1
|
Sun J, Xie W, Wu Y, Li Z, Li Y. Accelerated Bone Healing via Electrical Stimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404190. [PMID: 39115981 DOI: 10.1002/advs.202404190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Piezoelectric effect produces an electrical signal when stress is applied to the bone. When the integrity of the bone is destroyed, the biopotential within the defect site is reduced and several physiological responses are initiated to facilitate healing. During the healing of the bone defect, the bioelectric potential returns to normal levels. Treatment of fractures that exceed innate regenerative capacity or exhibit delayed healing requires surgical intervention for bone reconstruction. For bone defects that cannot heal on their own, exogenous electric fields are used to assist in treatment. This paper reviews the effects of exogenous electrical stimulation on bone healing, including osteogenesis, angiogenesis, reduction in inflammation and effects on the peripheral nervous system. This paper also reviews novel electrical stimulation methods, such as small power supplies and nanogenerators, that have emerged in recent years. Finally, the challenges and future trends of using electrical stimulation therapy for accelerating bone healing are discussed.
Collapse
Affiliation(s)
- Jianfeng Sun
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuxiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, 430056, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
2
|
Asefifeyzabadi N, Nguyen T, Li H, Zhu K, Yang HY, Baniya P, Medina Lopez A, Gallegos A, Hsieh HC, Dechiraju H, Hernandez C, Schorger K, Recendez C, Tebyani M, Selberg J, Luo L, Muzzy E, Hsieh C, Barbee A, Orozco J, Alhamo MA, Levin M, Aslankoohi E, Gomez M, Zhao M, Teodorescu M, Isseroff RR, Rolandi M. A pro-reparative bioelectronic device for controlled delivery of ions and biomolecules. Wound Repair Regen 2024. [PMID: 38794912 DOI: 10.1111/wrr.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Wound healing is a complex physiological process that requires precise control and modulation of many parameters. Therapeutic ion and biomolecule delivery has the capability to regulate the wound healing process beneficially. However, achieving controlled delivery through a compact device with the ability to deliver multiple therapeutic species can be a challenge. Bioelectronic devices have emerged as a promising approach for therapeutic delivery. Here, we present a pro-reparative bioelectronic device designed to deliver ions and biomolecules for wound healing applications. The device incorporates ion pumps for the targeted delivery of H+ and zolmitriptan to the wound site. In vivo studies using a mouse model further validated the device's potential for modulating the wound environment via H+ delivery that decreased M1/M2 macrophage ratios. Overall, this bioelectronic ion pump demonstrates potential for accelerating wound healing via targeted and controlled delivery of therapeutic agents to wounds. Continued optimization and development of this device could not only lead to significant advancements in tissue repair and wound healing strategies but also reveal new physiological information about the dynamic wound environment.
Collapse
Affiliation(s)
- Narges Asefifeyzabadi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Tiffany Nguyen
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Houpu Li
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Kan Zhu
- Department of Ophthalmology, School of Medicine, University of California Davis, Davis, California, USA
| | - Hsin-Ya Yang
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Prabhat Baniya
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Andrea Medina Lopez
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Anthony Gallegos
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Hao-Chieh Hsieh
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Harika Dechiraju
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Cristian Hernandez
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Kaelan Schorger
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Cynthia Recendez
- Department of Ophthalmology, School of Medicine, University of California Davis, Davis, California, USA
| | - Maryam Tebyani
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - John Selberg
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Le Luo
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Elana Muzzy
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Cathleen Hsieh
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
- Department of Chemistry and Biochemistry, University of California Santa Cruz, California, Santa Cruz, USA
| | - Alexie Barbee
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Jonathan Orozco
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
- Department of Economics, University of California Santa Cruz, Santa Cruz, California, USA
| | - Moyasar A Alhamo
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Elham Aslankoohi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Marcella Gomez
- Department of Applied Mathematics, University of California Santa Cruz, Santa Cruz, California, USA
| | - Min Zhao
- Department of Ophthalmology, School of Medicine, University of California Davis, Davis, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Roslyn Rivkah Isseroff
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
- Dermatology Section, VA Northern California Health Care System, Mather, California, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
3
|
Leng Y, Li X, Zheng F, Liu H, Wang C, Wang X, Liao Y, Liu J, Meng K, Yu J, Zhang J, Wang B, Tan Y, Liu M, Jia X, Li D, Li Y, Gu Z, Fan Y. Advances in In Vitro Models of Neuromuscular Junction: Focusing on Organ-on-a-Chip, Organoids, and Biohybrid Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211059. [PMID: 36934404 DOI: 10.1002/adma.202211059] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The neuromuscular junction (NMJ) is a peripheral synaptic connection between presynaptic motor neurons and postsynaptic skeletal muscle fibers that enables muscle contraction and voluntary motor movement. Many traumatic, neurodegenerative, and neuroimmunological diseases are classically believed to mainly affect either the neuronal or the muscle side of the NMJ, and treatment options are lacking. Recent advances in novel techniques have helped develop in vitro physiological and pathophysiological models of the NMJ as well as enable precise control and evaluation of its functions. This paper reviews the recent developments in in vitro NMJ models with 2D or 3D cultures, from organ-on-a-chip and organoids to biohybrid robotics. Related derivative techniques are introduced for functional analysis of the NMJ, such as the patch-clamp technique, microelectrode arrays, calcium imaging, and stimulus methods, particularly optogenetic-mediated light stimulation, microelectrode-mediated electrical stimulation, and biochemical stimulation. Finally, the applications of the in vitro NMJ models as disease models or for drug screening related to suitable neuromuscular diseases are summarized and their future development trends and challenges are discussed.
Collapse
Affiliation(s)
- Yubing Leng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Xiaorui Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Fuyin Zheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Hui Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xudong Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Yulong Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Jiangyue Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Kaiqi Meng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Jiaheng Yu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Jingyi Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Binyu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Meili Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Xiaoling Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Deyu Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| |
Collapse
|
4
|
Alavi SE, Panah N, Page F, Gholami M, Dastfal A, Sharma LA, Ebrahimi Shahmabadi H. Hydrogel-based therapeutic coatings for dental implants. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Mobini S, González MU, Caballero-Calero O, Patrick EE, Martín-González M, García-Martín JM. Effects of nanostructuration on the electrochemical performance of metallic bioelectrodes. NANOSCALE 2022; 14:3179-3190. [PMID: 35142756 DOI: 10.1039/d1nr06280h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of metallic nanostructures in the fabrication of bioelectrodes (e.g., neural implants) is gaining attention nowadays. Nanostructures provide increased surface area that might benefit the performance of bioelectrodes. However, there is a need for comprehensive studies that assess electrochemical performance of nanostructured surfaces in physiological and relevant working conditions. Here, we introduce a versatile scalable fabrication method based on magnetron sputtering to develop analogous metallic nanocolumnar structures (NCs) and thin films (TFs) from Ti, Au, and Pt. We show that NCs contribute significantly to reduce the impedance of metallic surfaces. Charge storage capacity of Pt NCs is remarkably higher than that of Pt TFs and that of the other metals in both morphologies. Circuit simulations of the electrode/electrolyte interface show that the signal delivered in voltage-controlled systems is less filtered when nanocolumns are used. In a current-controlled system, simulation shows that NCs provide safer stimulation conditions compared to TFs. We have assessed the durability of NCs and TFs for potential use in vivo by reactive accelerated aging test, mimicking one-year in vivo implantation. Although each metal/morphology reveals a unique response to aging, NCs show overall more stable electrochemical properties compared to TFs in spite of their porous structure.
Collapse
Affiliation(s)
- Sahba Mobini
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760, Tres Cantos, Madrid, Spain.
| | - María Ujué González
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760, Tres Cantos, Madrid, Spain.
| | - Olga Caballero-Calero
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760, Tres Cantos, Madrid, Spain.
| | - Erin E Patrick
- Department of Electrical and Computer Engineering, University of Florida, Center Drive 968, Gainesville, FL 32603, USA
| | - Marisol Martín-González
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760, Tres Cantos, Madrid, Spain.
| | - José Miguel García-Martín
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760, Tres Cantos, Madrid, Spain.
| |
Collapse
|
6
|
Kong Y, Duan J, Liu F, Han L, Li G, Sun C, Sang Y, Wang S, Yi F, Liu H. Regulation of stem cell fate using nanostructure-mediated physical signals. Chem Soc Rev 2021; 50:12828-12872. [PMID: 34661592 DOI: 10.1039/d1cs00572c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
One of the major issues in tissue engineering is regulation of stem cell differentiation toward specific lineages. Unlike biological and chemical signals, physical signals with adjustable properties can be applied to stem cells in a timely and localized manner, thus making them a hot topic for research in the fields of biomaterials, tissue engineering, and cell biology. According to the signals sensed by cells, physical signals used for regulating stem cell fate can be classified into six categories: mechanical, light, thermal, electrical, acoustic, and magnetic. In most cases, external macroscopic physical fields cannot be used to modulate stem cell fate, as only the localized physical signals accepted by the surface receptors can regulate stem cell differentiation via nanoscale fibrin polysaccharide fibers. However, surface receptors related to certain kinds of physical signals are still unknown. Recently, significant progress has been made in the development of functional materials for energy conversion. Consequently, localized physical fields can be produced by absorbing energy from an external physical field and subsequently releasing another type of localized energy through functional nanostructures. Based on the above concepts, we propose a methodology that can be utilized for stem cell engineering and for the regulation of stem cell fate via nanostructure-mediated physical signals. In this review, the combined effect of various approaches and mechanisms of physical signals provides a perspective on stem cell fate promotion by nanostructure-mediated physical signals. We expect that this review will aid the development of remote-controlled and wireless platforms to physically guide stem cell differentiation both in vitro and in vivo, using optimized stimulation parameters and mechanistic investigations while driving the progress of research in the fields of materials science, cell biology, and clinical research.
Collapse
Affiliation(s)
- Ying Kong
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Feng Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266200, China.
| | - Gang Li
- Neurological Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Shuhua Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan, 250012, China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China. .,Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| |
Collapse
|
7
|
He S, Wang Z, Pang W, Liu C, Zhang M, Yang Y, Duan X, Wang Y. Ultra-rapid modulation of neurite outgrowth in a gigahertz acoustic streaming system. LAB ON A CHIP 2021; 21:1948-1955. [PMID: 34008612 DOI: 10.1039/d0lc01262a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of rapid and efficient tools to modulate neurons is vital for the treatment of nervous system diseases. Here, a novel non-invasive neurite outgrowth modulation method based on a controllable acoustic streaming effect induced by an electromechanical gigahertz resonator microchip is reported. The results demonstrate that the gigahertz acoustic streaming can induce cell structure changes within a 10 min period of stimulation, which promotes a high proportion of neurite bearing cells and encourages longer neurite outgrowth. Specifically, the resonator stimulation not only promotes outgrowth of neurites, but also can be combined with chemical mediated methods to accelerate the direct entry of nerve growth factor (NGF) into cells, resulting in higher modulation efficacy. Owing to shear stress caused by the acoustic streaming effect, the resonator microchip mediates stress fiber formation and induces the neuron-like phenotype of PC12 cells. We suggest that this method may potentially be applied to precise single-cell modulation, as well as in the development of non-invasive and rapid disease treatment strategies.
Collapse
Affiliation(s)
- Shan He
- State Key Laboratory of Precision Measuring Technology & Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072, People's Republic of China.
| | - Zefang Wang
- School of Life Sciences, Tianjin University, 300072, People's Republic of China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology & Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072, People's Republic of China.
| | - Chang Liu
- State Key Laboratory of Precision Measuring Technology & Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072, People's Republic of China.
| | - Miaosen Zhang
- State Key Laboratory of Precision Measuring Technology & Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072, People's Republic of China.
| | - Yang Yang
- State Key Laboratory of Precision Measuring Technology & Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072, People's Republic of China.
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072, People's Republic of China.
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072, People's Republic of China.
| |
Collapse
|
8
|
Zhang Z, Zheng T, Zhu R. Microchip with Single-Cell Impedance Measurements for Monitoring Osteogenic Differentiation of Mesenchymal Stem Cells under Electrical Stimulation. Anal Chem 2020; 92:12579-12587. [PMID: 32859132 DOI: 10.1021/acs.analchem.0c02556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Effective induction methods and in situ monitoring are essential for studying the mechanism of biological responses in stem cell differentiation. This article proposes an induction method incorporating electrical stimulation under an inhomogeneous field with single-cell impedance monitoring for studying osteogenic differentiation of mesenchymal stem cells (MSCs) using a microchip. The microchip contains an array of sextupole-electrode units for implementing a combination of controllable electrical stimulation and single-cell impedance measurements. MSCs are inducted to osteogenic differentiation under electrical stimulation using quadrupole electrodes and single-cell impedances are monitored in situ using a pair of microelectrodes at each unit center. The proposed microchip adopts an array design to monitor a number of MSCs in parallel, which improves measurement throughput and facilitates to carry out statistic tests. We perform osteogenic differentiation of MSCs on the microchip with and without electrical stimulation meanwhile monitoring single-cell impedance in real time for 21 days. The recorded impedance results show the detailed characteristic change of MSCs at the single-cell level during osteogenic differentiation, which demonstrates a significant difference between the conditions with and without electrical stimulation. The cell morphology and various staining analyses are also used to validate osteogenesis and correlate with the impedance expression. Correlation analysis of the impedance measurement, cell morphology, and various staining assays proves the great acceleration effect of the proposed electrical stimulation on osteogenic differentiation of MSCs. The proposed impedance method can monitor the dynamic process of cell development and study heterogeneity of stem cell differentiation at the single-cell level.
Collapse
Affiliation(s)
- Zhizhong Zhang
- State Key Laboratory of Precision Measurements Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Tianyang Zheng
- State Key Laboratory of Precision Measurements Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Rong Zhu
- State Key Laboratory of Precision Measurements Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|