1
|
Fang B, Lu L, Zhao M, Luo X, Jia F, Feng F, Wang J. Mulberry ( Fructus mori) extract alleviates hyperuricemia by regulating urate transporters and modulating the gut microbiota. Food Funct 2024; 15:12169-12179. [PMID: 39585739 DOI: 10.1039/d4fo03481c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Mulberry (Fructus mori) is a traditional Chinese fruit that has beneficial effects due to its numerous biological activities. This study aimed to investigate the anti-hyperuricemic activity and underlying mechanism of laboratory-prepared mulberry water extract in mice with hyperuricemia (HUA). Additionally, the effect of mulberry extract (ME) on the microbiota was investigated. The results demonstrated that ME reduced the levels of HUA-related biochemical indices [uric acid (UA), creatinine (Cr), and blood urea nitrogen (BUN)] and pro-inflammatory factors (TNF-α, IL-6, IL-8, and IL-1β) in the serum of HUA model mice. ME suppressed xanthine oxidase (XOD) and adenosine deaminase (ADA) activity while modulating the expression of the urate transporters ATP-binding cassette transporter G2 (ABCG2) and recombinant urate transporter 1 (URAT1) in the kidney. Furthermore, high-dose ME modulated the microbiota, including Ligilactobacillus, Prevotellaceae, Bacteroides and Desulfovibrio. Overall, these results demonstrate the efficacy of ME in alleviating HUA by inhibiting XOD and ADA activity, as well as modulating transport proteins to decrease urate synthesis. Additionally, ME regulates the microbiota associated with host UA metabolism. These findings confirm the UA-lowering effects of ME, highlighting its potential as a therapeutic agent for HUA.
Collapse
Affiliation(s)
- Beicheng Fang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China.
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Lu Lu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China.
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Xiaohu Luo
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China.
| | - Fuhuai Jia
- Ningbo Yu Fang Tang Biological Science and Technology Co., Ltd, Ningbo, 315000, China.
| | - Fengqin Feng
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China.
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Jing Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China.
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China.
- Ningbo Yu Fang Tang Biological Science and Technology Co., Ltd, Ningbo, 315000, China.
| |
Collapse
|
2
|
Liu Y, Zheng K, Wang H, Liu H, Zheng K, Zhang J, Han L, Tu S, Wang Y. Natural Bioactive Compounds: Emerging Therapies for Hyperuricemia. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1863-1885. [PMID: 39558557 DOI: 10.1142/s0192415x24500733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Hyperuricemia is a crucial feature of metabolic syndrome, characterized by elevated uric acid that causes urate crystal deposits in joints, kidneys, and subcutaneous tissues, resulting in gout and hyperuricemic nephropathy. The primary causes of uric acid metabolism disorder include overproduction and reduced excretion. The majority of uric acid in human body is derived from the breakdown of purine nucleotides. Overproduction of uric acid can result from increased concentration or activity of xanthine oxidase, the key enzyme responsible for uric acid synthesis. Alterations in the activity of proteins responsible for uric acid reabsorption and excretion can also affect serum uric acid. Many bioactive compounds derived from natural plants have been shown to inhibit xanthine oxidase activity to reduce uric acid production, modulate the activity of transport proteins to promote uric acid excretion, or alleviate oxidative stress and inflammation through various signaling pathways. These properties have garnered significant attention from researchers. In this paper, we first introduce the pathophysiological mechanisms of hyperuricemia, then summarize bioactive compounds with urate-lowering effects, and discuss their potential applications in treating hyperuricemia and its complications.
Collapse
Affiliation(s)
- Yafei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Kaifeng Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
- Application Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Huanhuan Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Hong Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Kunyang Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Junjun Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P. R. China
| | - Shenghao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P. R. China
| | - Yaoxian Wang
- Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
3
|
Wang H, Zheng Y, Yang M, Wang L, Xu Y, You S, Mao N, Fan J, Ren S. Gut microecology: effective targets for natural products to modulate uric acid metabolism. Front Pharmacol 2024; 15:1446776. [PMID: 39263572 PMCID: PMC11387183 DOI: 10.3389/fphar.2024.1446776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Gut microecology,the complex community consisting of microorganisms and their microenvironments in the gastrointestinal tract, plays a vital role in maintaining overall health and regulating various physiological and pathological processes. Recent studies have highlighted the significant impact of gut microecology on the regulation of uric acid metabolism. Natural products, including monomers, extracts, and traditional Chinese medicine formulations derived from natural sources such as plants, animals, and microorganisms, have also been investigated for their potential role in modulating uric acid metabolism. According to research, The stability of gut microecology is a crucial link for natural products to maintain healthy uric acid metabolism and reduce hyperuricemia-related diseases. Herein, we review the recent advanced evidence revealing the bidirectional regulation between gut microecology and uric acid metabolism. And separately summarize the key evidence of natural extracts and herbal formulations in regulating both aspects. In addition,we elucidated the important mechanisms of natural products in regulating uric acid metabolism and secondary diseases through gut microecology, especially by modulating the composition of gut microbiota, gut mucosal barrier, inflammatory response, purine catalyzation, and associated transporters. This review may offer a novel insight into uric acid and its associated disorders management and highlight a perspective for exploring its potential therapeutic drugs from natural products.
Collapse
Affiliation(s)
- Hui Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixuan Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengfan Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Xu
- Chengdu Medical College, Chengdu, China
| | - Siqi You
- Chengdu Medical College, Chengdu, China
| | - Nan Mao
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Junming Fan
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Sichong Ren
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- TCM Preventative Treatment Research Center of Chengdu Medical College, Chengdu, China
| |
Collapse
|
4
|
Xu YX, Liu LD, Zhu JY, Zhu SS, Ye BQ, Yang JL, Huang JY, Huang ZH, You Y, Li WK, He JL, Xia M, Liu Y. Alistipes indistinctus-derived hippuric acid promotes intestinal urate excretion to alleviate hyperuricemia. Cell Host Microbe 2024; 32:366-381.e9. [PMID: 38412863 DOI: 10.1016/j.chom.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
Hyperuricemia induces inflammatory arthritis and accelerates the progression of renal and cardiovascular diseases. Gut microbiota has been linked to the development of hyperuricemia through unclear mechanisms. Here, we show that the abundance and centrality of Alistipes indistinctus are depleted in subjects with hyperuricemia. Integrative metagenomic and metabolomic analysis identified hippuric acid as the key microbial effector that mediates the uric-acid-lowering effect of A. indistinctus. Mechanistically, A. indistinctus-derived hippuric acid enhances the binding of peroxisome-proliferator-activated receptor γ (PPARγ) to the promoter of ATP-binding cassette subfamily G member 2 (ABCG2), which in turn boosts intestinal urate excretion. To facilitate this enhanced excretion, hippuric acid also promotes ABCG2 localization to the brush border membranes in a PDZ-domain-containing 1 (PDZK1)-dependent manner. These findings indicate that A. indistinctus and hippuric acid promote intestinal urate excretion and offer insights into microbiota-host crosstalk in the maintenance of uric acid homeostasis.
Collapse
Affiliation(s)
- Ying-Xi Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Lu-Di Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Jiang-Yuan Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Shan-Shan Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Bing-Qi Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Jia-Lu Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Jing-Yi Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Zhi-Hao Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Yi You
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Wen-Kang Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Jia-Lin He
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Yan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China.
| |
Collapse
|
5
|
Qi X, Ma Y, Guan K, Zhao L, Ma Y, Wang R. Whey Protein Peptide Pro-Glu-Trp Ameliorates Hyperuricemia by Enhancing Intestinal Uric Acid Excretion, Modulating the Gut Microbiota, and Protecting the Intestinal Barrier in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2573-2584. [PMID: 38240209 DOI: 10.1021/acs.jafc.3c00984] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Hyperuricemia (HUA) is a metabolic disorder characterized by an increase in the concentrations of uric acid (UA) in the bloodstream, intricately linked to the onset and progression of numerous chronic diseases. The tripeptide Pro-Glu-Trp (PEW) was identified as a xanthine oxidase (XOD) inhibitory peptide derived from whey protein, which was previously shown to mitigate HUA by suppressing UA synthesis and enhancing renal UA excretion. However, the effects of PEW on the intestinal UA excretion pathway remain unclear. This study investigated the impact of PEW on alleviating HUA in rats from the perspective of intestinal UA transport, gut microbiota, and intestinal barrier. The results indicated that PEW inhibited the XOD activity in the serum, jejunum, and ileum, ameliorated intestinal morphology changes and oxidative stress, and upregulated the expression of ABCG2 and GLUT9 in the small intestine. PEW reversed gut microbiota dysbiosis by decreasing the abundance of harmful bacteria (e.g., Bacteroides, Alloprevotella, and Desulfovibrio) and increasing the abundance of beneficial microbes (e.g., Muribaculaceae, Lactobacillus, and Ruminococcus) and elevated the concentration of short-chain fatty acids. PEW upregulated the expression of occludin and ZO-1 and decreased serum IL-1β, IL-6, and TNF-α levels. Our findings suggested that PEW supplementation ameliorated HUA by enhancing intestinal UA excretion, modulating the gut microbiota, and restoring the intestinal barrier function.
Collapse
Affiliation(s)
- Xiaofen Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yanfeng Ma
- Mengniu Hi-tech Dairy (Beijing) Co., Ltd., Beijing 101107, China
| | - Kaifang Guan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Le Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Rongchun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| |
Collapse
|
6
|
Meng W, Chen L, Ouyang K, Lin S, Zhang Y, He J, Wang W. Chimonanthus nitens Oliv. leaves flavonoids alleviate hyperuricemia by regulating uric acid metabolism and intestinal homeostasis in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
7
|
Papaefthimiou M, Kontou PI, Bagos PG, Braliou GG. Antioxidant Activity of Leaf Extracts from Stevia rebaudiana Bertoni Exerts Attenuating Effect on Diseased Experimental Rats: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:3325. [PMID: 37571265 PMCID: PMC10420666 DOI: 10.3390/nu15153325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Stevia (Stevia rebaudiana Bertoni) is an aromatic plant known for its high sweetening power ascribed to its glycosides. Stevia also contains several bioactive compounds showing antioxidant, antiproliferative, antimicrobial, and anti-inflammatory activities. Since inflammation and oxidative stress play critical roles in the pathogenesis of many diseases, stevia emerges as a promising natural product that could support human health. In this study we set out to investigate the way stevia affects oxidative stress markers (e.g., SOD, CAT, GPx, GSH, MDA) in diseased rats administered stevia leaf extracts or glycosides. To this end, we performed an inclusive literature search, following PRISMA guidelines, and recruited multivariate meta-analysis and meta-regression to synthesize all available data on experimental animal models encountering (a) healthy, (b) diseased, and (c) stevia-treated diseased rats. From the 184 articles initially retrieved, 24 satisfied the eligibility criteria, containing 104 studies. Our results demonstrate that regardless of the assay employed, stevia leaf extracts restored all oxidative stress markers to a higher extent compared to pure glycosides. Meta-regression analysis revealed that results from SOD, CAT, GSH, and TAC assays are not statistically significantly different (p = 0.184) and can be combined in meta-analysis. Organic extracts from stevia leaves showed more robust antioxidant properties compared to aqueous or hydroalcoholic ones. The restoration of oxidative markers ranged from 65% to 85% and was exhibited in all tested tissues. Rats with diabetes mellitus were found to have the highest restorative response to stevia leaf extract administration. Our results suggest that stevia leaf extract can act protectively against various diseases through its antioxidant properties. However, which of each of the multitude of stevia compounds contribute to this effect, and to what extent, awaits further investigation.
Collapse
Affiliation(s)
- Maria Papaefthimiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35 131 Lamia, Greece; (M.P.); (P.G.B.)
| | | | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35 131 Lamia, Greece; (M.P.); (P.G.B.)
| | - Georgia G. Braliou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35 131 Lamia, Greece; (M.P.); (P.G.B.)
| |
Collapse
|
8
|
Zhang N, Zhou J, Zhao L, Zhao Z, Wang S, Zhang L, Zhou F. Ferulic acid supplementation alleviates hyperuricemia in high-fructose/fat diet-fed rats via promoting uric acid excretion and mediating the gut microbiota. Food Funct 2023; 14:1710-1725. [PMID: 36722874 DOI: 10.1039/d2fo03332a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The prevalence of hyperuricemia (HUA) has been rising, and it is typically accompanied by renal injury and intestinal flora disorder, leading to a non-negligible health crisis. Ferulic acid (FA), as a familiar polyphenol, has been proven to exert anti-hyperuricemic properties via inhibiting uric acid (UA) synthesis; however, the detailed underlying mechanisms remain unclear. The aim of this study was to explore the regulatory effect of FA on UA excretion as a potential strategy for reducing UA levels, and the comorbidities of HUA. FA treatment downregulated the expression of urate absorption transporter genes and repressed the toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway in UA-stimulated HK-2 cells. To examine these effects in vivo, FA or allopurinol (positive control) was given to rats with HUA induced by a high-fructose/fat diet (HFFD) for 20 weeks. FA markedly decreased the serum UA, blood urea nitrogen, and creatinine levels. The expression of urate absorption transporters was downregulated, whereas the expression of secretion transporters was upregulated in the kidneys and intestines of FA-treated HUA rats. Additionally, FA mitigated renal oxidative stress, and suppressed the activation of the TLR4/NF-κB pathway and the downstream inflammatory response-related markers in the kidneys. Moreover, FA remodeled the composition of the gut microbiota, characterized by an increase in beneficial bacteria (e.g., Lactobacillus and Ruminococcus) and a decrease in pathogenic bacteria (e.g., Bacteroides). In conclusion, our study validated FA as an effective nutrient to ameliorate HFFD-induced HUA, suggesting its potential to mitigate the HUA-associated renal impairment and intestinal microbiota disturbance.
Collapse
Affiliation(s)
- Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China.
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China.
| | - Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Zhen Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China.
| | - Shiran Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China.
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China.
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China.
| |
Collapse
|
9
|
Wei B, Ren P, Yang R, Gao Y, Tang Q, Xue C, Wang Y. Ameliorative Effect of Mannuronate Oligosaccharides on Hyperuricemic Mice via Promoting Uric Acid Excretion and Modulating Gut Microbiota. Nutrients 2023; 15:nu15020417. [PMID: 36678288 PMCID: PMC9865265 DOI: 10.3390/nu15020417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Mannuronate oligosaccharide (MOS) is α-D-mannuronic acid polymer with 1,4-glycosidic linkages that possesses beneficial biological properties. The aim of this study was to investigate the hypouricemic effect of MOS in hyperuricemic mice and demonstrate the possible protective mechanisms involved. In this research, 200 mg/kg/day of MOS was orally administered to hyperuricemic mice for four weeks. The results showed that the MOS treatment significantly reduced the serum uric acid (SUA) level from 176.4 ± 7.9 μmol/L to 135.7 ± 10.9 μmol/L (p < 0.05). MOS alleviated the inflammatory response in the kidney. Moreover, MOS promoted uric acid excretion by regulating the protein levels of renal GLUT9, URAT1 and intestinal GLUT9, ABCG2. MOS modulated the gut microbiota in hyperuricemic mice and decreased the levels of Tyzzerella. In addition, research using antibiotic-induced pseudo-sterile mice demonstrated that the gut microbiota played a crucial role in reducing elevated serum uric acid of MOS in mice. In conclusion, MOS may be a potential candidate for alleviating HUA symptoms and regulating gut microbiota.
Collapse
Affiliation(s)
- Biqian Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Pengfei Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ruzhen Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yuan Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
- Correspondence: ; Tel.: +86-186-6140-2667
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| |
Collapse
|
10
|
Lin S, Meng J, Li F, Yu H, Lin D, Lin S, Li M, Zhou H, Yang B. Ganoderma lucidum polysaccharide peptide alleviates hyperuricemia by regulating adenosine deaminase and urate transporters. Food Funct 2022; 13:12619-12631. [PMID: 36385640 DOI: 10.1039/d2fo02431d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hyperuricemia (HUA) affects human health and is involved in the pathogenesis of common chronic diseases. Previous studies showed that Ganoderma lucidum extract lowered HUA in animals. However, the active ingredient and pharmacological mechanism of Ganoderma lucidum extract in the improvement of HUA are unknown. The purpose of this study was to determine the anti-HUA efficacy and related mechanism of Ganoderma lucidum polysaccharide peptide (GLPP) using a potassium oxonate (PO)-induced mouse model and an adenosine-induced cell model. The experimental results showed that blood uric acid (UA) was decreased up to 40.6% by GLPP in HUA mice in a dose-dependent manner. Additionally, GLPP significantly reduced UA production by inhibiting the hepatic and blood adenosine deaminase (ADA) activity and increased UA excretion by decreasing the expression of glucose transporter 9 (GLUT9) and increasing the expression of organic anion transporter 1 (OAT1) in kidney. The adenosine-induced cell model showed that the inhibitory effect of GLPP on ADA activity may be the main reason for the alleviation of HUA by GLPP. Furthermore, PO-induced renal histopathological damage was also alleviated by GLPP in a dose-dependent manner. The experimental results in this study indicated that GLPP exerted anti-HUA effects via regulating the UA production and excretion, suggesting that GLPP could be developed into a therapeutic agent for HUA.
Collapse
Affiliation(s)
- Simei Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Jia Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Fei Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Huifan Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Dongmei Lin
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shuqian Lin
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China. .,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| |
Collapse
|
11
|
Scanu A, Luisetto R, Ramonda R, Spinella P, Sfriso P, Galozzi P, Oliviero F. Anti-Inflammatory and Hypouricemic Effect of Bioactive Compounds: Molecular Evidence and Potential Application in the Management of Gout. Curr Issues Mol Biol 2022; 44:5173-5190. [PMID: 36354664 PMCID: PMC9688861 DOI: 10.3390/cimb44110352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/21/2023] Open
Abstract
Gout is caused by the deposition of monosodium urate crystals in the joint and represents the most common form of inflammatory arthritis in men. Its prevalence is rising worldwide mainly due to the increase of risk factors associated with the disease, in particular hyperuricemia. Besides gout, hyperuricemia leads to an increased inflammatory state of the body with consequent increased risk of comorbidities such as cardiovascular diseases. Increasing evidence shows that bioactive compounds have a significant role in fighting inflammatory and immune chronic conditions. In gout and hyperuricemia, these molecules can exert their effects at two levels. They can either decrease serum uric acid concentrations or fight inflammation associated with monosodium urate crystals deposits and hyperuricemia. In this view, they might be considered valuable support to the pharmacological therapy and prevention of the disease. This review aims to provide an overview of the beneficial role of bioactive compounds in hyperuricemia, gout development, and inflammatory pathways of the disease.
Collapse
Affiliation(s)
- Anna Scanu
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology—DISCOG, University of Padova, 35128 Padova, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Paolo Spinella
- Clinical Nutrition Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Paolo Sfriso
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Paola Galozzi
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Francesca Oliviero
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| |
Collapse
|
12
|
Dietary Stevia Residue Extract Supplementation Improves Antioxidant Capacity and Intestinal Microbial Composition of Weaned Piglets. Antioxidants (Basel) 2022; 11:antiox11102016. [PMID: 36290738 PMCID: PMC9598856 DOI: 10.3390/antiox11102016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/20/2022] Open
Abstract
This study aimed to investigate the effects of diet supplementation with stevia residue extract (SRE) on growth performance, intestinal health, and antioxidant capacity of weaned piglets. A total of 144 weaned piglets (body weight 6.8 ± 0.5 kg) were randomly selected and allocated into four treatment groups with six replicates of six pigs/pen. The treatments consisted of a basal diet without SRE or basal diet supplemented with 100, 200, or 400 mg/kg SRE. The results showed that the addition of 200 mg/kg SRE to the diet significantly reduced (p < 0.05) the diarrhea rate of piglets compared with the control group. The supplementation of 400 mg/kg SRE in the diet significantly reduced the piglets’ serum MDA content and significantly increased (p < 0.05) the T-AOC, T-SOD, and GSH-PX activity in the serum. The dietary supplementation with 400 mg/kg SRE significantly increased (p < 0.05) the CAT and GSH-PX activity in the liver. Moreover, the supplementation of 400 mg/kg SRE in the diet significantly increased (p < 0.05) the relative abundance of Prevotellaceae (genus) and Roseburia (genus) beneficial bacteria compared to the control group. Spearman’s correlation analysis showed that Prevotella (genus) abundance was positively correlated with liver GSH-PX activity and acetic acid content of colon contents. In conclusion, the supplementation of 400 mg/kg SRE to the diet can improve piglet health by regulating antioxidant reduction homeostasis, which may also be associated with an increase in the relative numbers of potentially beneficial bacteria.
Collapse
|
13
|
Li Y, Zhu J, Lin G, Gao K, Yu Y, Chen S, Chen L, Chen Z, Li L. Probiotic effects of Lacticaseibacillus rhamnosus 1155 and Limosilactobacillus fermentum 2644 on hyperuricemic rats. Front Nutr 2022; 9:993951. [PMID: 36245501 PMCID: PMC9562091 DOI: 10.3389/fnut.2022.993951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Hyperuricemia is the main cause of gout and involved in the occurrence of multiple diseases, such as hypertension, metabolic disorders and chronic kidney disease. Emerging evidence suggests that lactic acid bacteria (LAB) have shown the beneficial effects on the prevention or treatment of hyperuricemia. In this study, the urate-lowering effect of two LAB strains, Lacticaseibacillus rhamnosus 1155 (LR1155) and Limosilactobacillus fermentum 2644 (LF2644) on hyperuricemic rats were investigated. A hyperuricemic rat model was induced by the intragastric treatment of potassium oxonate, combined with a high purine diet. The oral administration of LR1155, LF2644, or a combination of LR1155 and LF2644 for 4 weeks significantly prevented the rise of the serum uric acid (UA) induced by hyperuricemia. LR1155 and LF2644 significantly elevated the fecal UA levels, increased the UA content and up-regulated gene expression of UA transporter, ATP-binding cassette subfamily G-2 (ABCG2), in colon and jejunum tissues, suggesting the accelerated UA excretion from the intestine. Besides, LR1155 significantly inhibited the activity of xanthine oxidase (XOD) in liver and serum, benefited the reduce of UA production. In addition, LF2644 strengthened the gut barrier functions through an up-regulation of the gene expressions for occluding and mucin2, accompanied with the reduced inflammatory indicators of lipopolysaccharide (LPS) and interleukin-1β (IL-1β) in hyperuricemic rat. Moreover, using 16s rDNA high-throughput sequencing of feces, LR1155 was shown to improve the hyperuricemia induced gut microbial dysbiosis. The genera Roseburia, Butyricicoccus, Prevotella, Oscillibacter, and Bifidobacterium may associate with the effect of LR1155 on microbiota in hyperuricemic rats. Collectively, the results indicated that LR1155 and LF2644 exhibit urate-lowering effects and could be used alone or in combination as a new adjuvant treatment for hyperuricemia.
Collapse
Affiliation(s)
- Yanjun Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Jun Zhu
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- *Correspondence: Jun Zhu,
| | - Guodong Lin
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Kan Gao
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Yunxia Yu
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Su Chen
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Lie Chen
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Zuoguo Chen
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Li Li
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| |
Collapse
|
14
|
Xiong Y, Liu S, Xiao H, Wu Q, Chi L, Zhu L, Fang L, Li Y, Jiang Z, Wang L. Dietary stevia residue extract supplementation improves the performance and antioxidative capacity of growing-finishing pigs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4724-4735. [PMID: 35211988 DOI: 10.1002/jsfa.11833] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Improper disposal of stevia residue causes environmental pollution and waste of resources. The extract of stevia residue is rich in chlorogenic acid and isochlorogenic acids, and has a great potential in livestock and poultry breeding. Therefore, this study aimed to investigate the effects of dietary stevia residue extract (SRE) supplementation on the performance, meat quality, antioxidative capacity and gut microbiota in growing-finishing pigs. RESULTS The results showed that increasing the concentration of SRE supplementation linearly increased (P < 0.05) body weight from day 1 to 35. Supplementation with SRE significantly increased (P < 0.05) average daily gain (ADG) from day 1 to 75. 100 mg kg-1 SRE supplementation significantly increased (P < 0.05) hot carcass weight and gastric index. Moreover, increasing the concentration of SRE linearly increased (P < 0.05) the score of appearance of longissimus thoracis, as well as serum albumin, triglyceride and high-density lipoprotein cholesterol content. Further study found that increasing the concentration of SRE linearly increased (P < 0.05) serum total superoxide dismutase activity, and showed a significant quadratic relationship (P < 0.05) with activity of serum catalase, while linearly decreasing (P < 0.05) muscle malondialdehyde (MDA) content. Furthermore, supplementation with 100 mg kg-1 SRE significantly decreased (P < 0.05) serum MDA content, while 600 and 800 mg kg-1 SRE supplementation significantly decreased (P < 0.05) muscle MDA content. However, SRE supplementation had no significant effect on gut microbiota (P > 0.05). CONCLUSION These data indicated that dietary SRE supplementation improves the performance and antioxidative capacity of growing-finishing pigs. We recommend that the optimal supplemental level of SRE in the diet of growing-finishing pigs is 100 mg kg-1 . © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yunxia Xiong
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuai Liu
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hao Xiao
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lei Chi
- Zhucheng Haotian Pharmaceutical Co., Ltd, Zhucheng, China
| | - Liping Zhu
- Zhucheng Haotian Pharmaceutical Co., Ltd, Zhucheng, China
| | - Ling Fang
- Zhucheng Haotian Pharmaceutical Co., Ltd, Zhucheng, China
| | - Yajing Li
- Zhucheng Haotian Pharmaceutical Co., Ltd, Zhucheng, China
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
15
|
Wang K, Wu S, Li P, Xiao N, Wen J, Lin J, Lu S, Cai X, Xu Y, Du B. Sacha Inchi Oil Press-Cake Protein Hydrolysates Exhibit Anti-Hyperuricemic Activity via Attenuating Renal Damage and Regulating Gut Microbiota. Foods 2022; 11:foods11162534. [PMID: 36010534 PMCID: PMC9407120 DOI: 10.3390/foods11162534] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/17/2022] Open
Abstract
The incidence of hyperuricemia has increased globally due to changes in dietary habits. The sacha inchi oil press-cake is generally discarded, resulting in the waste of resources and adverse environmental impact. For the purpose of developing sacha inchi oil press-cake and identifying natural components with anti-hyperuricemic activities, we systemically investigated the underlying mechanisms of sacha inchi oil press-cake protein hydrolysates (SISH) in the hyperuricemic rat model. SISH was obtained from sacha inchi oil press-cake proteins after trypsin treatment, and 24 peptides with small molecular weight (<1000 Da) were identified. The results of animal experiments showed that SISH significantly decreased the serum uric acid (UA) level by inhibiting the xanthine oxidase (XOD) activity and regulating the gene expression related to UA production and catabolism in hyperuricemia rats, such as Xdh and Hsh. In addition, SISH attenuated the renal damage and reduced the gene expression related to inflammation (Tlr4, Map3k8, Pik3cg, Pik3ap1, Ikbke, and Nlrp3), especially Tlr4, which has been considered a receptor of UA. Notably, SISH reversed high purine-induced gut microbiota dysbiosis, particularly by enhancing the relative abundance of butyric acid-producing bacteria (unidentified_Ruminococcaceae, Oscillibacter, Ruminiclostridium, Intestinimonas). This research provided new insights into the treatment of hyperuricemia.
Collapse
|
16
|
Wu D, Chen R, Li Q, Lai X, Sun L, Zhang Z, Wen S, Sun S, Cao F. Tea ( Camellia sinensis) Ameliorates Hyperuricemia via Uric Acid Metabolic Pathways and Gut Microbiota. Nutrients 2022; 14:2666. [PMID: 35807846 PMCID: PMC9268162 DOI: 10.3390/nu14132666] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 01/27/2023] Open
Abstract
Hyperuricemia (HUA) is a metabolic disease that threatens human health. Tea is a healthy beverage with an abundance of benefits. This study revealed the uric acid-lowering efficacy of six types of tea water extracts (TWEs) on HUA in mice. The results revealed that under the intervention of TWEs, the expression of XDH, a key enzyme that produces uric acid, was significantly downregulated in the liver. TWE treatment significantly upregulated the expression of uric acid secretion transporters ABCG2, OAT1, and OAT3, and downregulated the expression of uric acid reabsorption transporter URAT1 in the kidney. Furthermore, HUA-induced oxidative stress could be alleviated by upregulating the Nrf2/HO-1 pathway. The intervention of TWEs also significantly upregulated the expression of the intestinal ABCG2 protein. On the other hand, TWE intervention could significantly upregulate the expression of intestinal ABCG2 and alleviate HUA by modulating the gut microbiota. Taken together, tea can comprehensively regulate uric acid metabolism in HUA mice. Interestingly, we found that the degree of fermentation of tea was negatively correlated with the uric acid-lowering effect. The current study indicated that tea consumption may have a mitigating effect on the HUA population and provided a basis for further research on the efficacy of tea on the dosage and mechanism of uric acid-lowering effects in humans.
Collapse
Affiliation(s)
- Dan Wu
- College of Horticulture, South China Agricultural University, Guangzhou 510640, China;
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (X.L.); (L.S.); (Z.Z.); (S.W.)
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (X.L.); (L.S.); (Z.Z.); (S.W.)
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (X.L.); (L.S.); (Z.Z.); (S.W.)
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (X.L.); (L.S.); (Z.Z.); (S.W.)
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (X.L.); (L.S.); (Z.Z.); (S.W.)
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (X.L.); (L.S.); (Z.Z.); (S.W.)
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (X.L.); (L.S.); (Z.Z.); (S.W.)
| | - Fanrong Cao
- College of Horticulture, South China Agricultural University, Guangzhou 510640, China;
| |
Collapse
|
17
|
Wei C, Wang Q, Weng W, Adu-Frimpong M, Toreniyazov E, Ji H, Xu X, Yu J. Enhanced oral bioavailability and anti-hyperuricemic activity of liquiritin via a self-nanoemulsifying drug delivery system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2032-2040. [PMID: 34558068 DOI: 10.1002/jsfa.11542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/29/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND This study focused on the development of a self-nanoemulsifying drug delivery system (SNEDDS) to improve, potentially, the solubility and oral bioavailability of liquiritin (LQ). METHODS The solubility of LQ in different types of excipient, namely oils (OLs), emulsifiers (EMs), and co-emulsifiers (CO-EMs), was evaluated, and a pseudo-ternary phase diagram (PTPD) and the formulation optimization were established. The prepared self-nanoemulsifying drug delivery system of liquiritin (LQ-SNEDDS) was assessed using droplet size (DS), zeta potential (ZP), polydispersity index (PDI), droplet morphology, drug release in vitro, and oral bioavailability. RESULTS After the dilution of the LQ-SNEDDS, a transparent nanoemulsion was obtained with an acceptable DS (24.70 ± 0.73 nm), ZP (-18.69 ± 1.44 mV), and PDI (0.122 ± 0.006). The LQ-SNEDDS that was developed had a better release rate in vitro than the free LQ suspension. Pharmacokinetic evaluation showed that the relative oral bioavailability of LQ-SNEDDS was increased by 5.53 times, and LQ-SNEDDS exhibited a delayed half life and longer retention time in comparison with those of free LQ. Similarly, LQ-SNEDDS had a better urate lowering effect and provided better organ protection than free LQ at the same dose (P < 0.05). CONCLUSIONS The incorporation of LQ into SNEDDS could serve as a promising approach to improve the solubility, oral bioavailability, and anti-hyperuricemic effect of LQ. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunmei Wei
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Wen Weng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Michael Adu-Frimpong
- Department of Applied Chemistry and Biochemistry, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Elmurat Toreniyazov
- Ashkent State Agricultural University (Nukus Branch), Nukus, Republic of Uzbekistan
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, People's Republic of China
| | - Hao Ji
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, People's Republic of China
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd, Zhenjiang, People's Republic of China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, People's Republic of China
| |
Collapse
|
18
|
Histamine Causes Pyroptosis of Liver by Regulating Gut-Liver Axis in Mice. Int J Mol Sci 2022; 23:ijms23073710. [PMID: 35409071 PMCID: PMC8998596 DOI: 10.3390/ijms23073710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Huangjiu usually caused rapid-drunkenness and components such as β-benzyl ethanol (β-be), isopentanol (Iso), histamine (His), and phenethylamine (PEA) have been reported linked with intoxication. However, the destructive effect of these components on gut microbiota and liver is unclear. In this study, we found oral treatment of these components, especially His, stimulated the level of oxidative stress and inflammatory cytokines in liver and serum of mice. The gut microbiota community was changed and the level of lipopolysaccharide (LPS) increased significantly. Additionally, cellular pyroptosis pathway has been assessed and correlation analysis revealed a possible relationship between gut microbiota and liver pyroptosis. We speculated oral His treatment caused the reprogramming of gut microbiota metabolism, and increased LPS modulated the gut-liver interaction, resulting in liver pyroptosis, which might cause health risks. This study provided a theoretical basis for the effect of Huangjiu, facilitating the development of therapeutic and preventive strategies for related inflammatory disorders.
Collapse
|
19
|
Bao R, Chen Q, Li Z, Wang D, Wu Y, Liu M, Zhang Y, Wang T. Eurycomanol alleviates hyperuricemia by promoting uric acid excretion and reducing purine synthesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153850. [PMID: 34785103 DOI: 10.1016/j.phymed.2021.153850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND An elevated level of blood uric acid (UA) leads to serious damages to human health. In clinic, xanthine oxidase inhibitor is commonly used to reduce uric acid production. However, UA excretion promotion drug is rare. Our previous study demonstrated that the 70% ethanolic extract of stem of Eurycoma longifolia could effectively increase UA excretion and decrease blood level of UA in hyperuricemia animal model. In this paper, we tried to find active substance on UA regulation from E. longifolia. METHODS The constituents of stem from E. longifolia were isolated and analyzed by chemical and spectral methods. Ultra Performance Liquid Chromatography was applied to measure the concentrations of UA in serum and urine. H&E staining was used to characterize renal histopathological changes. The protein and mRNA expressions of UA transporters were measured by western blot and quantitative real-time PCR analysis. RESULTS Ten kinds of quassinoids were isolated from stem of E. longifolia, and the structures were identified. Pharmacological research revealed the major component, eurycomanol (5-20 mg/kg, p.o.) significantly decreased serum UA level and increased 24 h clearance of uric acid in potassium oxonate and adenine induced hyperuricemic mice. Eurycomanol ameliorated UA induced kidney histological injury, inhibited hepatic purine synthesis through decreasing phosphoribosyl pyrophosphate synthetase, promoted UA excretion by modulation of renal and intestinal urate transporters, such as GLUT9, ABCG2, OAT1, and NPT1. CONCLUSION The results showed eurycomanol from E. longifolia can promote UA excretion through kidney and intestine, decrease hepatic purine synthesis and further keep UA homeostasis, suggesting that eurycomanol has the potential to be developed into a novel drug for the treatment of under-excretion type hyperuricemia.
Collapse
Affiliation(s)
- Ruixia Bao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Qian Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Zheng Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Dan Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Yuzheng Wu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Mengyang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin 301617, China.
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin 301617, China.
| |
Collapse
|
20
|
Chen N, Wang W, Xiang J, Li T, Wang L, Liang R, Yang B. The anti-hyperuricemic effect of flavonoid extract of saffron by-product and its pharmacokinetics in rats after oral administration. J Sep Sci 2021; 45:856-873. [PMID: 34921740 DOI: 10.1002/jssc.202100776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022]
Abstract
Only the dried stigma of the saffron, a flower deemed as the most valuable spice globally, is utilized for industrial production. Hence, there exists a growing interest in utilizing saffron floral bio-residues. The anti-hyperuricemic activity of a flavonoid extract from saffron floral bio-residues was assessed in potassium oxonate-induced hyperuricemia mice. In addition, an ultra-high performance liquid chromatography-triple quadrupole mass spectrometry method was established and validated to determine the pharmacokinetics of five main flavonoids and three phase-II metabolites in rat plasma after oral administration of the flavonoid extract for the first time. Compared with pharmacokinetic parameters of kaempferol-3-O-sophoroside, the most abundant flavonoid in the extract, and its aglycone kaempferol, we observed that coexisting compounds significantly reduced the absorption, accelerated the excretion of kaempferol-3-O-sophoroside, while significantly increasing the absorption and prolonging the residence time of kaempferol in the flavonoid extract. These results suggest the promising potential of the flavonoid extract from saffron floral bio-residues as an anti-hyperuricemic agent. Kaempferol was absorbed in plasma at high concentrations owing to the biotransformation of kaempferol glycosides in vivo.
Collapse
Affiliation(s)
- Na Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Weihao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Junjie Xiang
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, Nanchang, P. R. China
| | - Tao Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Lan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Rixin Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Bin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| |
Collapse
|
21
|
Lin G, Yu Q, Xu L, Huang Z, Mai L, Jiang L, Su Z, Xie J, Li Y, Liu Y, Lin Z, Chen J. Berberrubine attenuates potassium oxonate- and hypoxanthine-induced hyperuricemia by regulating urate transporters and JAK2/STAT3 signaling pathway. Eur J Pharmacol 2021; 912:174592. [PMID: 34699754 DOI: 10.1016/j.ejphar.2021.174592] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 01/27/2023]
Abstract
Phellodendri Chinensis Cortex (PC) is a traditional medicinal material used to treat gout and hyperuricemia (HUA) in China. Berberine (BBR), the main component of PC, possesses anti-hyperuricemic and anti-gout effects. However, BBR exhibits low bioavailability due to its extensive metabolism and limited absorption. Thus, the metabolites of BBR are believed to be the potential active forms responsible for its in vivo biological activities. Berberrubine (BRB), one of the major metabolites of BBR, exhibits appreciable biological activities even superior to BBR. In this work, the anti-hyperuricemic efficacy of BRB was investigated in HUA model mice induced by co-administration with intraperitoneal potassium oxonate (PO) and oral hypoxanthine (HX) for 7 days. Results showed that administration with BRB (6.25, 12.5, and 25.0 mg/kg) significantly decreased the serum levels of uric acid (UA) by 49.70%, 75.35%, and 75.96% respectively, when compared to the HUA group. In addition, BRB sharply decreased the levels of blood urea nitrogen (BUN) (by 19.62%, 28.98%, and 38.72%, respectively) and serum creatinine (CRE) (by 16.19%, 25.07%, and 52.08%, respectively) and reversed the PO/HX-induced renal histopathological damage dose-dependently. Additionally, BRB lowered the hepatic XOD activity, downregulated the expressions of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1), upregulated expressions of organic anion transporter 1/3 (OAT1/3) and ATP-binding cassette transporter subfamily G member 2 (ABCG2) at both protein and mRNA levels, and suppressed the activation of the JAK2/STAT3 signaling pathway. In addition, BRB significantly decreased the levels of inflammatory mediators (IL-1β, IL-6, and TNF-α). In conclusion, our study indicated that BRB exerted anti-hyperuricemic effect, at least in part, via regulating the urate transporter expressions and suppressing the JAK2/STAT3 signaling pathway. BRB was believed to be promising for further development into a potential therapeutic agent for HUA treatment.
Collapse
Affiliation(s)
- Guoshu Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, P.R. China
| | - Qiuxia Yu
- The Second Clinical College of Guangzhou University of Chinese Medicine, 510120, Guangzhou, P.R. China
| | - Lieqiang Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, P.R. China
| | - Ziwei Huang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, 510405, Guangzhou, P.R. China
| | - Liting Mai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, P.R. China
| | - Linyun Jiang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, 510405, Guangzhou, P.R. China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, P.R. China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510120, Guangzhou, P.R. China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510120, Guangzhou, P.R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, 510120, Guangzhou, P.R. China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, P.R. China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, P.R. China
| | - Zhixiu Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, P.R. China.
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, P.R. China.
| |
Collapse
|
22
|
Mehmood A, Zhao L, Ishaq M, Xin W, Zhao L, Wang C, Hossen I, Zhang H, Lian Y, Xu M. Anti-hyperuricemic potential of stevia (Stevia rebaudiana Bertoni) residue extract in hyperuricemic mice. Food Funct 2021; 11:6387-6406. [PMID: 32613954 DOI: 10.1039/c9fo02246e] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hyperuricemia (HUA) is considered a potent risk factor for the development of gout, renal failure, and cardiovascular disease. The current project was designed to use stevia (Stevia rebaudiana Bertoni) byproduct, named stevia residue extract (STVRE), for the treatment of HUA. Male Kunming mice were divided into six groups: normal control, model control, positive control (allopurinol, 5 mg per kg body weight [bw]), STVRE-1 (75 mg per kg bw), STVRE-2 (150 mg per kg bw), and STVRE-3 (300 mg per kg bw). HUA was induced by the administration of potassium oxonate (100 mg per kg bw), fructose (10% w/v), and yeast extract (100 mg per kg bw) for 8 weeks. STVRE significantly (p < 0.05) decreased uric acid (UA) production and ameliorated UA excretion by interacting with urate transporters. The STVRE remarkably attenuated oxidative stress mediated by UA and downregulated inflammatory-related response markers such as COX-2, NF-κB, PGE2, IL-1β, and TNF-α. Furthermore, STVRE also reversed HUA-induced abnormalities in kidneys compared with the MC group. The results of our study suggest that STVRE has potential to attenuate hyperuricemia and renal protective effects, and may be used as a natural supplement for the possible treatment of UA-related disorders.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Xie Y, Wang H, He Z. Recent advances in polyphenols improving vascular endothelial dysfunction induced by endogenous toxicity. J Appl Toxicol 2020; 41:701-712. [PMID: 33251608 DOI: 10.1002/jat.4123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Yixi Xie
- Department of Burns and Reconstructive Surgery, Xiangya Hospital Central South University Changsha China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Xiangtan University Xiangtan China
| | - Hui Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Xiangtan University Xiangtan China
| | - Zhiyou He
- Department of Burns and Reconstructive Surgery, Xiangya Hospital Central South University Changsha China
| |
Collapse
|
24
|
Dendrobium officinalis six nostrum ameliorates urate under-excretion and protects renal dysfunction in lipid emulsion-induced hyperuricemic rats. Biomed Pharmacother 2020; 132:110765. [PMID: 33120237 DOI: 10.1016/j.biopha.2020.110765] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/01/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
AIM Hyperuricemia (HUA) is a metabolic disease caused by the overproduction or underexcretion of uric acid (UA). Our previous study found that treatment with Dendrobium officinalis six nostrum (DOS) led to a significant reduction in serum UA (SUA) by inhibiting UA production and promoting UA excretion in a rat model of HUA induced by potassium oxonate (PO) and high-fat sorghum feed. In this study, we aimed to further investigate the effects of DOS on UA excretion by the kidney and intestine to explore whether DOS protects against histopathological changes, and to elucidate its possible mechanisms of action in a lipid emulsion (LE)-induced rat model of HUA. METHODS The main chemical constituents of DOS were determined to be acteoside and astilbin by high-performance liquid chromatography (HPLC). Three different doses of DOS (3.3, 6.6, and 13.2 g/kg/day) were given to rats daily after induction of HUA by oral administration of LE for 8 weeks. The levels of creatinine (Cr) in serum and urine and UA in serum, urine, and feces were measured by an automatic biochemical analyzer. The expression of TLR4, NF-κB and urate transport-related transporters (URAT1, ABCG2, and PDZK1) in kidney was measured by Western blot (WB). Intestinal urate transporters (ABCG2 and GLUT9) expression was assayed by IHC and WB. Serum LPS and renal inflammatory factors (IL-6, IL-8 and TNF-α) levels were measured using enzyme-linked immunosorbent assay (ELISA) kits. Hematoxylin and eosin (H&E) staining was used to assess renal histological changes. RESULTS DOS treatment significantly reduced the SUA and SCr levels by increasing urine volume, 24 h urine uric acid (UUA), fecal UA (FUA), urine creatinine (UCr), and fractional excretion of UA (FEUA) levels in hyperuricemic rats. Moreover, DOS effectively regulated URAT1, PDZK1, and ABCG2 protein levels in the kidney, as well as restored protein levels of GLUT9 and ABCG2 in the intestine. DOS markedly reduced serum LPS anddown-regulated renal TLR4 and NF-κB protein levels to suppress IL-6, IL-8, and TNF-α secretion. It also improved renal inflammation in hyperuricemic rats. In addition, DOS attenuated histopathological changes in the kidneys of LE-induced rats. HPLC analysis showed levels of acteoside and astilbin of 1.39 mg/g and 0.72 mg/g in DOS, respectively. CONCLUSION DOS has anti-hyperuricemic and anti-inflammatory effects in a rat model of HUA. The molecular mechanism appears to involve the regulation of urate transport-related transporters including renal ABCG2, URAT1, and PDZK1, and intestinal GLUT9 and ABCG2, as well as the inhibition of the LPS/TLR4/NF-κB signaling to reduce IL-6, IL-8, and TNF-α secretion in hyperuricemic rats.
Collapse
|
25
|
Mehmood A, Zhao L, Ishaq M, Zad OD, Zhao L, Wang C, Usman M, Lian Y, Xu M. Renoprotective effect of stevia residue extract on adenine-induced chronic kidney disease in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
26
|
Jiang LL, Gong X, Ji MY, Wang CC, Wang JH, Li MH. Bioactive Compounds from Plant-Based Functional Foods: A Promising Choice for the Prevention and Management of Hyperuricemia. Foods 2020; 9:foods9080973. [PMID: 32717824 PMCID: PMC7466221 DOI: 10.3390/foods9080973] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Hyperuricemia is a common metabolic disease that is caused by high serum uric acid levels. It is considered to be closely associated with the development of many chronic diseases, such as obesity, hypertension, hyperlipemia, diabetes, and cardiovascular disorders. While pharmaceutical drugs have been shown to exhibit serious side effects, and bioactive compounds from plant-based functional foods have been demonstrated to be active in the treatment of hyperuricemia with only minimal side effects. Indeed, previous reports have revealed the significant impact of bioactive compounds from plant-based functional foods on hyperuricemia. This review focuses on plant-based functional foods that exhibit a hypouricemic function and discusses the different bioactive compounds and their pharmacological effects. More specifically, the bioactive compounds of plant-based functional foods are divided into six categories, namely flavonoids, phenolic acids, alkaloids, saponins, polysaccharides, and others. In addition, the mechanism by which these bioactive compounds exhibit a hypouricemic effect is summarized into three classes, namely the inhibition of uric acid production, improved renal uric acid elimination, and improved intestinal uric acid secretion. Overall, this current and comprehensive review examines the use of bioactive compounds from plant-based functional foods as natural remedies for the management of hyperuricemia.
Collapse
Affiliation(s)
- Lin-Lin Jiang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China;
| | - Xue Gong
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (X.G.); (M.-Y.J.); (C.-C.W.)
| | - Ming-Yue Ji
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (X.G.); (M.-Y.J.); (C.-C.W.)
| | - Cong-Cong Wang
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (X.G.); (M.-Y.J.); (C.-C.W.)
| | - Jian-Hua Wang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China;
- Correspondence: (J.-H.W.); (M.-H.L.); Tel.: +86-472-716-7795 (M.-H.L.)
| | - Min-Hui Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China;
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (X.G.); (M.-Y.J.); (C.-C.W.)
- Department of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China
- Correspondence: (J.-H.W.); (M.-H.L.); Tel.: +86-472-716-7795 (M.-H.L.)
| |
Collapse
|
27
|
Mehmood A, Zhao L, Ishaq M, Usman M, Zad OD, Hossain I, Raka RN, Naveed M, Zhao L, Wang C, Nadeem M. Uricostatic and uricosuric effect of grapefruit juice in potassium oxonate-induced hyperuricemic mice. J Food Biochem 2020; 44:e13213. [PMID: 32347580 DOI: 10.1111/jfbc.13213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/23/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022]
Abstract
The aim of this study was to examine the preventive action of grapefruit juice (GFJ) against potassium oxonate-induced hyperuricemic mice. The results showed that GFJ significantly (p < .05) inhibit the serum and hepatic xanthine oxidase enzyme, lower uric acid level, serum creatinine, uromodulin, and blood urea nitrogen levels to normal and lower inflammation related genes IL-1β, caspase-1, NLRP3, and ASC. Furthermore, histopathology analysis revealed that GFJ markedly improve the renal and intestinal morphology. The mRNA expression of urate transporter 1, glucose transporter 9 were downregulated, whereas ATP-binding cassette transporter (ABCG2) was upregulated in the GFJ-treated group. The results of immunohistochemistry revealed that the ABCG2 protein expression in the small and large intestine was significantly upregulated after the GFJ administration. These results suggested that GFJ can be used as a urate lowering agent and future mechanistic studies should be conducted. PRACTICAL APPLICATIONS: The results of current study indicated that utilization of GFJ as an anti-hyperuricemic agent for the treatment of hyperuricemia. This article will be very valuable for all those peoples which are directly or indirectly linked with this disease.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Muhammad Ishaq
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Oumeddour Dounya Zad
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Imam Hossain
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Rifat Nowshin Raka
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Muhammad Naveed
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Lei Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Muhammad Nadeem
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
28
|
Ishaq M, Mehmood A, Ur Rehman A, Dounya Zad O, Li J, Zhao L, Wang C, Hossen I, Naveed M, Lian Y. Antihyperuricemic effect of dietary polyphenol sinapic acid commonly present in various edible food plants. J Food Biochem 2019; 44:e13111. [PMID: 31849075 DOI: 10.1111/jfbc.13111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 11/28/2022]
Abstract
The present study was conducted to evaluate the antihyperuricemic effect of sinapic acid (SA). The results showed that SA potently inhibited xanthine oxidase (XOD) in a dose-dependent manner by entering the enzyme active site and thwarting the entrance of the substrate. These results were further confirmed by the quantum chemical descriptors analysis and 1 H NMR titration analysis. The in vivo results indicated that SA not only has the potential to inhibit serum and hepatic XOD (p < .05), but also remarkably lowered serum and urine uric acid levels at 50 and 100 mg/kg bw. Furthermore, SA regulated serum creatinine and blood urea nitrogen levels to normal and lowered inflammation in the renal tubules. Thus, the utilization of SA as an antihyperuricemic agent may have considerable potential for the development of functional foods for the possible treatment of hyperuricemia. PRACTICAL APPLICATIONS: Plant-derived bioactive compounds have multiple health benefits. The present study assesses the effects of sinapic acid against hyperuricemia. The results suggested that sinapic acid may have a strong protective effect against uric acid-related complications and may be used for the formulation of functional foods. However, further mechanistic studies are required to verify this hypothesis.
Collapse
Affiliation(s)
- Muhammad Ishaq
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Arshad Mehmood
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Ashfaq Ur Rehman
- Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Science and Biotechnology, College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Oumeddour Dounya Zad
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhao
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Chengtao Wang
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Imam Hossen
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Muhammad Naveed
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yunhe Lian
- Chenguang Biotech Group Co., Ltd., Quzhou, China
| |
Collapse
|