1
|
Nyenhuis J, Heuer C, Bahnemann J. 3D Printing in Biocatalysis and Biosensing: From General Concepts to Practical Applications. Chem Asian J 2024:e202400717. [PMID: 39340791 DOI: 10.1002/asia.202400717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 09/30/2024]
Abstract
3D printing has matured into a versatile technique that offers researchers many different printing methods and materials with varying properties. Nowadays, 3D printing is deployed within a myriad of different applications, ranging from chemistry to biotechnology -including bioanalytics, biocatalysis or biosensing. Due to its inherent design flexibility (which enables rapid prototyping) and ease of use, 3D printing facilitates the relatively quick and easy creation of new devices with unprecedented functions.. This review article describes how 3D printing can be employed for research in the fields of biochemistry and biotechnology, and specifically for biocatalysis and biosensor applications. We survey different relevant 3D printing techniques, as well as the surface activation and functionalization of 3D-printed materials. Finally, we show how 3D printing is used for the fabrication of reaction ware and enzymatic assays in biocatalysis research, as well as for the generation of biosensors using aptamers, antibodies, and enzymes as recognition elements.
Collapse
Affiliation(s)
- Jonathan Nyenhuis
- Institute of Physics, Chair of Technical Biology, University of Augsburg, Universitätsstr. 1, Augsburg, 86159, Germany
| | - Christopher Heuer
- Institute of Physics, Chair of Technical Biology, University of Augsburg, Universitätsstr. 1, Augsburg, 86159, Germany
- Institute of Physics, Centre for Advanced Analytics and Predictive Sciences, University of Augsburg, Universitätsstr. 1, Augsburg, 86159, Germany
| | - Janina Bahnemann
- Institute of Physics, Chair of Technical Biology, University of Augsburg, Universitätsstr. 1, Augsburg, 86159, Germany
- Institute of Physics, Centre for Advanced Analytics and Predictive Sciences, University of Augsburg, Universitätsstr. 1, Augsburg, 86159, Germany
| |
Collapse
|
2
|
Kalinke C, Muñoz RAA. 3D-Printed Microdevices: From Design to Applications. MICROMACHINES 2024; 15:791. [PMID: 38930761 PMCID: PMC11205663 DOI: 10.3390/mi15060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
3D printing represents an emerging technology in several fields, including engineering, medicine, and chemistry [...].
Collapse
Affiliation(s)
- Cristiane Kalinke
- Institute of Chemistry, University of Campinas, Campinas 13083-970, SP, Brazil
| | - Rodrigo A. A. Muñoz
- Department of Chemistry, Federal University of Paraná, Curitiba 81531-980, PR, Brazil;
| |
Collapse
|
3
|
Binaymotlagh R, Hajareh Haghighi F, Chronopoulou L, Palocci C. Liposome-Hydrogel Composites for Controlled Drug Delivery Applications. Gels 2024; 10:284. [PMID: 38667703 PMCID: PMC11048854 DOI: 10.3390/gels10040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Various controlled delivery systems (CDSs) have been developed to overcome the shortcomings of traditional drug formulations (tablets, capsules, syrups, ointments, etc.). Among innovative CDSs, hydrogels and liposomes have shown great promise for clinical applications thanks to their cost-effectiveness, well-known chemistry and synthetic feasibility, biodegradability, biocompatibility and responsiveness to external stimuli. To date, several liposomal- and hydrogel-based products have been approved to treat cancer, as well as fungal and viral infections, hence the integration of liposomes into hydrogels has attracted increasing attention because of the benefit from both of them into a single platform, resulting in a multifunctional drug formulation, which is essential to develop efficient CDSs. This short review aims to present an updated report on the advancements of liposome-hydrogel systems for drug delivery purposes.
Collapse
Affiliation(s)
- Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Duarte LC, Figueredo F, Chagas CLS, Cortón E, Coltro WKT. A review of the recent achievements and future trends on 3D printed microfluidic devices for bioanalytical applications. Anal Chim Acta 2024; 1299:342429. [PMID: 38499426 DOI: 10.1016/j.aca.2024.342429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
3D printing has revolutionized the manufacturing process of microanalytical devices by enabling the automated production of customized objects. This technology promises to become a fundamental tool, accelerating investigations in critical areas of health, food, and environmental sciences. This microfabrication technology can be easily disseminated among users to produce further and provide analytical data to an interconnected network towards the Internet of Things, as 3D printers enable automated, reproducible, low-cost, and easy fabrication of microanalytical devices in a single step. New functional materials are being investigated for one-step fabrication of highly complex 3D printed parts using photocurable resins. However, they are not yet widely used to fabricate microfluidic devices. This is likely the critical step towards easy and automated fabrication of sophisticated, complex, and functional 3D-printed microchips. Accordingly, this review covers recent advances in the development of 3D-printed microfluidic devices for point-of-care (POC) or bioanalytical applications such as nucleic acid amplification assays, immunoassays, cell and biomarker analysis and organs-on-a-chip. Finally, we discuss the future implications of this technology and highlight the challenges in researching and developing appropriate materials and manufacturing techniques to enable the production of 3D-printed microfluidic analytical devices in a single step.
Collapse
Affiliation(s)
- Lucas C Duarte
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Inhumas, 75402-556, Inhumas, GO, Brazil
| | - Federico Figueredo
- Laboratorio de Biosensores y Bioanalisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Cyro L S Chagas
- Instituto de Química, Universidade de Brasília, 70910-900, Brasília, DF, Brazil
| | - Eduardo Cortón
- Laboratorio de Biosensores y Bioanalisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil.
| |
Collapse
|
5
|
Bocato MZ, Fernandes Quero R, Alexandre Weil A, Aparecida Cesila C, Adewuyi Adeyemi J, Barbosa F. A new adsorptive 3D-printed sampling device for simultaneous determination of 63 urinary organic acids by LC-MS/MS. Anal Chim Acta 2024; 1288:342185. [PMID: 38220312 DOI: 10.1016/j.aca.2023.342185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND The detection and quantification of urinary metabolites play an important role in disease diagnosis. In most cases, urinary analyses are done with liquid urine samples, which must be quickly transported to the laboratory to avoid metabolites degradation that is associated with temperature fluctuations. Consequently, dried sampling devices have emerged to minimize analyte degradation. However, most commercial dried sampling devices are expensive, aggregate low volumes, and need better analytical sensitivity. Therefore, a new dry urine sampling device that is inexpensive, suitable for domestic sampling operation, and efficient for quantifying metabolites without requiring high-resolution instruments is proposed in the present study. RESULTS The newly designed dry urine sampling device was produced by 3D printing that efficiently determines 63 urinary organic acids using liquid chromatography coupled with mass spectrometry (LC-MS/MS). The system's efficiency was demonstrated with analytical figures of merit, such as precision, accuracy, and stability of analytes after the sampling and storing of ordinary urine samples. The limits of quantification ranged from 0.01 to 0.42 ng mL-1. Precision and accuracy tests showed relative standard deviations of less than 15 %. The urine stability in the sampling device was high within seven days without any significant degradation of the metabolites. The method was applied to the analysis of 10 human urine samples and compared to a conventional method without the use of the sampling device. The results showed no statistically significant differences, demonstrating the method's efficiency. SIGNIFICANCE The proposed 3-D printing device was developed with fast, low-cost manufacturing features and can be manufactured with different volumetric capacities, adaptable to the needs of each user. Furthermore, it is innovative because this is the first sampling device that is effective for the simultaneous storage and preservation of several important urinary metabolites. Thus, it is anticipated that its application would contribute significantly to the identification of metabolic disorders.
Collapse
Affiliation(s)
- Mariana Zuccherato Bocato
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Reload Health Devices Ltda, Ribeirão Preto, SP, Brazil.
| | - Reverson Fernandes Quero
- Reload Health Devices Ltda, Ribeirão Preto, SP, Brazil; Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | - Cibele Aparecida Cesila
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Joseph Adewuyi Adeyemi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernando Barbosa
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
Gupta B, Malviya R, Srivastava S, Ahmad I, Rab SO, Singh DP. 3D Printed Nanosensors for Cancer Diagnosis: Advances and Future Perspective. Curr Pharm Des 2024; 30:2993-3008. [PMID: 39161144 DOI: 10.2174/0113816128322300240725052530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 08/21/2024]
Abstract
Cancer is the leading cause of mortality worldwide, requiring continuous advancements in diagnosis and treatment. Traditional methods often lack sensitivity and specificity, leading to the need for new methods. 3D printing has emerged as a transformative tool in cancer diagnosis, offering the potential for precise and customizable nanosensors. These advancements are critical in cancer research, aiming to improve early detection and monitoring of tumors. In current times, the usage of the 3D printing technique has been more prevalent as a flexible medium for the production of accurate and adaptable nanosensors characterized by exceptional sensitivity and specificity. The study aims to enhance early cancer diagnosis and prognosis by developing advanced 3D-printed nanosensors using 3D printing technology. The research explores various 3D printing techniques, design strategies, and functionalization strategies for cancer-specific biomarkers. The integration of these nanosensors with detection modalities like fluorescence, electrochemical, and surface-enhanced Raman spectroscopy is also evaluated. The study explores the use of inkjet printing, stereolithography, and fused deposition modeling to create nanostructures with enhanced performance. It also discusses the design and functionalization methods for targeting cancer indicators. The integration of 3D-printed nanosensors with multiple detection modalities, including fluorescence, electrochemical, and surface-enhanced Raman spectroscopy, enables rapid and reliable cancer diagnosis. The results show improved sensitivity and specificity for cancer biomarkers, enabling early detection of tumor indicators and circulating cells. The study highlights the potential of 3D-printed nanosensors to transform cancer diagnosis by enabling highly sensitive and specific detection of tumor biomarkers. It signifies a pivotal step forward in cancer diagnostics, showcasing the capacity of 3D printing technology to produce advanced nanosensors that can significantly improve early cancer detection and patient outcomes.
Collapse
Affiliation(s)
- Babita Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai, Malaysia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Deependra Pratap Singh
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
- Graphic Era (Deemed to be University), Clement Town, Dehradun, India
| |
Collapse
|
7
|
Zhang Y. 3D Printing for Cancer Diagnosis: What Unique Advantages Are Gained? ACS MATERIALS AU 2023; 3:620-635. [PMID: 38089653 PMCID: PMC10636786 DOI: 10.1021/acsmaterialsau.3c00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/20/2024]
Abstract
Cancer is a complex disease with global significance, necessitating continuous advancements in diagnostics and treatment. 3D printing technology has emerged as a revolutionary tool in cancer diagnostics, offering immense potential in detection and monitoring. Traditional diagnostic methods have limitations in providing molecular and genetic tumor information that is crucial for personalized treatment decisions. Biomarkers have become invaluable in cancer diagnostics, but their detection often requires specialized facilities and resources. 3D printing technology enables the fabrication of customized sensor arrays, enhancing the detection of multiple biomarkers specific to different types of cancer. These 3D-printed arrays offer improved sensitivity, allowing the detection of low levels of biomarkers, even in complex samples. Moreover, their specificity can be fine-tuned, reducing false-positive and false-negative results. The streamlined and cost-effective fabrication process of 3D printing makes these sensor arrays accessible, potentially improving cancer diagnostics on a global scale. By harnessing 3D printing, researchers and clinicians can enhance early detection, monitor treatment response, and improve patient outcomes. The integration of 3D printing in cancer diagnostics holds significant promise for the future of personalized cancer care.
Collapse
Affiliation(s)
- Yu Zhang
- Division
of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78705, United States
- Pharmaceutics
and Drug Delivery, School of Pharmacy, The
University of Mississippi, Oxford, Mississippi 38677-1848, United States
| |
Collapse
|
8
|
Karamzadeh V, Sohrabi-Kashani A, Shen M, Juncker D. Digital Manufacturing of Functional Ready-to-Use Microfluidic Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303867. [PMID: 37531202 DOI: 10.1002/adma.202303867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Digital manufacturing (DM) holds great potential for microfluidics, but requirements for embedded conduits and high resolution beyond the capability of common manufacturing equipment, and microfluidic systems' dependence on peripheralshave limited its adoption. Capillaric circuits (CCs) are structurally encoded, self-contained microfluidic systems that operate and self-fill via precisely tailored hydrophilicity. CCs are heretofore hydrophilized in a plasma chamber, but which offers only transient hydrophilicity, lacks reproducibility, and limits CC design to open surface channels subsequently sealed with tape. Here, the additive DM of monolithic, fully functional, and intrinsically hydrophilic CCs is reported. CCs are 3D printed with commonly available light-engine-based 3D printers using poly(ethylene glycol)diacrylate-based ink co-polymerized with hydrophilic acrylic acid crosslinkers and optimized for hydrophilicity and printability. A new, robust capillary valve design and embedded conduits with circular cross-sections that prevent bubble trapping are presented, interwoven circuit architectures created, and CC use illustrated with an immunoassay. Finally, the external paper capillary pumps are eliminated by directly embedding the capillary pump in the chip as a porous gyroid structure, realizing fully functional, monolithic CCs. Thence, a digital file can be made into a CC by commonly available 3D printers in less than 30 min enabling low-cost, distributed DM of fully functional ready-to-use microfluidic systems.
Collapse
Affiliation(s)
- Vahid Karamzadeh
- Biomedical Engineering Department, McGill University, Montreal, QC, H3A 0G1, Canada
- McGill Genome Centre, McGill University, Montreal, H3A 0G1, Canada
| | - Ahmad Sohrabi-Kashani
- Biomedical Engineering Department, McGill University, Montreal, QC, H3A 0G1, Canada
- McGill Genome Centre, McGill University, Montreal, H3A 0G1, Canada
| | - Molly Shen
- Biomedical Engineering Department, McGill University, Montreal, QC, H3A 0G1, Canada
- McGill Genome Centre, McGill University, Montreal, H3A 0G1, Canada
| | - David Juncker
- Biomedical Engineering Department, McGill University, Montreal, QC, H3A 0G1, Canada
- McGill Genome Centre, McGill University, Montreal, H3A 0G1, Canada
| |
Collapse
|
9
|
Gil JF, Moura CS, Silverio V, Gonçalves G, Santos HA. Cancer Models on Chip: Paving the Way to Large-Scale Trial Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300692. [PMID: 37103886 DOI: 10.1002/adma.202300692] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Cancer kills millions of individuals every year all over the world (Global Cancer Observatory). The physiological and biomechanical processes underlying the tumor are still poorly understood, hindering researchers from creating new, effective therapies. Inconsistent results of preclinical research, in vivo testing, and clinical trials decrease drug approval rates. 3D tumor-on-a-chip (ToC) models integrate biomaterials, tissue engineering, fabrication of microarchitectures, and sensory and actuation systems in a single device, enabling reliable studies in fundamental oncology and pharmacology. This review includes a critical discussion about their ability to reproduce the tumor microenvironment (TME), the advantages and drawbacks of existing tumor models and architectures, major components and fabrication techniques. The focus is on current materials and micro/nanofabrication techniques used to manufacture reliable and reproducible microfluidic ToC models for large-scale trial applications.
Collapse
Affiliation(s)
- João Ferreira Gil
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028, Portugal
- INESC Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol 9, Lisbon, 1000-029, Portugal
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Carla Sofia Moura
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028, Portugal
- Polytechnic Institute of Coimbra, Applied Research Institute, Coimbra, 3045-093, Portugal
| | - Vania Silverio
- INESC Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol 9, Lisbon, 1000-029, Portugal
- Department of Physics, Instituto Superior Técnico, Lisbon, 1049-001, Portugal
- Associate Laboratory Institute for Health and Bioeconomy - i4HB, Lisbon, Portugal
| | - Gil Gonçalves
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Aveiro, 3810-193, Portugal
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, The Netherlands
- W.J. Korf Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
10
|
Pillai S, Kwan JC, Yaziji F, Yu H, Tran SD. Mapping the Potential of Microfluidics in Early Diagnosis and Personalized Treatment of Head and Neck Cancers. Cancers (Basel) 2023; 15:3894. [PMID: 37568710 PMCID: PMC10417175 DOI: 10.3390/cancers15153894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Head and neck cancers (HNCs) account for ~4% of all cancers in North America and encompass cancers affecting the oral cavity, pharynx, larynx, sinuses, nasal cavity, and salivary glands. The anatomical complexity of the head and neck region, characterized by highly perfused and innervated structures, presents challenges in the early diagnosis and treatment of these cancers. The utilization of sub-microliter volumes and the unique phenomenon associated with microscale fluid dynamics have facilitated the development of microfluidic platforms for studying complex biological systems. The advent of on-chip microfluidics has significantly impacted the diagnosis and treatment strategies of HNC. Sensor-based microfluidics and point-of-care devices have improved the detection and monitoring of cancer biomarkers using biological specimens like saliva, urine, blood, and serum. Additionally, tumor-on-a-chip platforms have allowed the creation of patient-specific cancer models on a chip, enabling the development of personalized treatments through high-throughput screening of drugs. In this review, we first focus on how microfluidics enable the development of an enhanced, functional drug screening process for targeted treatment in HNCs. We then discuss current advances in microfluidic platforms for biomarker sensing and early detection, followed by on-chip modeling of HNC to evaluate treatment response. Finally, we address the practical challenges that hinder the clinical translation of these microfluidic advances.
Collapse
Affiliation(s)
| | | | | | | | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cell Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada; (S.P.); (J.C.K.); (F.Y.); (H.Y.)
| |
Collapse
|
11
|
Garmasukis R, Hackl C, Charvat A, Mayr SG, Abel B. Rapid prototyping of microfluidic chips enabling controlled biotechnology applications in microspace. Curr Opin Biotechnol 2023; 81:102948. [PMID: 37163825 DOI: 10.1016/j.copbio.2023.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 05/12/2023]
Abstract
Rapid prototyping of microfluidic chips is a key enabler for controlled biotechnology applications in microspaces, as it allows for the efficient design and production of microfluidic systems. With rapid prototyping, researchers and engineers can quickly create and test new microfluidic chip designs, which can then be optimized for specific applications in biotechnology. One of the key advantages of microfluidic chips for biotechnology is the ability to manipulate and control biological samples in a microspace, which enables precise and controlled experiments under well-defined conditions. This is particularly useful for applications such as cell culture, drug discovery, and diagnostic assays, where precise control over the biological environment is crucial for obtaining accurate results. Established methods, for example, soft lithography, 3D printing, injection molding, as well as other recently highlighted innovative approaches, will be compared and challenges as well as limitations will be discussed. It will be shown that rapid prototyping of microfluidic chips enables the use of advanced materials and technologies, such as smart materials and digital sensors, which can further enhance the capabilities of microfluidic systems for biotechnology applications. Overall, rapid prototyping of microfluidic chips is an important enabling technology for controlled biotechnology applications in microspaces, as well as for upscaling it into macroscopic bioreactors, and its continued development and improvement will play a critical role in advancing the field. The review will highlight recent trends in terms of materials and competing approaches and shed light on current challenges on the way toward integrated microtechnologies. Also, the possibility to easy and direct implementation of novel functions (membranes, functionalization of interfaces, etc.) is discussed.
Collapse
Affiliation(s)
- Rokas Garmasukis
- Leibniz-Institute of Surface Engineering Leipzig (IOM), Permoserstr. 15, 04318 Leipzig, Germany; Helmholtz-Centre for Environmental Research (UFZ), Permoserstr.15, 04318 Leipzig, Germany
| | - Claudia Hackl
- Leibniz-Institute of Surface Engineering Leipzig (IOM), Permoserstr. 15, 04318 Leipzig, Germany
| | - Ales Charvat
- Institute of Chemical Technology, University Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Stefan G Mayr
- Leibniz-Institute of Surface Engineering Leipzig (IOM), Permoserstr. 15, 04318 Leipzig, Germany
| | - Bernd Abel
- Institute of Chemical Technology, University Leipzig, Linnéstr. 3, 04103 Leipzig, Germany.
| |
Collapse
|
12
|
Calabria D, Lazzarini E, Pace A, Trozzi I, Zangheri M, Cinti S, Difonzo M, Valenti G, Guardigli M, Paolucci F, Mirasoli M. Smartphone-based 3D-printed electrochemiluminescence enzyme biosensor for reagentless glucose quantification in real matrices. Biosens Bioelectron 2023; 227:115146. [PMID: 36821991 DOI: 10.1016/j.bios.2023.115146] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Three-dimensional (3D) printed electrochemical devices are increasingly used in point-of-need and point-of-care testing. They show several advantages such as simple fabrication, low cost, fast response, and excellent selectivity and sensitivity in small sample volumes. However, there are only a few examples of analytical devices combining 3D-printed electrodes with electrochemiluminescence (ECL) detection, an electrochemical detection principle widely employed in clinical chemistry analysis. Herein, a portable, 3D-printed miniaturized ECL biosensor for glucose detection has been developed, based on the luminol/H2O2 ECL system and employing a two-electrode configuration with carbon black-doped polylactic acid (PLA) electrodes. The ECL emission is obtained by means of a 1.5V AA alkaline battery and detected using a smartphone camera, thus providing easy portability of the analytical platform. The ECL system was successfully applied for sensing H2O2 and, upon coupling the luminol/H2O2 system with the enzyme glucose oxidase, for glucose detection. The incorporation of luminol and glucose oxidase in an agarose hydrogel matrix allowed to produce ECL devices preloaded with the reagents required for the assay, so that the analysis only required sample addition. The ECL biosensor showed an excellent ability to detect glucose up to 5 mmol L-1, with a limit of detection of 60 μmol L-1. The biosensor was also used to analyse real samples (i.e., glucose saline solutions and artificial serum samples) with satisfactory results, thus suggesting its suitability for point-of-care analysis. Coupling with other oxidases could further extend the applicability of this analytical platform.
Collapse
Affiliation(s)
- Donato Calabria
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy; Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum-University of Bologna, Via Baldassarre Canaccini 12, I-47121, Forlì, Italy
| | - Elisa Lazzarini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy
| | - Andrea Pace
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy
| | - Ilaria Trozzi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy; Interdepartmental Centre for Industrial Agrofood Research (CIRI AGRO), Alma Mater Studiorum - University of Bologna, Via Quinto Bucci 336, I-47521, Cesena, Italy; Interdepartmental Centre for Industrial Research in Advanced Mechanical Engineering Applications and Materials Technology (CIRI MAM), Alma Mater Studiorum-University of Bologna, Viale Risorgimento 2, I-40136, Bologna, Italy
| | - Stefano Cinti
- Department of Pharmacy, University Naples Federico II, Via Domenico Montesano 49, I-80131, Naples, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli "Federico II", 80055, Portici, Naples, Italy
| | - Marinella Difonzo
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy
| | - Giovanni Valenti
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy
| | - Massimo Guardigli
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy; Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum-University of Bologna, Via Baldassarre Canaccini 12, I-47121, Forlì, Italy; Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, I-48123, Ravenna, Italy
| | - Francesco Paolucci
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy.
| | - Mara Mirasoli
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy; Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum-University of Bologna, Via Baldassarre Canaccini 12, I-47121, Forlì, Italy; Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, I-48123, Ravenna, Italy.
| |
Collapse
|
13
|
Amini A, Guijt RM, Themelis T, De Vos J, Eeltink S. Recent developments in digital light processing 3D-printing techniques for microfluidic analytical devices. J Chromatogr A 2023; 1692:463842. [PMID: 36745962 DOI: 10.1016/j.chroma.2023.463842] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Digital light processing (DLP) 3D printing is rapidly advancing and has emerged as a powerful additive manufacturing approach to fabricate analytical microdevices. DLP 3D-printing utilizes a digital micromirror device to direct the projected light and photopolymerize a liquid resin, in a layer-by-layer approach. Advances in vat and lift design, projector technology, and resin composition, allow accurate fabrication of microchannel structures as small as 18 × 20 µm. This review describes the latest advances in DLP 3D-printing technology with respect to instrument set-up and resin formulation and highlights key efforts to fabricate microdevices targeting emerging (bio-)analytical chemistry applications, including colorimetric assays, extraction, and separation.
Collapse
Affiliation(s)
- Ali Amini
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels B-1050, Belgium
| | - Rosanne M Guijt
- Centre for Regional and Rural Futures, Deakin University, Geelong, Australia
| | - Thomas Themelis
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels B-1050, Belgium
| | - Jelle De Vos
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels B-1050, Belgium
| | - Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels B-1050, Belgium.
| |
Collapse
|
14
|
Villata S, Canta M, Baruffaldi D, Pavan A, Chiappone A, Pirri CF, Frascella F, Roppolo I. 3D printable acrylate polydimethylsiloxane resins for cell culture and drug testing. Biomater Sci 2023; 11:2950-2959. [PMID: 36912680 DOI: 10.1039/d3bm00152k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Nowadays, most of the microfluidic devices for biological applications are fabricated with only few well-established materials. Among these, polydimethylsiloxane (PDMS) is the most used and known. However, it has many limitations, like the operator dependent and time-consuming manufacturing technique and the high molecule retention. TEGORad or Acrylate PDMS is an acrylate polydimethylsiloxane copolymer that can be 3D printed through Digital Light Processing (DLP), a technology that can boast reduction of waste products and the possibility of low cost and rapid manufacturing of complex components. Here, we developed 3D printed Acrylate PDMS-based devices for cell culture and drug testing. Our in vitro study shows that Acrylate PDMS can sustain cell growth of lung and skin epithelium, both of great interest for in vitro drug testing, without causing any genotoxic effect. Moreover, flow experiments with a drug-like solution (Rhodamine 6G) show that Acrylate PDMS drug retention is negligible unlike the high signal shown by PDMS. In conclusion, the study demonstrates that this acrylate resin can be an excellent alternative to PDMS to design stretchable platforms for cell culture and drug testing.
Collapse
Affiliation(s)
- Simona Villata
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Marta Canta
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Désirée Baruffaldi
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Alice Pavan
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Annalisa Chiappone
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Candido Fabrizio Pirri
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy. .,Center for Sustainable Futures @PolitoIstituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy
| | - Francesca Frascella
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Ignazio Roppolo
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| |
Collapse
|
15
|
Serrano DR, Kara A, Yuste I, Luciano FC, Ongoren B, Anaya BJ, Molina G, Diez L, Ramirez BI, Ramirez IO, Sánchez-Guirales SA, Fernández-García R, Bautista L, Ruiz HK, Lalatsa A. 3D Printing Technologies in Personalized Medicine, Nanomedicines, and Biopharmaceuticals. Pharmaceutics 2023; 15:313. [PMID: 36839636 PMCID: PMC9967161 DOI: 10.3390/pharmaceutics15020313] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
3D printing technologies enable medicine customization adapted to patients' needs. There are several 3D printing techniques available, but majority of dosage forms and medical devices are printed using nozzle-based extrusion, laser-writing systems, and powder binder jetting. 3D printing has been demonstrated for a broad range of applications in development and targeting solid, semi-solid, and locally applied or implanted medicines. 3D-printed solid dosage forms allow the combination of one or more drugs within the same solid dosage form to improve patient compliance, facilitate deglutition, tailor the release profile, or fabricate new medicines for which no dosage form is available. Sustained-release 3D-printed implants, stents, and medical devices have been used mainly for joint replacement therapies, medical prostheses, and cardiovascular applications. Locally applied medicines, such as wound dressing, microneedles, and medicated contact lenses, have also been manufactured using 3D printing techniques. The challenge is to select the 3D printing technique most suitable for each application and the type of pharmaceutical ink that should be developed that possesses the required physicochemical and biological performance. The integration of biopharmaceuticals and nanotechnology-based drugs along with 3D printing ("nanoprinting") brings printed personalized nanomedicines within the most innovative perspectives for the coming years. Continuous manufacturing through the use of 3D-printed microfluidic chips facilitates their translation into clinical practice.
Collapse
Affiliation(s)
- Dolores R. Serrano
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Aytug Kara
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Iván Yuste
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francis C. Luciano
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Baris Ongoren
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Brayan J. Anaya
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Gracia Molina
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Laura Diez
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Bianca I. Ramirez
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Irving O. Ramirez
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sergio A. Sánchez-Guirales
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Raquel Fernández-García
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Liliana Bautista
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Helga K. Ruiz
- Department of Physical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aikaterini Lalatsa
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
16
|
Lab-on-a-chip microfluidic devices: A platform for easy, effective and early diagnosis of cancer with analysis of circulating tumour cells. Int J Surg 2022; 106:106906. [PMID: 36108907 DOI: 10.1016/j.ijsu.2022.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
|
17
|
Three-Dimensional Printing and Its Potential to Develop Sensors for Cancer with Improved Performance. BIOSENSORS 2022; 12:bios12090685. [PMID: 36140070 PMCID: PMC9496342 DOI: 10.3390/bios12090685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 12/24/2022]
Abstract
Cancer is the second leading cause of death globally and early diagnosis is the best strategy to reduce mortality risk. Biosensors to detect cancer biomarkers are based on various principles of detection, including electrochemical, optical, electrical, and mechanical measurements. Despite the advances in the identification of biomarkers and the conventional 2D manufacturing processes, detection methods for cancers still require improvements in terms of selectivity and sensitivity, especially for point-of-care diagnosis. Three-dimensional printing may offer the features to produce complex geometries in the design of high-precision, low-cost sensors. Three-dimensional printing, also known as additive manufacturing, allows for the production of sensitive, user-friendly, and semi-automated sensors, whose composition, geometry, and functionality can be controlled. This paper reviews the recent use of 3D printing in biosensors for cancer diagnosis, highlighting the main advantages and advances achieved with this technology. Additionally, the challenges in 3D printing technology for the mass production of high-performance biosensors for cancer diagnosis are addressed.
Collapse
|
18
|
Lai X, Yang M, Wu H, Li D. Modular Microfluidics: Current Status and Future Prospects. MICROMACHINES 2022; 13:1363. [PMID: 36014285 PMCID: PMC9414757 DOI: 10.3390/mi13081363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
This review mainly studies the development status, limitations, and future directions of modular microfluidic systems. Microfluidic technology is an important tool platform for scientific research and plays an important role in various fields. With the continuous development of microfluidic applications, conventional monolithic microfluidic chips show more and more limitations. A modular microfluidic system is a system composed of interconnected, independent modular microfluidic chips, which are easy to use, highly customizable, and on-site deployable. In this paper, the current forms of modular microfluidic systems are classified and studied. The popular fabrication techniques for modular blocks, the major application scenarios of modular microfluidics, and the limitations of modular techniques are also discussed. Lastly, this review provides prospects for the future direction of modular microfluidic technologies.
Collapse
Affiliation(s)
- Xiaochen Lai
- School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Mingpeng Yang
- School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hao Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
19
|
Three-Dimensional (3D) Printing in Cancer Therapy and Diagnostics: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2022; 15:ph15060678. [PMID: 35745597 PMCID: PMC9229198 DOI: 10.3390/ph15060678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Three-dimensional (3D) printing is a technique where the products are printed layer-by-layer via a series of cross-sectional slices with the exact deposition of different cell types and biomaterials based on computer-aided design software. Three-dimensional printing can be divided into several approaches, such as extrusion-based printing, laser-induced forward transfer-based printing systems, and so on. Bio-ink is a crucial tool necessary for the fabrication of the 3D construct of living tissue in order to mimic the native tissue/cells using 3D printing technology. The formation of 3D software helps in the development of novel drug delivery systems with drug screening potential, as well as 3D constructs of tumor models. Additionally, several complex structures of inner tissues like stroma and channels of different sizes are printed through 3D printing techniques. Three-dimensional printing technology could also be used to develop therapy training simulators for educational purposes so that learners can practice complex surgical procedures. The fabrication of implantable medical devices using 3D printing technology with less risk of infections is receiving increased attention recently. A Cancer-on-a-chip is a microfluidic device that recreates tumor physiology and allows for a continuous supply of nutrients or therapeutic compounds. In this review, based on the recent literature, we have discussed various printing methods for 3D printing and types of bio-inks, and provided information on how 3D printing plays a crucial role in cancer management.
Collapse
|
20
|
Galateanu B, Hudita A, Biru EI, Iovu H, Zaharia C, Simsensohn E, Costache M, Petca RC, Jinga V. Applications of Polymers for Organ-on-Chip Technology in Urology. Polymers (Basel) 2022; 14:1668. [PMID: 35566836 PMCID: PMC9105302 DOI: 10.3390/polym14091668] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Organ-on-chips (OOCs) are microfluidic devices used for creating physiological organ biomimetic systems. OOC technology brings numerous advantages in the current landscape of preclinical models, capable of recapitulating the multicellular assemblage, tissue-tissue interaction, and replicating numerous human pathologies. Moreover, in cancer research, OOCs emulate the 3D hierarchical complexity of in vivo tumors and mimic the tumor microenvironment, being a practical cost-efficient solution for tumor-growth investigation and anticancer drug screening. OOCs are compact and easy-to-use microphysiological functional units that recapitulate the native function and the mechanical strain that the cells experience in the human bodies, allowing the development of a wide range of applications such as disease modeling or even the development of diagnostic devices. In this context, the current work aims to review the scientific literature in the field of microfluidic devices designed for urology applications in terms of OOC fabrication (principles of manufacture and materials used), development of kidney-on-chip models for drug-toxicity screening and kidney tumors modeling, bladder-on-chip models for urinary tract infections and bladder cancer modeling and prostate-on-chip models for prostate cancer modeling.
Collapse
Affiliation(s)
- Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (B.G.); (M.C.)
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (B.G.); (M.C.)
| | - Elena Iuliana Biru
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (H.I.); (C.Z.)
| | - Horia Iovu
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (H.I.); (C.Z.)
- Academy of Romanian Scientists, Ilfov Street, 50044 Bucharest, Romania
| | - Catalin Zaharia
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (H.I.); (C.Z.)
| | - Eliza Simsensohn
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania; (E.S.); (R.-C.P.); (V.J.)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (B.G.); (M.C.)
| | - Razvan-Cosmin Petca
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania; (E.S.); (R.-C.P.); (V.J.)
| | - Viorel Jinga
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania; (E.S.); (R.-C.P.); (V.J.)
| |
Collapse
|
21
|
Vázquez M, Anfossi L, Ben-Yoav H, Diéguez L, Karopka T, Della Ventura B, Abalde-Cela S, Minopoli A, Di Nardo F, Shukla VK, Teixeira A, Tvarijonaviciute A, Franco-Martínez L. Use of some cost-effective technologies for a routine clinical pathology laboratory. LAB ON A CHIP 2021; 21:4330-4351. [PMID: 34664599 DOI: 10.1039/d1lc00658d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Classically, the need for highly sophisticated instruments with important economic costs has been a major limiting factor for clinical pathology laboratories, especially in developing countries. With the aim of making clinical pathology more accessible, a wide variety of free or economical technologies have been developed worldwide in the last few years. 3D printing and Arduino approaches can provide up to 94% economical savings in hardware and instrumentation in comparison to commercial alternatives. The vast selection of point-of-care-tests (POCT) currently available also limits the need for specific instruments or personnel, as they can be used almost anywhere and by anyone. Lastly, there are dozens of free and libre digital tools available in health informatics. This review provides an overview of the state-of-the-art on cost-effective alternatives with applications in routine clinical pathology laboratories. In this context, a variety of technologies including 3D printing and Arduino, lateral flow assays, plasmonic biosensors, and microfluidics, as well as laboratory information systems, are discussed. This review aims to serve as an introduction to different technologies that can make clinical pathology more accessible and, therefore, contribute to achieve universal health coverage.
Collapse
Affiliation(s)
- Mercedes Vázquez
- National Centre For Sensor Research, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via Giuria, 5, I-10125 Turin, Italy
| | - Hadar Ben-Yoav
- Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute of Nanoscale Science and Technology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Lorena Diéguez
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory - INL, 4715-330 Braga, Portugal
| | | | - Bartolomeo Della Ventura
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy
| | - Sara Abalde-Cela
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory - INL, 4715-330 Braga, Portugal
| | - Antonio Minopoli
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy
| | - Fabio Di Nardo
- Department of Chemistry, University of Turin, Via Giuria, 5, I-10125 Turin, Italy
| | - Vikas Kumar Shukla
- Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute of Nanoscale Science and Technology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alexandra Teixeira
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory - INL, 4715-330 Braga, Portugal
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100 Murcia, Spain.
| | - Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
22
|
Biosensors Designed for Clinical Applications. Biomedicines 2021; 9:biomedicines9070702. [PMID: 34206405 PMCID: PMC8301448 DOI: 10.3390/biomedicines9070702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023] Open
Abstract
Emerging and validated biomarkers promise to revolutionize clinical practice, shifting the emphasis away from the management of chronic disease towards prevention, early diagnosis and early intervention. The challenge of detecting these low abundance protein and nucleic acid biomarkers within the clinical context demands the development of highly sensitive, even single molecule, assays that are also capable of selectively measuring a small number of defined analytes in complex samples such as whole blood, interstitial fluid, saliva or urine. Success relies on significant innovations in nanomaterials, bioreceptor engineering, transduction strategies and microfluidics. Primarily using examples from our work, this article discusses some recent advance in the selective and sensitive detection of disease biomarkers, highlights key innovations in sensor materials and identifies issues and challenges that need to be carefully considered especially for researchers entering the field.
Collapse
|
23
|
Su CK. Review of 3D-Printed functionalized devices for chemical and biochemical analysis. Anal Chim Acta 2021; 1158:338348. [PMID: 33863415 DOI: 10.1016/j.aca.2021.338348] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/28/2022]
Abstract
Recent developments in three-dimensional printing (3DP) have attracted the attention of analytical scientists interested in fabricating 3D devices having promising geometric functions to achieve desirable analytical performance. To break through the barrier of limited availability of 3DP materials and to extend the chemical reactivity and functionalities of devices manufactured using conventional 3DP, new approaches are being developed for the functionalization of 3D-printed devices for chemical and biochemical analysis. This Review discusses recent advances in the chemical functionalization schemes used in the main 3DP technologies, including (i) post-printing modification and surface immobilization of reactive substances on printed materials, (ii) pre-printing incorporation of reactive substances into raw printing materials, and (iii) combinations of both strategies, and their effects on the selectivity and/or sensitivity of related analytical methods. In addition, the state of the art of 3D-printed functionalized analytical devices for enzymatic derivatization and sensing, electrochemical sensing, and sample pretreatment applications are also reviewed, highlighting the importance of introducing new functional and functionalized materials to facilitate future 3DP-enabled manufacturing of multifunctional analytical devices.
Collapse
Affiliation(s)
- Cheng-Kuan Su
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
24
|
Carrasco-Correa EJ, Simó-Alfonso EF, Herrero-Martínez JM, Miró M. The emerging role of 3D printing in the fabrication of detection systems. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116177] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Arshavsky-Graham S, Enders A, Ackerman S, Bahnemann J, Segal E. 3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection. Mikrochim Acta 2021; 188:67. [PMID: 33543321 PMCID: PMC7862519 DOI: 10.1007/s00604-021-04725-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/19/2021] [Indexed: 01/13/2023]
Abstract
Microfluidic integration of biosensors enables improved biosensing performance and sophisticated lab-on-a-chip platform design for numerous applications. While soft lithography and polydimethylsiloxane (PDMS)-based microfluidics are still considered the gold standard, 3D-printing has emerged as a promising fabrication alternative for microfluidic systems. Herein, a 3D-printed polyacrylate-based microfluidic platform is integrated for the first time with a label-free porous silicon (PSi)-based optical aptasensor via a facile bonding method. The latter utilizes a UV-curable adhesive as an intermediate layer, while preserving the delicate nanostructure of the porous regions within the microchannels. As a proof-of-concept, a generic model aptasensor for label-free detection of his-tagged proteins is constructed, characterized, and compared to non-microfluidic and PDMS-based microfluidic setups. Detection of the target protein is carried out by real-time monitoring reflectivity changes of the PSi, induced by the target binding to the immobilized aptamers within the porous nanostructure. The microfluidic integrated aptasensor has been successfully used for detection of a model target protein, in the range 0.25 to 18 μM, with a good selectivity and an improved limit of detection, when compared to a non-microfluidic biosensing platform (0.04 μM vs. 2.7 μM, respectively). Furthermore, a superior performance of the 3D-printed microfluidic aptasensor is obtained, compared to a conventional PDMS-based microfluidic platform with similar dimensions.
Collapse
Affiliation(s)
- Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | - Anton Enders
- Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | - Shanny Ackerman
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Janina Bahnemann
- Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany.
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
- The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
26
|
Wang L, Pumera M. Recent advances of 3D printing in analytical chemistry: Focus on microfluidic, separation, and extraction devices. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116151] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Mehta V, Rath SN. 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00112-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Functional 3D printing: Approaches and bioapplications. Biosens Bioelectron 2020; 175:112849. [PMID: 33250333 DOI: 10.1016/j.bios.2020.112849] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/28/2020] [Accepted: 11/22/2020] [Indexed: 12/17/2022]
Abstract
3D printing technology has become a mature manufacturing technique, widely used for its advantages over the traditional methods, such as the end-user customization and rapid prototyping, useful in different application fields, including the biomedical one. Indeed, it represents a helpful tool for the realization of biodevices (i.e. biosensors, microfluidic bioreactors, drug delivery systems and Lab-On-Chip). In this perspective, the development of 3D printable materials with intrinsic functionalities, through the so-called 4D printing, introduces novel opportunities for the fabrication of "smart" or stimuli-responsive devices. Indeed, functional 3D printable materials can modify their surfaces, structures, properties or even shape in response to specific stimuli (such as pressure, temperature or light radiation), adding to the printed object new interesting properties exploited after the fabrication process. In this context, by combining 3D printing technology with an accurate materials' design, functional 3D objects with built-in (bio)chemical functionalities, having biorecognition, biocatalytic and drug delivery capabilities are here reported.
Collapse
|
29
|
González G, Baruffaldi D, Martinengo C, Angelini A, Chiappone A, Roppolo I, Pirri CF, Frascella F. Materials Testing for the Development of Biocompatible Devices through Vat-Polymerization 3D Printing. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1788. [PMID: 32916902 PMCID: PMC7559499 DOI: 10.3390/nano10091788] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Light-based 3D printing techniques could be a valuable instrument in the development of customized and affordable biomedical devices, basically for high precision and high flexibility in terms of materials of these technologies. However, more studies related to the biocompatibility of the printed objects are required to expand the use of these techniques in the health sector. In this work, 3D printed polymeric parts are produced in lab conditions using a commercial Digital Light Processing (DLP) 3D printer and then successfully tested to fabricate components suitable for biological studies. For this purpose, different 3D printable formulations based on commercially available resins are compared. The biocompatibility of the 3D printed objects toward A549 cell line is investigated by adjusting the composition of the resins and optimizing post-printing protocols; those include washing in common solvents and UV post-curing treatments for removing unreacted and cytotoxic products. It is noteworthy that not only the selection of suitable materials but also the development of an adequate post-printing protocol is necessary for the development of biocompatible devices.
Collapse
Affiliation(s)
- Gustavo González
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy; (G.G.); (D.B.); (C.M.); (A.C.); (I.R); (C.F.P.)
- Center for Sustainable Futures @Polito, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
| | - Désirée Baruffaldi
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy; (G.G.); (D.B.); (C.M.); (A.C.); (I.R); (C.F.P.)
- PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Cinzia Martinengo
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy; (G.G.); (D.B.); (C.M.); (A.C.); (I.R); (C.F.P.)
- PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Angelo Angelini
- Advanced Materials Metrology and Life Sciences Division, Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy;
| | - Annalisa Chiappone
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy; (G.G.); (D.B.); (C.M.); (A.C.); (I.R); (C.F.P.)
- PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Ignazio Roppolo
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy; (G.G.); (D.B.); (C.M.); (A.C.); (I.R); (C.F.P.)
- PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Candido Fabrizio Pirri
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy; (G.G.); (D.B.); (C.M.); (A.C.); (I.R); (C.F.P.)
- Center for Sustainable Futures @Polito, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Francesca Frascella
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy; (G.G.); (D.B.); (C.M.); (A.C.); (I.R); (C.F.P.)
- PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
30
|
Sharafeldin M, Kadimisetty K, Bhalerao KS, Chen T, Rusling JF. 3D-Printed Immunosensor Arrays for Cancer Diagnostics. SENSORS 2020; 20:s20164514. [PMID: 32806676 PMCID: PMC7472114 DOI: 10.3390/s20164514] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
Abstract
Detecting cancer at an early stage of disease progression promises better treatment outcomes and longer lifespans for cancer survivors. Research has been directed towards the development of accessible and highly sensitive cancer diagnostic tools, many of which rely on protein biomarkers and biomarker panels which are overexpressed in body fluids and associated with different types of cancer. Protein biomarker detection for point-of-care (POC) use requires the development of sensitive, noninvasive liquid biopsy cancer diagnostics that overcome the limitations and low sensitivities associated with current dependence upon imaging and invasive biopsies. Among many endeavors to produce user-friendly, semi-automated, and sensitive protein biomarker sensors, 3D printing is rapidly becoming an important contemporary tool for achieving these goals. Supported by the widely available selection of affordable desktop 3D printers and diverse printing options, 3D printing is becoming a standard tool for developing low-cost immunosensors that can also be used to make final commercial products. In the last few years, 3D printing platforms have been used to produce complex sensor devices with high resolution, tailored towards researchers’ and clinicians’ needs and limited only by their imagination. Unlike traditional subtractive manufacturing, 3D printing, also known as additive manufacturing, has drastically reduced the time of sensor and sensor array development while offering excellent sensitivity at a fraction of the cost of conventional technologies such as photolithography. In this review, we offer a comprehensive description of 3D printing techniques commonly used to develop immunosensors, arrays, and microfluidic arrays. In addition, recent applications utilizing 3D printing in immunosensors integrated with different signal transduction strategies are described. These applications include electrochemical, chemiluminescent (CL), and electrochemiluminescent (ECL) 3D-printed immunosensors. Finally, we discuss current challenges and limitations associated with available 3D printing technology and future directions of this field.
Collapse
Affiliation(s)
- Mohamed Sharafeldin
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
| | - Karteek Kadimisetty
- LifeSensors Inc., 271 Great Valley Parkway, Suite 100, Malvern, PA 19355, USA;
| | - Ketki S. Bhalerao
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
| | - Tianqi Chen
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
- Department of Surgery and Neag Cancer Center, UConn Health, Farmington, CT 06032, USA
- School of Chemistry, National University of Ireland at Galway, Galway H91 TK33, Ireland
- Correspondence:
| |
Collapse
|