1
|
Dawit H, Zhao Y, Wang J, Pei R. Advances in conductive hydrogels for neural recording and stimulation. Biomater Sci 2024; 12:2786-2800. [PMID: 38682423 DOI: 10.1039/d4bm00048j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The brain-computer interface (BCI) allows the human or animal brain to directly interact with the external environment through the neural interfaces, thus playing the role of monitoring, protecting, improving/restoring, enhancing, and replacing. Recording electrophysiological information such as brain neural signals is of great importance in health monitoring and disease diagnosis. According to the electrode position, it can be divided into non-implantable, semi-implantable, and implantable. Among them, implantable neural electrodes can obtain the highest-quality electrophysiological information, so they have the most promising application. However, due to the chemo-mechanical mismatch between devices and tissues, the adverse foreign body response and performance loss over time seriously restrict the development and application of implantable neural electrodes. Given the challenges, conductive hydrogel-based neural electrodes have recently attracted much attention, owing to many advantages such as good mechanical match with the native tissues, negligible foreign body response, and minimal signal attenuation. This review mainly focuses on the current development of conductive hydrogels as a biocompatible framework for neural tissue and conductivity-supporting substrates for the transmission of electrical signals of neural tissue to speed up electrical regeneration and their applications in neural sensing and recording as well as stimulation.
Collapse
Affiliation(s)
- Hewan Dawit
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jine Wang
- College of Medicine and Nursing, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, China.
- Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
2
|
Rahman M, Mahady Dip T, Padhye R, Houshyar S. Review on electrically conductive smart nerve guide conduit for peripheral nerve regeneration. J Biomed Mater Res A 2023; 111:1916-1950. [PMID: 37555548 DOI: 10.1002/jbm.a.37595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/29/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
At present, peripheral nerve injuries (PNIs) are one of the leading causes of substantial impairment around the globe. Complete recovery of nerve function after an injury is challenging. Currently, autologous nerve grafts are being used as a treatment; however, this has several downsides, for example, donor site morbidity, shortage of donor sites, loss of sensation, inflammation, and neuroma development. The most promising alternative is the development of a nerve guide conduit (NGC) to direct the restoration and renewal of neuronal axons from the proximal to the distal end to facilitate nerve regeneration and maximize sensory and functional recovery. Alternatively, the response of nerve cells to electrical stimulation (ES) has a substantial regenerative effect. The incorporation of electrically conductive biomaterials in the fabrication of smart NGCs facilitates the function of ES throughout the active proliferation state. This article overviews the potency of the various categories of electroactive smart biomaterials, including conductive and piezoelectric nanomaterials, piezoelectric polymers, and organic conductive polymers that researchers have employed latterly to fabricate smart NGCs and their potentiality in future clinical application. It also summarizes a comprehensive analysis of the recent research and advancements in the application of ES in the field of NGC.
Collapse
Affiliation(s)
- Mustafijur Rahman
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Tanvir Mahady Dip
- Department of Materials, University of Manchester, Manchester, UK
- Department of Yarn Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Rajiv Padhye
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
| | - Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Ghafary Z, Salimi A, Hallaj R. Exploring the Role of 2D-Graphdiyne as a Charge Carrier Layer in Field-Effect Transistors for Non-Covalent Biological Immobilization against Human Diseases. ACS Biomater Sci Eng 2022; 8:3986-4001. [PMID: 35939853 DOI: 10.1021/acsbiomaterials.2c00607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Graphdiyne's (GDY's) outstanding features have made it a novel 2D nanomaterial and a great candidate for electronic gadgets and optoelectronic devices, and it has opened new opportunities for the development of highly sensitive electronic and optical detection methods as well. Here, we testified a non-covalent grafting strategy in which GDY serves as a charge carrier layer and a bioaffinity substrate to immobilize biological receptors on GDY-based field-effect transistor (FET) devices. Firm non-covalent anchoring of biological molecules via pyrene groups and electrostatic interactions in addition to preserved electrical properties of GDY endows it with features of an ultrasensitive and stable detection mechanism. With emerging new forms and extending the subtypes of the already existing fatal diseases, genetic and biological knowledge demands more details. In this regard, we constructed simple yet efficient platforms using GDY-based FET devices in order to detect different kinds of biological molecules that threaten human health. The resulted data showed that the proposed non-covalent bioaffinity assays in GDY-based FET devices could be considered reliable strategies for novel label-free biosensing platforms, which still reach a high on/off ratio of over 104. The limits of detection of the FET devices to detect DNA strands, the CA19-9 antigen, microRNA-155, the CA15-3 antigen, and the COVID-19 antigen were 0.2 aM, 0.04 pU mL-1, 0.11 aM, 0.043 pU mL-1, and 0.003 fg mL-1, respectively, in the linear ranges of 1 aM to 1 pM, 1 pU mL-1 to 0.1 μU mL-1, 1 aM to 1 pM, 1 pU mL-1 to 10 μU mL-1, and 1 fg mL-1 to 10 ng mL-1, respectively. Finally, the extraordinary performance of these label-free FET biosensors with low detection limits, high sensitivity and selectivity, capable of being miniaturized, and implantability for in vivo analysis makes them a great candidate in disease diagnostics and point-of-care testing.
Collapse
Affiliation(s)
- Zhaleh Ghafary
- Department of Chemistry, University of Kurdistan, 66177-15175 Sanandaj, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175 Sanandaj, Iran.,Research Center for Nanotechnology, University of Kurdistan, 66177-15175 Sanandaj, Iran
| | - Rahman Hallaj
- Department of Chemistry, University of Kurdistan, 66177-15175 Sanandaj, Iran.,Research Center for Nanotechnology, University of Kurdistan, 66177-15175 Sanandaj, Iran
| |
Collapse
|
4
|
Gao C, Mu S, Yan R, Chen F, Ma T, Cao S, Li S, Ma L, Wang Y, Cheng C. Recent Advances in ZIF-Derived Atomic Metal-N-C Electrocatalysts for Oxygen Reduction Reaction: Synthetic Strategies, Active Centers, and Stabilities. SMALL 2022; 18:e2105409. [PMID: 35023628 DOI: 10.1002/smll.202105409] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/13/2021] [Indexed: 02/05/2023]
Abstract
Exploring highly active, stable electrocatalysts with earth-abundant metal centers for the oxygen reduction reaction (ORR) is essential for sustainable energy conversion. Due to the high cost and scarcity of platinum, it is a general trend to develop metal-N-C (M-N-C) electrocatalysts, especially those prepared from the zeolite imidazolate framework (ZIF) to replace/minimize usage of noble metals in ORR electrocatalysis for their amazingly high catalytic efficiency, great stability, and readily-tuned electronic structure. In this review, the most pivotal advances in mechanisms leading to declined catalytic performance, synthetic strategies, and design principles in engineering ZIF-derived M-N-C for efficient ORR catalysis, are presented. Notably, this review focuses on how to improve intrinsic ORR activity, such as M-Nx -Cy coordination structures, doping metal-free heteroatoms in M-N-C, dual/multi-metal sites, hydrogen passivation, and edge-hosted M-Nx . Meanwhile, how to increase active sites density, including formation of M-N complex, spatial confinement effects, and porous structure design, are discussed. Thereafter, challenges and future perspectives of M-N-C are also proposed. The authors believe this instructive review will provide experimental and theoretical guidance for designing future, highly active ORR electrocatalysts, and facilitate their applications in diverse ORR-related energy technologies.
Collapse
Affiliation(s)
- Chen Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shengdong Mu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sujiao Cao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Functional Materials, Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Lang Ma
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China.,National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, 610041, China
| | - Yinghan Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
5
|
Zhang Y, Zhang L, Duan S, Hu Y, Ding X, Zhang Y, Li Y, Wu Y, Ding X, Xu FJ. Heparinized anticoagulant coatings based on polyphenol-amine inspired chemistry for blood-contacting catheters. J Mater Chem B 2022; 10:1795-1804. [PMID: 35244123 DOI: 10.1039/d1tb02582a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Blood-contacting catheters occupy a vital position in modern clinical treatment including but not limited to cardiovascular diseases, but catheter-related thrombosis associated with high morbidity and mortality remains a major health concern. Hence, there is an urgent need for functionalized catheter surfaces with superior hemocompatibility that prevent protein adsorption and thrombus formation. In this work, we developed a strategy for constructing a kind of polyphenol-amine coating on the TPU surface (TLA) with tannic acid and lysine via simple dip-coating, inspired by dopamine adhesion. Based on the long-term stability and modifiable properties of TLA coatings, heparin was introduced by an amide reaction to provide anticoagulant activity (TLH). X-ray photoelectron spectroscopy and surface zeta potential measurements fully indicated the successful immobilization of heparin. Water contact angle measurements demonstrated good hydrophilicity and stability for 15 days of TLH coatings. Furthermore, the TLH coatings exhibited significant hemocompatibility and no cytotoxicity. The good antithrombotic properties of the functionalized surfaces were confirmed by an ex vivo blood circulation model. The present work is supposed to find potential clinical applications for preventing surface-induced thrombosis of blood-contacting catheters.
Collapse
Affiliation(s)
- Yuning Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lujiao Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shun Duan
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Hu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaokang Ding
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaocheng Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Li
- Key Laboratory for Medical Polymer Materials Technology and Application of Henan Province, ChangYuan, Henan Province, 453400, China
| | - Yongzhen Wu
- Key Laboratory for Medical Polymer Materials Technology and Application of Henan Province, ChangYuan, Henan Province, 453400, China
| | - Xuejia Ding
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Passaretti P. Graphene Oxide and Biomolecules for the Production of Functional 3D Graphene-Based Materials. Front Mol Biosci 2022; 9:774097. [PMID: 35372519 PMCID: PMC8965154 DOI: 10.3389/fmolb.2022.774097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022] Open
Abstract
Graphene and its derivatives have been widely employed in the manufacturing of novel composite nanomaterials which find applications across the fields of physics, chemistry, engineering and medicine. There are many techniques and strategies employed for the production, functionalization, and assembly of graphene with other organic and inorganic components. These are characterized by advantages and disadvantages related to the nature of the specific components involved. Among many, biomolecules and biopolymers have been extensively studied and employed during the last decade as building blocks, leading to the realization of graphene-based biomaterials owning unique properties and functionalities. In particular, biomolecules like nucleic acids, proteins and enzymes, as well as viruses, are of particular interest due to their natural ability to self-assemble via non-covalent interactions forming extremely complex and dynamic functional structures. The capability of proteins and nucleic acids to bind specific targets with very high selectivity or the ability of enzymes to catalyse specific reactions, make these biomolecules the perfect candidates to be combined with graphenes, and in particular graphene oxide, to create novel 3D nanostructured functional biomaterials. Furthermore, besides the ease of interaction between graphene oxide and biomolecules, the latter can be produced in bulk, favouring the scalability of the resulting nanostructured composite materials. Moreover, due to the presence of biological components, graphene oxide-based biomaterials are more environmentally friendly and can be manufactured more sustainably compared to other graphene-based materials assembled with synthetic and inorganic components. This review aims to provide an overview of the state of the art of 3D graphene-based materials assembled using graphene oxide and biomolecules, for the fabrication of novel functional and scalable materials and devices.
Collapse
Affiliation(s)
- Paolo Passaretti
- Institute of Cancer and Genomic Sciences, School of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
One-step fabrication of hydrophilic lignosulfonate-decorated reduced graphene oxide to enhance the pervaporation performance of calcium alginate membranes. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
8
|
Xie L, Yang H, Wu X, Wang L, Zhu B, Tang Y, Bai M, Li L, Cheng C, Ma T. Ti-MOF-based biosafety materials for efficient and long-life disinfection via synergistic photodynamic and photothermal effects. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
9
|
|
10
|
Huang X, Zhang S, Tang Y, Zhang X, Bai Y, Pang H. Advances in metal–organic framework-based nanozymes and their applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214216] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Dolatkhah M, Hashemzadeh N, Barar J, Adibkia K, Aghanejad A, Barzegar-Jalali M, Omidian H, Omidi Y. Stimuli-responsive graphene oxide and methotrexate-loaded magnetic nanoparticles for breast cancer-targeted therapy. Nanomedicine (Lond) 2021; 16:2155-2174. [PMID: 34565179 DOI: 10.2217/nnm-2021-0094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Nanocomposites of graphene oxide (GO) loaded with PEGylated superparamagnetic iron oxide nanoparticles and grafted with methotrexate and stimuli-responsive linkers (GO-SPION-MTX) were developed for photothermal and chemotherapy of breast cancer. Methods: PEGylated SPIONs were synthesized and conjugated with chemotherapeutic targeting agent MTX, which were then loaded on GO to prepare GO-SPION-MTX nanocomposites. To evaluate the photothermal effect of the nanocomposites, they were examined in breast cancer cell lines with low doses of near-infrared (NIR) laser radiation with/without acetazolamide. Results: The GO-SPION-MTX nanocomposites were found to be internalized by the folate-receptor-positive cancer cells and induce high cytotoxicity on exposure to NIR laser rays. Conclusion: Our findings suggest that the GO-SPION-MTX nanocomposite can potentially be used as a multimodal nanomedicine/theranostic against breast cancer.
Collapse
Affiliation(s)
- Mitra Dolatkhah
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nastaran Hashemzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
12
|
Wei X, Feng Z, Huang J, Xiang X, Du F, He C, Zhou M, Ma L, Cheng C, Qiu L. Homology and Immune Checkpoint Dual-Targeted Sonocatalytic Nanoagents for Enhancing Sonodynamic Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32810-32822. [PMID: 34232622 DOI: 10.1021/acsami.1c08105] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sonocatalytic nanoagents (SCNs), a kind of sonosensitizers, could catalyze oxygen to generate abundant reactive oxygen species (ROS) under stimulations of noninvasive and deep-penetrating ultrasound (US), which is commonly used for sonodynamic therapy (SDT) of tumors such as malignant melanoma. However, poor bioavailability of most SCNs and fast quenching of extracellular-generating ROS from SDT limit further applications of SCNs in the SDT of tumors. Herein, we synthesized a new kind of TiO2-based SCN functionalized with the malignant melanoma cell membrane (B16F10M) and programmed cell death-ligand 1 antibody (aPD-L1) for homology and immune checkpoint dual-targeted and enhanced sonodynamic tumor therapy. Under US irradiation, the synthesized SCN can catalytically generate a large amount of 1O2. In vitro experiments validate that functionalized SCNs exhibit precise targeting effects, high tumor cell uptake, and intracellular sonocatalytic killing of the B16F10 cells by a large amount of localized ROS. Utilizing the melanoma animal model, the functionalized SCN displays visible long-term retention in the tumor area, which assists the homology and immune checkpoint synergistically dual-targeted and enhanced in vivo SDT of the tumor. We suggest that this highly bioavailable and dual-functionalized SCN may provide a promising strategy and nanoplatform for enhancing sonodynamic tumor therapies.
Collapse
Affiliation(s)
- Xin Wei
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
- Department of Ultrasound, Deyang People's Hospital, Deyang 618000, China
| | - Ziyan Feng
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Jianbo Huang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Xi Xiang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Fangxue Du
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Chao He
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lang Ma
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, Berlin 14195, Germany
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li Qiu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Karki N, Tiwari H, Tewari C, Rana A, Pandey N, Basak S, Sahoo NG. Functionalized graphene oxide as a vehicle for targeted drug delivery and bioimaging applications. J Mater Chem B 2021; 8:8116-8148. [PMID: 32966535 DOI: 10.1039/d0tb01149e] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Graphene oxide (GO) has attracted tremendous attention as a most promising nanomaterial among the carbon family since it emerged as a polynomial functional tool with rational applications in diverse fields such as biomedical engineering, electrocatalysis, biosensing, energy conversion, and storage devices. Despite having certain limitations due to its irreversible aggregation performance owing largely to the strong van der Waals interactions, efforts have been made to smartly engineer its surface chemistry for realistic multimodal applications. The use of such GO-based engineered devices has increased rapidly in the last few years, principally due to its excellent properties, such as huge surface area, honeycomb-like structure allowing vacant interstitial space to accommodate compounds, sp2 hybridized carbon, improved biocompatibility and cell surface penetration due to electronic interactions. Amongst multifaceted GO dynamics, in this review, attempts are made to discuss the advanced applications of GO or graphene-based materials (GBNs) in the biomedical field involving drug or therapeutic gene delivery, dual drug or drug-gene combination targeting, special delivery of drug cocktails to the brain, stimuli-responsive release of molecular payloads, and Janus-structured smart applications for polar-nonpolar combination drug loading followed by targeting together with smart bioimaging approaches. In addition, the advantages of duel-drug delivery systems are discussed in detail. We also discuss various electronic mechanisms, and detailed surface engineering to meet microcosmic criteria for its utilization, various novel implementations of engineered GO as mentioned above, together with discussions of its inevitable toxicity or disadvantages. We hope that the target audience, belonging to biomedical engineering, pharmaceutical or material science fields, may acquire relevant information from this review which may help them design future studies in this field.
Collapse
Affiliation(s)
- Neha Karki
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, D.S.B. Campus, Nainital, 263002, India.
| | - Himani Tiwari
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, D.S.B. Campus, Nainital, 263002, India.
| | - Chetna Tewari
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, D.S.B. Campus, Nainital, 263002, India.
| | - Anita Rana
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, D.S.B. Campus, Nainital, 263002, India.
| | - Neema Pandey
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, D.S.B. Campus, Nainital, 263002, India.
| | - Souvik Basak
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, West Bengal 713206, India
| | - Nanda Gopal Sahoo
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, D.S.B. Campus, Nainital, 263002, India.
| |
Collapse
|
14
|
Xu C, Gou W, Wang X, Zhou J, Liu J, Chen K. Synthesis of paraffin@PS/reduced graphene oxide microcapsules via Pickering emulsion for multi-protective coatings. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Ma L, Jiang F, Fan X, Wang L, He C, Zhou M, Li S, Luo H, Cheng C, Qiu L. Metal-Organic-Framework-Engineered Enzyme-Mimetic Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003065. [PMID: 33124725 DOI: 10.1002/adma.202003065] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/26/2020] [Indexed: 02/05/2023]
Abstract
Nanomaterial-based enzyme-mimetic catalysts (Enz-Cats) have received considerable attention because of their optimized and enhanced catalytic performances and selectivities in diverse physiological environments compared with natural enzymes. Recently, owing to their molecular/atomic-level catalytic centers, high porosity, large surface area, high loading capacity, and homogeneous structure, metal-organic frameworks (MOFs) have emerged as one of the most promising materials in engineering Enz-Cats. Here, the recent advances in the design of MOF-engineered Enz-Cats, including their preparation methods, composite constructions, structural characterizations, and biomedical applications, are highlighted and commented upon. In particular, the performance, selectivities, essential mechanisms, and potential structure-property relations of these MOF-engineered Enz-Cats in accelerating catalytic reactions are discussed. Some potential biomedical applications of these MOF-engineered Enz-Cats are also breifly proposed. These applications include, for example, tumor therapies, bacterial disinfection, tissue regeneration, and biosensors. Finally, the future opportunities and challenges in emerging research frontiers are thoroughly discussed. Thereby, potential pathways and perspectives for designing future state-of-the-art Enz-Cats in biomedical sciences are offered.
Collapse
Affiliation(s)
- Lang Ma
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Fuben Jiang
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xin Fan
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| | - Liyun Wang
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- Functional Materials, Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, Berlin, 10623, Germany
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Chong Cheng
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| | - Li Qiu
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
16
|
Abstract
Due to the excellent properties of graphene, including flexibility that allows it to adjust to the curvature of the substrate surface, chemical inertness, and impermeability, graphene is used as an anticorrosion layer. In this review, we present the current state-of-the-art in the application of graphene in the field of protective coatings. This review provides detailed discussions about the protective properties of graphene coatings deposited by different methods, graphene-based organic coatings, the modification of graphene-based coatings, and the effects of graphene functionalization on the corrosion resistance of protective coatings.
Collapse
|
17
|
Graphene-based multifunctional nanosystems for simultaneous detection and treatment of breast cancer. Colloids Surf B Biointerfaces 2020; 193:111104. [DOI: 10.1016/j.colsurfb.2020.111104] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/05/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
|
18
|
Hasan KMF, Horváth PG, Alpár T. Potential Natural Fiber Polymeric Nanobiocomposites: A Review. Polymers (Basel) 2020; 12:E1072. [PMID: 32392800 PMCID: PMC7284945 DOI: 10.3390/polym12051072] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/16/2023] Open
Abstract
Composite materials reinforced with biofibers and nanomaterials are becoming considerably popular, especially for their light weight, strength, exceptional stiffness, flexural rigidity, damping property, longevity, corrosion, biodegradability, antibacterial, and fire-resistant properties. Beside the traditional thermoplastic and thermosetting polymers, nanoparticles are also receiving attention in terms of their potential to improve the functionality and mechanical performances of biocomposites. These remarkable characteristics have made nanobiocomposite materials convenient to apply in aerospace, mechanical, construction, automotive, marine, medical, packaging, and furniture industries, through providing environmental sustainability. Nanoparticles (TiO2, carbon nanotube, rGO, ZnO, and SiO2) are easily compatible with other ingredients (matrix polymer and biofibers) and can thus form nanobiocomposites. Nanobiocomposites are exhibiting a higher market volume with the expansion of new technology and green approaches for utilizing biofibers. The performances of nanobiocomposites depend on the manufacturing processes, types of biofibers used, and the matrix polymer (resin). An overview of different natural fibers (vegetable/plants), nanomaterials, biocomposites, nanobiocomposites, and manufacturing methods are discussed in the context of potential application in this review.
Collapse
Affiliation(s)
- K. M. Faridul Hasan
- Simonyi Károly Faculty of Engineering, University of Sopron, Sopron, 9400 Gyor, Hungary;
| | | | - Tibor Alpár
- Simonyi Károly Faculty of Engineering, University of Sopron, Sopron, 9400 Gyor, Hungary;
| |
Collapse
|
19
|
Yang Y, Wu X, He C, Huang J, Yin S, Zhou M, Ma L, Zhao W, Qiu L, Cheng C, Zhao C. Metal–Organic Framework/Ag-Based Hybrid Nanoagents for Rapid and Synergistic Bacterial Eradication. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13698-13708. [PMID: 32129070 DOI: 10.1021/acsami.0c01666] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ye Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianbo Huang
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiqi Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Mi Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Lang Ma
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li Qiu
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Che C, Liu L, Wang X, Zhang X, Luan S, Yin J, Li X, Shi H. Surface-Adaptive and On-Demand Antibacterial Sponge for Synergistic Rapid Hemostasis and Wound Disinfection. ACS Biomater Sci Eng 2020; 6:1776-1786. [DOI: 10.1021/acsbiomaterials.0c00069] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chaoyue Che
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lin Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaodan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- National Engineering Laboratory for Medical Implantable Devices, WEGO Holding Company Limited, Weihai 264210, P. R. China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- National Engineering Laboratory for Medical Implantable Devices, WEGO Holding Company Limited, Weihai 264210, P. R. China
| | - Xue Li
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
21
|
Hu Q, Zhang X, Jia L, Zhen X, Pan X, Xie X, Wang S. Engineering biomimetic graphene nanodecoys camouflaged with the EGFR/HEK293 cell membrane for targeted capture of drug leads. Biomater Sci 2020; 8:5690-5697. [DOI: 10.1039/d0bm00841a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A novel cell membrane camouflaged graphene-based nanodecoy with targeting properties was first established for drug lead screening.
Collapse
Affiliation(s)
- Qi Hu
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Xiaolin Zhang
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Lanlan Jia
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Xueyan Zhen
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Xiaoyan Pan
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Xiaoyu Xie
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Sicen Wang
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an 710061
- China
| |
Collapse
|