Saudi Arabia
| | - Nasser M. Hosny
- Department of Chemistry, Faculty of Science, Port Said University, Port Said 42526, Egypt
| | - Eman Fayad
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Ali H. Abu Almaaty
- Department of Zoology, Faculty of Science, Port Said University, Port Said 42526, Egypt
| |
Collapse
|
25
|
Liu M, Wang L, Huang B, Lu Q, Liu R. 3,4-Dihydroxyphenylacetic acid ameliorates gut barrier dysfunction via regulation of MAPK-MLCK pathway in type 2 diabetes mice. Life Sci 2022; 305:120742. [DOI: 10.1016/j.lfs.2022.120742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 01/16/2023]
|
26
|
Polyphenols–Gut–Heart: An Impactful Relationship to Improve Cardiovascular Diseases. Antioxidants (Basel) 2022; 11:antiox11091700. [PMID: 36139775 PMCID: PMC9495581 DOI: 10.3390/antiox11091700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
A healthy gut provides the perfect habitat for trillions of bacteria, called the intestinal microbiota, which is greatly responsive to the long-term diet; it exists in a symbiotic relationship with the host and provides circulating metabolites, hormones, and cytokines necessary for human metabolism. The gut–heart axis is a novel emerging concept based on the accumulating evidence that a perturbed gut microbiota, called dysbiosis, plays a role as a risk factor in the pathogenesis of cardiovascular disease. Consequently, recovery of the gut microbiota composition and function could represent a potential new avenue for improving patient outcomes. Despite their low absorption, preclinical evidence indicates that polyphenols and their metabolites are transformed by intestinal bacteria and halt detrimental microbes’ colonization in the host. Moreover, their metabolites are potentially effective in human health due to antioxidant, anti-inflammatory, and anti-cancer effects. The aim of this review is to provide an overview of the causal role of gut dysbiosis in the pathogenesis of atherosclerosis, hypertension, and heart failure; to discuss the beneficial effects of polyphenols on the intestinal microbiota, and to hypothesize polyphenols or their derivatives as an opportunity to prevent and treat cardiovascular diseases by shaping gut eubiosis.
Collapse
|
27
|
Ma H, Hou A, Tang J, Zhong A, Li K, Xiao Y, Li Z. Antioxidant Activity of Vitis davidii Foex Seed and Its Effects on Gut Microbiota during Colonic Fermentation after In Vitro Simulated Digestion. Foods 2022; 11:foods11172615. [PMID: 36076800 PMCID: PMC9455166 DOI: 10.3390/foods11172615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Vitis davidii Foex whole seed (VWS) is a by-product during the processing of grape products, which is rich in bioactive compounds that have great potential in the food industry. In this study, the bioactive compounds and antioxidant activity of VWS were determined, and their dynamic changes during in vitro colonic fermentation were also investigated after VWS subjected to in vitro simulated digestion. Results showed that VWS were rich in polyphenols (23.67 ± 0.52 mg GAE/g), flavonoids (13.13 ± 1.22 mg RE/g), and proanthocyanidins (8.36 ± 0.14 mg CE/g). It also had good DPPH and ABTS radical scavenging activity, which reached 82.10% and 76.10% at 1000 μg/mL. The alteration trend of the antioxidant activity during in vitro fermentation for 24 h was consistent with that of the content of bioactive substances, such as polyphenols, with the extension of fermentation time. The bioactive compounds and antioxidant activity showed a trend of increasing and then decreasing, reaching the highest value at 8 h. The high-throughput sequencing analysis of the regulatory effect of VWS on intestinal micro-organisms revealed that VWS influenced intestinal microbiota diversity. The relative abundance of beneficial microbiota, such as Blautia and Parabacteroides, increased by 4.1- and 1.65-fold after 24 h of fermentation compared with that of the control group. It also reduced Escherichia-Shigella by 11.23% and effectively reduced host inflammation, while increasing the contents of acetic acid, propionic acid, and other metabolites. Taken together, these results reveal the value of VWS utilization and provide new insights into the nutritional and microbiota modulation effects of VWS, which could therefore serve as a nutraceutical ingredient in health promotion.
Collapse
Affiliation(s)
- Huiqin Ma
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Aixiang Hou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Jiaojiao Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Aiai Zhong
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ke Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (Y.X.); (Z.L.); Tel.: +86-731-8461-7007 (Z.L.)
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
- Correspondence: (Y.X.); (Z.L.); Tel.: +86-731-8461-7007 (Z.L.)
| |
Collapse
|
28
|
Guo B, Chou F, Huang L, Yin F, Fang J, Wang JB, Jia Z. Recent insights into oxidative metabolism of quercetin: catabolic profiles, degradation pathways, catalyzing metalloenzymes and molecular mechanisms. Crit Rev Food Sci Nutr 2022; 64:1312-1339. [PMID: 36037033 DOI: 10.1080/10408398.2022.2115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Quercetin is the most abundant polyphenolic flavonoid (flavonol subclass) in vegetal foods and medicinal plants. This dietary chemopreventive agent has drawn significant interest for its multiple beneficial health effects ("polypharmacology") largely associated with the well-documented antioxidant properties. However, controversies exist in the literature due to its dual anti-/pro-oxidant character, poor stability/bioavailability but multifaceted bioactivities, leaving much confusion as to its exact roles in vivo. Increasing evidence indicates that a prior oxidation of quercetin to generate an array of chemical diverse products with redox-active/electrophilic moieties is emerging as a new linkage to its versatile actions. The present review aims to provide a comprehensive overview of the oxidative conversion of quercetin by systematically analyzing the current quercetin-related knowledge, with a particular focus on the complete spectrum of metabolite products, the enzymes involved in the catabolism and the underlying molecular mechanisms. Herein we review and compare the oxidation pathways, protein structures and catalytic patterns of the related metalloenzymes (phenol oxidases, heme enzymes and specially quercetinases), aiming for a deeper mechanistic understanding of the unusual biotransformation behaviors of quercetin and its seemingly controversial biological functions.
Collapse
Affiliation(s)
- Bin Guo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Fang Chou
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Libin Huang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Feifan Yin
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Jing Fang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Jian-Bo Wang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
29
|
Ungurianu A, Zanfirescu A, Margină D. Regulation of Gene Expression through Food—Curcumin as a Sirtuin Activity Modulator. PLANTS 2022; 11:plants11131741. [PMID: 35807694 PMCID: PMC9269530 DOI: 10.3390/plants11131741] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
The sirtuin family comprises NAD+-dependent protein lysine deacylases, mammalian sirtuins being either nuclear (SIRT1, SIRT2, SIRT6, and SIRT7), mitochondrial (SIRT3, SIRT4, and SIRT5) or cytosolic enzymes (SIRT2 and SIRT5). They are able to catalyze direct metabolic reactions, thus regulating several physiological functions, such as energy metabolism, stress response, inflammation, cell survival, DNA repair, tissue regeneration, neuronal signaling, and even circadian rhythms. Based on these data, recent research was focused on finding molecules that could regulate sirtuins’ expression and/or activity, natural compounds being among the most promising in the field. Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) can induce, through SIRT, modulation of cancer cell senescence, improve endothelial cells protection against atherosclerotic factors, enhance muscle regeneration in atrophy models, and act as a pro-longevity factor counteracting the neurotoxicity of amyloid-beta. Although a plethora of protective effects was reported (antioxidant, anti-inflammatory, anticancer, etc.), its therapeutical use is limited due to its bioavailability issues. However, all the reported effects may be explained via the bioactivation theory, which postulates that curcumin’s observed actions are modulated via its metabolites and/or degradation products. The present article is focused on bringing together the literature data correlating the ability of curcumin and its metabolites to modulate SIRT activity and its consequent beneficial effects.
Collapse
Affiliation(s)
- Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia, 020956 Bucharest, Romania; (A.U.); (D.M.)
| | - Anca Zanfirescu
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia, 020956 Bucharest, Romania
- Correspondence:
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia, 020956 Bucharest, Romania; (A.U.); (D.M.)
| |
Collapse
|
30
|
Xiao F, Farag MA, Xiao J, Yang X, Liu Y, Shen J, Lu B. The influence of phytochemicals on cell heterogeneity in chronic inflammation-associated diseases: the prospects of single cell sequencing. J Nutr Biochem 2022; 108:109091. [PMID: 35718097 DOI: 10.1016/j.jnutbio.2022.109091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/25/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
Chronic inflammation-associated diseases include, but is not limited to cardiovascular disease, cancer, obesity, diabetes, etc. Cell heterogeneity is a prerequisite for understanding the physiological and pathological development of cell metabolism, and its response to external stimuli. Recently, dietary habits based on phytochemicals became increasingly recognized to play a pivotal role in chronic inflammation. Phytochemicals can relieve chronic inflammation by regulating inflammatory cell differentiation and immune cell response, but the influence of phytochemicals on cell heterogeneity from in vitro and ex vivo studies cannot simulate the complexity of cell differentiation in vivo due to the differences in cell lines and extracellular environment. Therefore, there is no consensus on the regulation mechanism of phytochemicals on chronic diseases based on cell heterogeneity. The purpose of this review is to summarize cell heterogeneity in common chronic inflammation-associated diseases and trace the effects of phytochemicals on cell differentiation in chronic diseases development. More importantly, by discussing the problems and challenges which hinder the study of cell heterogeneity in recent nutritional assessment experiments, we propose new prospects based on the drawbacks of existing research to optimize the research on the regulation mechanism of phytochemicals on chronic diseases. The need to explore precise measurements of cell heterogeneity is a key pillar in understanding the influence of phytochemicals on certain diseases. In the future, deeper understanding of cell-to-cell variation and the impact of food components and their metabolites on cell function by single-cell genomics and epigenomics with the focus on individual differences will open new avenues for the next generation of health care.
Collapse
Affiliation(s)
- Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt; Department of Chemistry, School of Sciences & Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Jianfu Shen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| |
Collapse
|
31
|
Garcia-Alonso A, Sánchez-Paniagua López M, Manzanares-Palenzuela CL, Redondo-Cuenca A, López-Ruíz B. Edible plant by-products as source of polyphenols: prebiotic effect and analytical methods. Crit Rev Food Sci Nutr 2022; 63:10814-10835. [PMID: 35658778 DOI: 10.1080/10408398.2022.2084028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polyphenols with high chemical diversity are present in vegetables both in the edible parts and by-products. A large proportion of them remains unabsorbed along the gastrointestinal tract, being accumulated in the colon, where they are metabolized by the intestinal microbiota. These polyphenols have been found to have "prebiotic-like" effects. The edible plant industry generates tons of residues called by-products, which consist of unutilized plant tissues (peels, husks, calyxes and seeds). Their disposal requires special and costly treatments to avoid environmental complications. Reintroducing these by-products into the value chain using technological and biotechnological practices is highly appealing since many of them contain nutrients and bioactive compounds, such as polyphenols, with many health-promoting properties. Edible plant by-products as a source of polyphenols highlights the need for analytical methods. Analytical methods are becoming increasingly selective, sensitive and precise, but the great breakthrough lies in the pretreatment of the sample and in particular in the extraction methods. This review shows the importance of edible plant by-products as a source of polyphenols, due to their prebiotic effect, and to compile the most appropriate analytical methods for the determination of the total content of phenolic compounds as well as the detection and quantification of individual polyphenols.
Collapse
Affiliation(s)
- Alejandra Garcia-Alonso
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | - Marta Sánchez-Paniagua López
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | | | - Araceli Redondo-Cuenca
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | - Beatríz López-Ruíz
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
32
|
In Vitro Antithrombotic, Hematological Toxicity, and Inhibitor Studies of Protocatechuic, Isovanillic, and p-Hydroxybenzoic Acids from Maclura Tricuspidata (Carr.) Bur. Molecules 2022; 27:molecules27113496. [PMID: 35684431 PMCID: PMC9181887 DOI: 10.3390/molecules27113496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
In blood coagulation, circulating platelets and coagulation factors are crucial for the primary process because thrombi are generated by fibrin clotting with fibrinogen, thrombin, FXIIIa, and platelet activation. Therefore, strategies to reduce the activity of key coagulation factors, or interfere with their functions and delay the activation of platelets can be used as important tools to suppress excessive blood clot formation and platelet hyperactivation. This study examined the antithrombotic activity and hematological toxicity of PA, IVA, and 4-HA isolated from M. tricuspidata (Carr.) Bur in several in vitro experiments and inhibitor assays. We found that PA, IVA, and 4-HA attenuated the formation of fibrin polymers/clots and degraded the blood clots. These compounds inhibited the activities of procoagulant proteases and fibrinoligase, and prolonged the coagulation time. There was a significant reduction in platelet function and ATP or serotonin levels in thrombin-activated platelets. An inhibitor study showed that PA exhibited a mixed inhibition type for thrombin, an uncompetitive inhibition type for FXa, and a non-competitive inhibition type for FXIIIa and IVA, while 4-HA exhibited an uncompetitive inhibition type for thrombin and non-competitive inhibition type for FXa and FXIIIa. These three compounds (up to 50 μg/mL) were not toxic to blood cells.
Collapse
|
33
|
Medina G, Sanz C, León L, Pérez A, De la Rosa R. Phenolic variability in fruit from the ‘Arbequina’ olive cultivar under Mediterranean and Subtropical climatic conditions. GRASAS Y ACEITES 2022. [DOI: 10.3989/gya.1002202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the present work, we compared the phenol content and composition of fruit from the ‘Arbequina’ cultivar in four Mediterranean (in Andalucía, Southern Iberian Peninsula) and two Sub-Tropical (Canary Islands) locations throughout the harvest period. Two Mediterranean and two Sub-Tropical locations were maintained with drip irrigation, while the remaining two Mediterranean locations were in dry farming. Water availability and harvest date seemed to play more important roles than air temperature on the phenolic content and most of the studied components. The variability associated with location was a result of the high values observed in the two Mediterranean locations in dry farming, with respect to the other four maintained with drip irrigation. Few differences were found among the four drip-irrigated locations, despite the fact that two were Mediterranean and the other two Sub-Tropical. In addition, a sharp decrease was observed during the harvest period for phenolic content and most of the phenolic compounds.
Collapse
|
34
|
Natella F, Guantario B, Ambra R, Ranaldi G, Intorre F, Burki C, Canali R. Human Metabolites of Hamaforton™ ( Hamamelis virginiana L. Extract) Modulates Fibroblast Extracellular Matrix Components in Response to UV-A Irradiation. Front Pharmacol 2022; 12:747638. [PMID: 34975471 PMCID: PMC8719534 DOI: 10.3389/fphar.2021.747638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hamamelis virginiana L. a rich source of both condensed and hydrolyzable tannins, utilized to treat dermatological disorders. Since no experimental and clinical data is available for its use as oral formulation in skin related disorders, the purpose of this study was to investigate the effects of Hamaforton™ (Hamamelis virginiana extract) metabolites on gene dysregulation induced by ultraviolet A radiation in cultured human dermal fibroblasts. A combination of in vivo and ex vivo experimental designs has been exploited in order to take into account the polyphenol metabolic transformation that occurs in humans. 12 healthy volunteers received either a capsule of Hamaforton™ or a placebo in a randomized, blinded crossover trial. After Hamaforton™ ingestion, the kinetic of appearance of galloyl derivatives was measured in plasma. Then, in the ex vivo experiment, the serum isolated after supplementation was used as a source of Hamaforton™ metabolites to enrich the culture medium of dermal fibroblasts exposed to ultraviolet A radiation. Three different gallic acid metabolites (4-O-methyl gallic acid, 4-O-methyl gallic acid sulphate and trimethyl gallic acid glucuronide) were identified in volunteer plasma. While, ultraviolet A irradiation of dermal fibroblasts affected the expression of extracellular matrix genes, the presence of Hamaforton™ metabolites in the culture media did not affect the expression of most of those genes. However, the activation of the expression of 10 different genes involved in repair processes for the maintenance of skin integrity, suggest that the metabolites can play a role in damage recovery. To our knowledge, this is the first study that demonstrates the bioavailability of Hamaforton™ phenolic compounds, and the effects of its metabolites on cultured dermal fibroblast response to ultraviolet A irradiation.
Collapse
Affiliation(s)
- Fausta Natella
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | - Barbara Guantario
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | - Roberto Ambra
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | - Giulia Ranaldi
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | - Federica Intorre
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | | | - Raffaella Canali
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| |
Collapse
|
35
|
Funk JL, Schneider C. Perspective on Improving the Relevance, Rigor, and Reproducibility of Botanical Clinical Trials: Lessons Learned From Turmeric Trials. Front Nutr 2021; 8:782912. [PMID: 34926556 PMCID: PMC8678600 DOI: 10.3389/fnut.2021.782912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Plant-derived compounds, without doubt, can have significant medicinal effects since many notable drugs in use today, such as morphine or taxol, were first isolated from botanical sources. When an isolated and purified phytochemical is developed as a pharmaceutical, the uniformity and appropriate use of the product are well defined. Less clear are the benefits and best use of plant-based dietary supplements or other formulations since these products, unlike traditional drugs, are chemically complex and variable in composition, even if derived from a single plant source. This perspective will summarize key points-including the premise of ethnobotanical and preclinical evidence, pharmacokinetics, metabolism, and safety-inherent and unique to the study of botanical dietary supplements to be considered when planning or evaluating botanical clinical trials. Market forces and regulatory frameworks also affect clinical trial design since in the United States, for example, botanical dietary supplements cannot be marketed for disease treatment and submission of information on safety or efficacy is not required. Specific challenges are thus readily apparent both for consumers comparing available products for purchase, as well as for commercially sponsored vs. independent researchers planning clinical trials to evaluate medicinal effects of botanicals. Turmeric dietary supplements, a top selling botanical in the United States and focus of over 400 clinical trials to date, will be used throughout to illustrate both the promise and pitfalls associated with the clinical evaluation of botanicals.
Collapse
Affiliation(s)
- Janet L Funk
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Claus Schneider
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
36
|
Serreli G, Le Sayec M, Diotallevi C, Teissier A, Deiana M, Corona G. Conjugated Metabolites of Hydroxytyrosol and Tyrosol Contribute to the Maintenance of Nitric Oxide Balance in Human Aortic Endothelial Cells at Physiologically Relevant Concentrations. Molecules 2021; 26:molecules26247480. [PMID: 34946563 PMCID: PMC8707355 DOI: 10.3390/molecules26247480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule involved in many pathophysiological processes. NO mediates vasodilation and blood flow in the arteries, and its action contributes to maintaining vascular homeostasis by inhibiting vascular smooth muscle contraction and growth, platelet aggregation, and leukocyte adhesion to the endothelium. Dietary antioxidants and their metabolites have been found to be directly and/or indirectly involved in the modulation of the intracellular signals that lead to the production of NO. The purpose of this study was to investigate the contribution of conjugated metabolites of hydroxytyrosol (HT) and tyrosol (TYR) to the release of NO at the vascular level, and the related mechanism of action, in comparison to their parental forms. Experiments were performed in human aortic endothelial cells (HAEC) to evaluate the superoxide production, the release of NO and production of cyclic guanosine monophosphate (cGMP), the activation of serine/threonine-protein kinase 1 (Akt1), and the activation state of endothelial nitric oxide synthase (eNOS). It was observed that the tested phenolic compounds enhanced NO and cGMP concentration, inhibiting its depletion caused by superoxide overproduction. Moreover, some of them enhanced the activation of Akt (TYR, HT metabolites) and eNOS (HT, HVA, TYR-S, HT-3S). Overall, the obtained data showed that these compounds promote NO production and availability, suggesting that HT and TYR conjugated metabolites may contribute to the effects of parental extra virgin olive oil (EVOO) phenolics in the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Gabriele Serreli
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy;
| | - Melanie Le Sayec
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - Camilla Diotallevi
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - Alice Teissier
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy;
| | - Giulia Corona
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
- Correspondence: ; Tel.: +44-(0)20-8392-3622
| |
Collapse
|
37
|
Contente ML, Annunziata F, Cannazza P, Donzella S, Pinna C, Romano D, Tamborini L, Barbosa FG, Molinari F, Pinto A. Biocatalytic Approaches for an Efficient and Sustainable Preparation of Polyphenols and Their Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13669-13681. [PMID: 34762407 DOI: 10.1021/acs.jafc.1c05088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many sectors of industry, such as food, cosmetics, nutraceuticals, and pharmaceuticals, have increased their interest in polyphenols due to their beneficial properties. These molecules are widely found in Nature (plants) and can be obtained through direct extraction from vegetable matrices. Polyphenols introduced through the diet may be metabolized in the human body via different biotransformations leading to compounds having different bioactivities. In this context, enzyme-catalyzed reactions are the most suitable approach to produce modified polyphenols that not only can be studied for their bioactivity but also can be labeled as green, natural products. This review aims to give an overview of the potential of biocatalysis as a powerful tool for the modification of polyphenols to enhance their bioaccessibility, bioavailability, biological activity or modification of their physicochemical properties. The main polyphenol transformations occurring during their metabolism in the human body have been also presented.
Collapse
Affiliation(s)
- Martina Letizia Contente
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Francesca Annunziata
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Pietro Cannazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Silvia Donzella
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Cecilia Pinna
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Diego Romano
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Francisco Geraldo Barbosa
- Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Fortaleza-CE 60455-970, Brazil
| | - Francesco Molinari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
38
|
Gligorijevic N, Radomirovic M, Nedic O, Stojadinovic M, Khulal U, Stanic-Vucinic D, Cirkovic Velickovic T. Molecular Mechanisms of Possible Action of Phenolic Compounds in COVID-19 Protection and Prevention. Int J Mol Sci 2021; 22:12385. [PMID: 34830267 PMCID: PMC8625847 DOI: 10.3390/ijms222212385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
The worldwide outbreak of COVID-19 was caused by a pathogenic virus called Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Therapies against SARS-CoV-2 target the virus or human cells or the immune system. However, therapies based on specific antibodies, such as vaccines and monoclonal antibodies, may become inefficient enough when the virus changes its antigenicity due to mutations. Polyphenols are the major class of bioactive compounds in nature, exerting diverse health effects based on their direct antioxidant activity and their effects in the modulation of intracellular signaling. There are currently numerous clinical trials investigating the effects of polyphenols in prophylaxis and the treatment of COVID-19, from symptomatic, via moderate and severe COVID-19 treatment, to anti-fibrotic treatment in discharged COVID-19 patients. Antiviral activities of polyphenols and their impact on immune system modulation could serve as a solid basis for developing polyphenol-based natural approaches for preventing and treating COVID-19.
Collapse
Affiliation(s)
- Nikola Gligorijevic
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (N.G.); (O.N.)
| | - Mirjana Radomirovic
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (M.R.); (M.S.); (D.S.-V.)
| | - Olgica Nedic
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (N.G.); (O.N.)
| | - Marija Stojadinovic
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (M.R.); (M.S.); (D.S.-V.)
| | - Urmila Khulal
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Global Campus, Ghent University, Yeonsu-gu, Incheon 21985, Korea
| | - Dragana Stanic-Vucinic
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (M.R.); (M.S.); (D.S.-V.)
| | - Tanja Cirkovic Velickovic
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (M.R.); (M.S.); (D.S.-V.)
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Global Campus, Ghent University, Yeonsu-gu, Incheon 21985, Korea
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| |
Collapse
|
39
|
Barone M, D'Amico F, Fabbrini M, Rampelli S, Brigidi P, Turroni S. Over-feeding the gut microbiome: A scoping review on health implications and therapeutic perspectives. World J Gastroenterol 2021; 27:7041-7064. [PMID: 34887627 PMCID: PMC8613651 DOI: 10.3748/wjg.v27.i41.7041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/02/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
The human gut microbiome has gained increasing attention over the past two decades. Several findings have shown that this complex and dynamic microbial ecosystem can contribute to the maintenance of host health or, when subject to imbalances, to the pathogenesis of various enteric and non-enteric diseases. This scoping review summarizes the current knowledge on how the gut microbiota and microbially-derived compounds affect host metabolism, especially in the context of obesity and related disorders. Examples of microbiome-based targeted intervention strategies that aim to restore and maintain an eubiotic layout are then discussed. Adjuvant therapeutic interventions to alleviate obesity and associated comorbidities are traditionally based on diet modulation and the supplementation of prebiotics, probiotics and synbiotics. However, these approaches have shown only moderate ability to induce sustained changes in the gut microbial ecosystem, making the development of innovative and tailored microbiome-based intervention strategies of utmost importance in clinical practice. In this regard, the administration of next-generation probiotics and engineered microbiomes has shown promising results, together with more radical intervention strategies based on the replacement of the dysbiotic ecosystem by means of fecal microbiota transplantation from healthy donors or with the introduction of synthetic communities specifically designed to achieve the desired therapeutic outcome. Finally, we provide a perspective for future translational investigations through the implementation of bioinformatics approaches, including machine and deep learning, to predict health risks and therapeutic outcomes.
Collapse
Affiliation(s)
- Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Federica D'Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
40
|
Rai DK, Tzima K. A Review on Chromatography-Mass Spectrometry Applications on Anthocyanin and Ellagitannin Metabolites of Blackberries and Raspberries. Foods 2021; 10:foods10092150. [PMID: 34574260 PMCID: PMC8467619 DOI: 10.3390/foods10092150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Berries have been widely assessed for their beneficial health effects, predominately due to their high (poly)phenol content of anthocyanins and ellagitannins. After ellagitannins and ellagic acid are metabolized by the gut microbiome, a class of compounds known as urolithins are produced, which exert potential advantageous health effects. Anthocyanins, on the other hand, undergo a complex metabolic pathway after their interaction with microbial and endogenous enzymes, forming a broad range of metabolites and catabolic products. In most cases, in vitro models and cell lines are used to generate metabolites, whereas their assessment in vivo is currently limited. Thus far, several analytical methods have been developed for the qualitative and quantitative analysis of phenolic metabolites in berries, including liquid chromatography, mass spectrometry, and other hyphenated techniques, and have been undoubtedly valuable tools for the detailed metabolite characterization and profiling. In this review, a compilation of studies providing information on the qualitative and quantitative analysis of (poly)phenol metabolites in blackberries and raspberries after the utilization of in vitro and in vivo methods is presented. The different analytical techniques employed are assessed, focusing on the fate of the produced metabolic compounds in order to provide evidence on their characteristics, formation, and beneficial effects.
Collapse
|
41
|
Serreli G, Naitza MR, Zodio S, Leoni VP, Spada M, Melis MP, Boronat A, Deiana M. Ferulic Acid Metabolites Attenuate LPS-Induced Inflammatory Response in Enterocyte-like Cells. Nutrients 2021; 13:nu13093152. [PMID: 34579029 PMCID: PMC8471535 DOI: 10.3390/nu13093152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
Ferulic acid (FA) is a polyphenol pertaining to the class of hydroxycinnamic acids present in numerous foods of a plant origin. Its dietary consumption leads to the formation of several phase I and II metabolites in vivo, which represent the largest amount of ferulates in the circulation and in the intestine in comparison with FA itself. In this work, we evaluated their efficacy against the proinflammatory effects induced by lipopolysaccharide (LPS) in intestinal Caco-2 cell monolayers, as well as the mechanisms underlying their protective action. LPS-induced overexpression of proinflammatory enzymes such as inducible nitric oxide synthase (iNOS) and the consequent hyperproduction of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) were limited by physiological relevant concentrations (1 µM) of FA, its derivatives isoferulic acid (IFA) and dihydroferulic acid (DHFA), and their glucuronidated and sulfated metabolites, which acted upstream by limiting the activation of MAPK p38 and ERK and of Akt kinase, thus decreasing the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) translocation into the nucleus. Furthermore, the compounds were found to promote the expression of Nrf2, which may have contributed to the downregulation of NF-ĸB activity. The overall data show that phase I/II metabolites retain the efficacy of their dietary free form in contrasting inflammatory response.
Collapse
Affiliation(s)
- Gabriele Serreli
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy; (G.S.); (M.R.N.); (S.Z.); (V.P.L.); (M.S.); (M.P.M.)
| | - Micaela Rita Naitza
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy; (G.S.); (M.R.N.); (S.Z.); (V.P.L.); (M.S.); (M.P.M.)
| | - Sonia Zodio
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy; (G.S.); (M.R.N.); (S.Z.); (V.P.L.); (M.S.); (M.P.M.)
| | - Vera Piera Leoni
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy; (G.S.); (M.R.N.); (S.Z.); (V.P.L.); (M.S.); (M.P.M.)
| | - Martina Spada
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy; (G.S.); (M.R.N.); (S.Z.); (V.P.L.); (M.S.); (M.P.M.)
| | - Maria Paola Melis
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy; (G.S.); (M.R.N.); (S.Z.); (V.P.L.); (M.S.); (M.P.M.)
| | - Anna Boronat
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain;
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy; (G.S.); (M.R.N.); (S.Z.); (V.P.L.); (M.S.); (M.P.M.)
- Correspondence: ; Tel.: +39-070-675-4126
| |
Collapse
|
42
|
Boronat A, Rodriguez-Morató J, Serreli G, Fitó M, Tyndale RF, Deiana M, de la Torre R. Contribution of Biotransformations Carried Out by the Microbiota, Drug-Metabolizing Enzymes, and Transport Proteins to the Biological Activities of Phytochemicals Found in the Diet. Adv Nutr 2021; 12:2172-2189. [PMID: 34388248 PMCID: PMC8634308 DOI: 10.1093/advances/nmab085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022] Open
Abstract
The consumption of dietary phytochemicals has been associated with several health benefits and relevant biological activities. It is postulated that biotransformations of these compounds regulated by the microbiota, Phase I/II reactions, transport proteins, and deconjugating enzymes contribute not only to their metabolic clearance but also, in some cases, to their bioactivation. A number of factors (age, genetics, sex, physiopathological conditions, and the interplay with other dietary phytochemicals) modulating metabolic activities are important sources and contributors to the interindividual variability observed in clinical studies evaluating the biological activities of phytochemicals. In this review, we discuss all the processes that can affect the bioaccessibility and beneficial effects of these bioactive compounds. Herein, we argue that the role of these factors must be further studied to correctly understand and predict the effects observed following the intake of phytochemicals. This is, in particular, with regard to in vitro investigations, which have shown great inconsistency with preclinical and clinical studies. The complexity of in vivo metabolic activity and biotransformation should therefore be considered in the interpretation of results in vitro and their translation to human physiopathology.
Collapse
Affiliation(s)
- Anna Boronat
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Jose Rodriguez-Morató
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain,Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBEROBN), Madrid, Spain,Department of Experimental and Health Sciences (UPF-CEXS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Gabriele Serreli
- Department of Biomedical Science, Pathology Section, Experimental Pathology Unit, University of Cagliari, Montserrato, Italy
| | - Montserrat Fitó
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBEROBN), Madrid, Spain,Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute (CAMH), Toronto, Canada,Department of Pharmacology, Toxicology, and Psychiatry, University of Toronto, Toronto, Canada
| | - Monica Deiana
- Department of Biomedical Science, Pathology Section, Experimental Pathology Unit, University of Cagliari, Montserrato, Italy
| | | |
Collapse
|
43
|
Zaragozá C, Monserrat J, Mantecón C, Villaescusa L, Álvarez-Mon MÁ, Zaragozá F, Álvarez-Mon M. Binding and antiplatelet activity of quercetin, rutin, diosmetin, and diosmin flavonoids. Biomed Pharmacother 2021; 141:111867. [PMID: 34229245 DOI: 10.1016/j.biopha.2021.111867] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
Platelets exert an essential role in vascular inflammation and thrombosis. Flavonoids are natural compounds employed for the clinical management of vascular disorders preventing capillary permeability, working as phlebotonics and improving the blood rheology, although their mechanism of action remains partially unknown. The effects of quercetin, rutin, diosmetin and diosmin were investigated in platelet activation utilizing blood from healthy and non-treated volunteers. The arrangement of the different activation states of platelets and GPIIb/IIIa receptor occupation was computed by flow cytometry working with calcium ionophore as pro-aggregant to provoke platelet activation and aggregation. The flavonoids studied demonstrated relevant antiplatelet activity through the blocked of GPIIb/IIIa receptors, the suppression of the platelet activation, as well as the pro-aggregate effect of calcium ionophore. Therefore, whichever of the active ingredients examined could be beneficious in the prevention of cardiovascular disease and this article also contributes to elucidate a new mechanism of action for these drugs.
Collapse
Affiliation(s)
- Cristina Zaragozá
- Pharmacology Unit, Biomedical Sciences Department, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain.
| | - Jorge Monserrat
- Laboratory of Immune System Diseases and Oncology, Department of Medicine and Medical Specialties, University of Alcalá, Alcala de Henares, 28805 Madrid, Spain; Institute Ramón y Cajal for Health Research (IRYCIS). Biomedical Institute for Liver and Gut Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Mantecón
- Pharmacology Unit, Biomedical Sciences Department, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain
| | - Lucinda Villaescusa
- Pharmacology Unit, Biomedical Sciences Department, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain
| | - Miguel Ángel Álvarez-Mon
- Laboratory of Immune System Diseases and Oncology, Department of Medicine and Medical Specialties, University of Alcalá, Alcala de Henares, 28805 Madrid, Spain; Institute Ramón y Cajal for Health Research (IRYCIS). Biomedical Institute for Liver and Gut Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Medical Psychology, University Hospital Infanta Leonor, Madrid, Spain
| | - Francisco Zaragozá
- Pharmacology Unit, Biomedical Sciences Department, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain
| | - Melchor Álvarez-Mon
- Laboratory of Immune System Diseases and Oncology, Department of Medicine and Medical Specialties, University of Alcalá, Alcala de Henares, 28805 Madrid, Spain; Institute Ramón y Cajal for Health Research (IRYCIS). Biomedical Institute for Liver and Gut Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain; Internal Medicine and Rheumatology/Autoimmunity Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
44
|
Khan J, Deb PK, Priya S, Medina KD, Devi R, Walode SG, Rudrapal M. Dietary Flavonoids: Cardioprotective Potential with Antioxidant Effects and Their Pharmacokinetic, Toxicological and Therapeutic Concerns. Molecules 2021; 26:4021. [PMID: 34209338 PMCID: PMC8272101 DOI: 10.3390/molecules26134021] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Flavonoids comprise a large group of structurally diverse polyphenolic compounds of plant origin and are abundantly found in human diet such as fruits, vegetables, grains, tea, dairy products, red wine, etc. Major classes of flavonoids include flavonols, flavones, flavanones, flavanols, anthocyanidins, isoflavones, and chalcones. Owing to their potential health benefits and medicinal significance, flavonoids are now considered as an indispensable component in a variety of medicinal, pharmaceutical, nutraceutical, and cosmetic preparations. Moreover, flavonoids play a significant role in preventing cardiovascular diseases (CVDs), which could be mainly due to their antioxidant, antiatherogenic, and antithrombotic effects. Epidemiological and in vitro/in vivo evidence of antioxidant effects supports the cardioprotective function of dietary flavonoids. Further, the inhibition of LDL oxidation and platelet aggregation following regular consumption of food containing flavonoids and moderate consumption of red wine might protect against atherosclerosis and thrombosis. One study suggests that daily intake of 100 mg of flavonoids through the diet may reduce the risk of developing morbidity and mortality due to coronary heart disease (CHD) by approximately 10%. This review summarizes dietary flavonoids with their sources and potential health implications in CVDs including various redox-active cardioprotective (molecular) mechanisms with antioxidant effects. Pharmacokinetic (oral bioavailability, drug metabolism), toxicological, and therapeutic aspects of dietary flavonoids are also addressed herein with future directions for the discovery and development of useful drug candidates/therapeutic molecules.
Collapse
Affiliation(s)
- Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia;
| | - Prashanta Kumar Deb
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati 781035, Assam, India; (P.K.D.); (R.D.)
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Somi Priya
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India;
| | - Karla Damián Medina
- Food Technology Unit, Centre for Research and Assistance in Technology and Design of Jalisco State A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico;
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati 781035, Assam, India; (P.K.D.); (R.D.)
| | - Sanjay G. Walode
- Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Chinchwad, Pune 411019, Maharashtra, India;
| | - Mithun Rudrapal
- Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Chinchwad, Pune 411019, Maharashtra, India;
| |
Collapse
|
45
|
Dilberger B, Weppler S, Eckert GP. Phenolic acid metabolites of polyphenols act as inductors for hormesis in C. elegans. Mech Ageing Dev 2021; 198:111518. [PMID: 34139214 DOI: 10.1016/j.mad.2021.111518] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Aging represents a major risk factors for metabolic diseases, such as diabetes, obesity, or neurodegeneration. Polyphenols and their metabolites, especially simple phenolic acids, gained growing attention as a preventive strategy against age-related, non-communicable diseases, due to their hormetic potential. Using Caenorhabditis elegans (C. elegans) we investigate the effect of protocatechuic, gallic, and vanillic acid on mitochondrial function, health parameters, and the induction of potential hormetic pathways. METHODS Lifespan, heat-stress resistance and chemotaxis of C. elegans strain P X 627, a specific model for aging, were assessed in 2-day and 10-day old nematodes. Mitochondrial membrane potential (ΔΨm) and ATP generation were measured. mRNA expression levels of longevity and energy metabolism-related genes were determined using qRT-PCR. RESULTS All phenolic acids were able to significantly increase the nematodes lifespan, heat-stress resistance and chemotaxis at micromolar concentrations. While ΔΨm was only affected by age, vanillic acid (VA) significantly decreased ATP concentrations in aged nematodes. Longevity pathways, were activated by all phenolic acids, while VA also induced glycolytic activity and response to cold. CONCLUSION While life- and health span parameters are positively affected by the investigated phenolic acids, the concentrations applied were unable to affect mitochondrial performance. Therefore we suggest a hormetic mode of action, especially by activation of the sirtuin-pathway.
Collapse
Affiliation(s)
- Benjamin Dilberger
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| | - Selina Weppler
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| | - Gunter P Eckert
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| |
Collapse
|
46
|
Ferulic Acid Derivatives and Avenanthramides Modulate Endothelial Function through Maintenance of Nitric Oxide Balance in HUVEC Cells. Nutrients 2021; 13:nu13062026. [PMID: 34204635 PMCID: PMC8231282 DOI: 10.3390/nu13062026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Wholegrain oats contain a variety of phenolic compounds thought to help maintain healthy vascular function, through the maintenance of local levels of the vasodilator nitric oxide (NO). Thus, the full molecular mechanisms involved are not yet clear. With this work we aim to understand the possible cellular mechanisms by which avenanthramides and ferulic acid derivatives, present in oats, may help maintain a healthy vascular function through the modulation of the NO pathway. Primary Human Umbilical Vein Endothelial Cells (HUVEC) were exposed to ferulic acid, isoferulic acid, hydroferulic acid, ferulic acid 4-O-glucuronide, isoferulic acid 3-O-sulfate, dihydroferulic acid 4-O-glucuronide, avenanthramide A, avenanthramide B and avenanthramide C (1 μM) or vehicle (methanol) for 24 h. Apocynin and Nω-Nitro-L-arginine (L-NNA) were additionally included as controls. NO and cyclic GMP (cGMP) levels, superoxide production and the activation of the Akt1/eNOS pathway were assessed. The statistical analysis was performed using one-way ANOVA followed by a Tukey post-hoc t-test. Apocynin and all phenolic compounds increased NO levels in HUVEC cells (increased DAF2-DA fluorescence and cGMP), and significantly reduced superoxide levels. Protein expression results highlighted an increase in the Akt1 activation state, and increased eNOS expression. Overall, our results indicated that the glucuronide metabolites do not enhance NO production through the Akt1/eNOS pathway, thus all compounds tested are able to reduce NO degradation through reduced superoxide formation.
Collapse
|
47
|
Augusti PR, Conterato GMM, Denardin CC, Prazeres ID, Serra AT, Bronze MR, Emanuelli T. Bioactivity, bioavailability, and gut microbiota transformations of dietary phenolic compounds: implications for COVID-19. J Nutr Biochem 2021; 97:108787. [PMID: 34089819 PMCID: PMC8169570 DOI: 10.1016/j.jnutbio.2021.108787] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
The outbreak of mysterious pneumonia at the end of 2019 is associated with widespread research interest worldwide. The coronavirus disease-19 (COVID-19) targets multiple organs through inflammatory, immune, and redox mechanisms, and no effective drug for its prophylaxis or treatment has been identified until now. The use of dietary bioactive compounds, such as phenolic compounds (PC), has emerged as a putative nutritional or therapeutic adjunct approach for COVID-19. In the present study, scientific data on the mechanisms underlying the bioactivity of PC and their usefulness in COVID-19 mitigation are reviewed. In addition, antioxidant, antiviral, anti-inflammatory, and immunomodulatory effects of dietary PC are studied. Moreover, the implications of digestion on the putative benefits of dietary PC against COVID-19 are presented by addressing the bioavailability and biotransformation of PC by the gut microbiota. Lastly, safety issues and possible drug interactions of PC and their implications in COVID-19 therapeutics are discussed.
Collapse
Affiliation(s)
- Paula R Augusti
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Greicy M M Conterato
- Laboratório de Fisiologia da Reprodução Animal, Departamento de Agricultura, Biodiversidade e Floresta, Centro de Ciências Rurais, Universidade Federal de Santa Catarina, Campus de Curitibanos, Curitibanos, SC, Brazil
| | | | - Inês D Prazeres
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Maria R Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; iMED, Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Tatiana Emanuelli
- Núcleo Integrado de Desenvolvimento em Análises Laboratoriais (NIDAL), Departamento de Tecnologia e Ciência dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
48
|
Zaragozá C, Zaragozá F, Gayo-Abeleira I, Villaescusa L. Antiplatelet Activity of Coumarins: In Vitro Assays on COX-1. Molecules 2021; 26:molecules26103036. [PMID: 34069658 PMCID: PMC8161015 DOI: 10.3390/molecules26103036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/15/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death in developed countries. Therefore, there is an increasing interest in developing new potent and safe antiplatelet agents. Coumarins are a family of polyphenolic compounds with several pharmacological activities, including platelet aggregation inhibition. However, their antiplatelet mechanism of action needs to be further elucidated. The aim of this study is to provide insight into the biochemical mechanisms involved in this activity, as well as to establish a structure-activity relationship for these compounds. With this purpose, the antiplatelet aggregation activities of coumarin, esculetin and esculin were determined in vitro in human whole blood and platelet-rich plasma, to set the potential interference with the arachidonic acid cascade. Here, the platelet COX activity was evaluated from 0.75 mM to 6.5 mM concentration by measuring the levels of metabolites derived from its activity (MDA and TXB2), together with colorimetric assays performed with the pure recombinant enzyme. Our results evidenced that the coumarin aglycones present the greatest antiplatelet activity at 5 mM and 6.5 mM on aggregometry experiments and inhibiting MDA levels.
Collapse
|
49
|
Tito A, Colantuono A, Pirone L, Pedone E, Intartaglia D, Giamundo G, Conte I, Vitaglione P, Apone F. Pomegranate Peel Extract as an Inhibitor of SARS-CoV-2 Spike Binding to Human ACE2 Receptor ( in vitro): A Promising Source of Novel Antiviral Drugs. Front Chem 2021; 9:638187. [PMID: 33996744 PMCID: PMC8114579 DOI: 10.3389/fchem.2021.638187] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/25/2021] [Indexed: 01/08/2023] Open
Abstract
Plant extracts are rich in bioactive compounds, such as polyphenols, sesquiterpenes, and triterpenes, which potentially have antiviral activities. As a consequence of the coronavirus disease 2019 pandemic, caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, thousands of scientists have been working tirelessly trying to understand the biology of this new virus and the disease pathophysiology, with the main goal of discovering effective preventive treatments and therapeutic agents. Plant-derived secondary metabolites may play key roles in preventing and counteracting the rapid spread of SARS-CoV-2 infections by inhibiting the activity of several viral proteins, in particular those involved in the virus entry into the host cells and its replication. Using in vitro approaches, we investigated the role of a pomegranate peel extract (PPE) in attenuating the interaction between the SARS-CoV-2 Spike glycoprotein and the human angiotensin-converting enzyme 2 receptor, and on the activity of the virus 3CL protease. Although further studies will be determinant to assess the efficacy of this extract in vivo, our results opened new promising opportunities to employ natural extracts for the development of effective and innovative therapies in the fight against SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Luciano Pirone
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | | | - Giuliana Giamundo
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Paola Vitaglione
- Department of Agricultural Science, University of Naples Federico II, Portici, Italy
| | - Fabio Apone
- Arterra Bioscience SPA, Naples, Italy
- Vitalab Srl, Naples, Italy
| |
Collapse
|
50
|
López-Yerena A, Vallverdú-Queralt A, Jáuregui O, Garcia-Sala X, Lamuela-Raventós RM, Escribano-Ferrer E. Tissue Distribution of Oleocanthal and Its Metabolites after Oral Ingestion in Rats. Antioxidants (Basel) 2021; 10:688. [PMID: 33925686 PMCID: PMC8146289 DOI: 10.3390/antiox10050688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022] Open
Abstract
Claims for the potential health benefits of oleocanthal (OLC), a dietary phenolic compound found in olive oil, are based mainly on in vitro studies. Little is known about the tissue availability of OLC, which is rapidly metabolized after ingestion. In this study, the distribution of OLC and its metabolites in rat plasma and tissues (stomach, intestine, liver, kidney, spleen, lungs, heart, brain, thyroid and skin) at 1, 2 and 4.5 h after the acute intake of a refined olive oil containing 0.3 mg/mL of OLC was examined by LC-ESI-LTQ-Orbitrap-MS. OLC was only detected in the stomach and intestine samples. Moreover, at 2 and 4.5 h, the concentration in the stomach decreased by 36% and 74%, respectively, and in the intestine by 16% and 33%, respectively. Ten OLC metabolites arising from phase I and phase II reactions were identified. The metabolites were widely distributed in rat tissues, and the most important metabolizing organs were the small intestine and liver. The two main circulating metabolites were the conjugates OLC + OH + CH3 and OLC + H2O + glucuronic acid, which may significantly contribute to the beneficial health effects associated with the regular consumption of extra virgin olive oil. However, more studies are necessary to determine the concentrations and molecular structures of OLC metabolites in human plasma and tissues when consumed with the presence of other phenolic compunds present in EVOO.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (A.V.-Q.); (R.M.L.-R.)
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (A.V.-Q.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Olga Jáuregui
- Scientific and Technological Center of University of Barcelona (CCiTUB), 08028 Barcelona, Spain;
| | - Xavier Garcia-Sala
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (A.V.-Q.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Pharmaceutical Nanotechnology Group I+D+I Associated Unit to CSIC, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|