1
|
Grafov A, da Silva Chagas AF, de Freitas Gomes A, Ouedrhiri W, Cerruti P, Del Barone MC, de Souza Mota B, de Castro Alves CE, Brasil AMV, Pereira AMRF, Soares Pontes G. A Second Wind for Inorganic APIs: Leishmanicidal and Antileukemic Activity of Hydrated Bismuth Oxide Nanoparticles. Pharmaceutics 2024; 16:874. [PMID: 39065571 PMCID: PMC11279939 DOI: 10.3390/pharmaceutics16070874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
American cutaneous leishmaniasis is a disease caused by protozoa of the genus Leishmania. Currently, meglumine antimoniate is the first-choice treatment for the disease. The limited efficacy and high toxicity of the drug results in the necessity to search for new active principles. Nanotechnology is gaining importance in the field, since it can provide better efficacy and lower toxicity of the drugs. The present study aimed to synthesize, characterize, and evaluate the in vitro leishmanicidal and antileukemic activity of bismuth nanoparticles (BiNPs). Promastigotes and amastigotes of L. (V.) guyanensis and L. (L.) amazonensis were exposed to BiNPs. The efficacy of the nanoparticles was determined by measurement of the parasite viability and the percentage of infected cells, while the cytotoxicity was characterized by the colorimetry. BiNPs did not induce cytotoxicity in murine peritoneal macrophages and showed better efficacy in inhibiting promastigotes (IC50 < 0.46 nM) and amastigotes of L. (L.) amazonensis. This is the first report on the leishmanicidal activity of Bi-based materials against L. (V.) guayanensis. BiNPs demonstrated significant cytotoxic activity against K562 and HL60 cells at all evaluated concentrations. While the nanoparticles also showed some cytotoxicity towards non-cancerous Vero cells, the effect was much lower compared to that on cancer cells. Treatment with BiNPs also had a significant effect on inhibiting and reducing colony formation in HL60 cells. These results indicate that bismuth nanoparticles have the potential for an inhibitory effect on the clonal expansion of cancer cells.
Collapse
Affiliation(s)
- Andriy Grafov
- Department of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1 (PL 55), 00560 Helsinki, Finland
| | - Ana Flávia da Silva Chagas
- Multi-User Center for Analysis of Biomedical Phenomena, State University of Amazonas, Manaus 69065-001, AM, Brazil
| | - Alice de Freitas Gomes
- Post-Graduate Program in Hematology, The State University of Amazon, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil
- Laboratory of Virology and Immunology, INPA, Manaus 69067-375, AM, Brazil
| | - Wessal Ouedrhiri
- Department of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1 (PL 55), 00560 Helsinki, Finland
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites, and Biomaterials, National Research Council, 80078 Pozzuoli, NA, Italy
| | - Maria Cristina Del Barone
- Institute for Polymers, Composites, and Biomaterials, National Research Council, 80078 Pozzuoli, NA, Italy
| | | | | | | | | | - Gemilson Soares Pontes
- Post-Graduate Program in Hematology, The State University of Amazon, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil
- Laboratory of Virology and Immunology, INPA, Manaus 69067-375, AM, Brazil
| |
Collapse
|
2
|
Ye W, Wu J, Jiang Q, Su Z, Liao H, Liu Z, Tao R, Yong X. Antibacterial activity of corydalis saxicola bunting total alkaloids against Porphyromonas gingivalis in vitro. Future Microbiol 2024; 19:595-606. [PMID: 38629885 PMCID: PMC11229583 DOI: 10.2217/fmb-2023-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/16/2024] [Indexed: 07/04/2024] Open
Abstract
Aim: To investigate the antibacterial effects of Corydalis Saxicola bunting total alkaloid (CSBTA) on Porphyromonas gingivalis. Methods: SEM, chemical staining, RT-qPCR and ELISA were used to detect effects of CSBTA on P. gingivalis. Results: CSBTA treatment caused shrinkage and rupture of P. gingivalis morphology, decreased biofilm density and live bacteria in biofilm, as well as reduced mRNA expression of virulence genes hagA, hagB, kgp, rgpA and rgpB of P. gingivalis. Furthermore, NOK cells induced by CSBTA-treated P. gingivalis exhibited lower IL-6 and TNF-α expression levels. Conclusion: CSBTA is able to kill free P. gingivalis, disrupt the biofilm and weaken the pathogenicity of P. gingivalis. It has the potential to be developed as a drug against P. gingivalis infection.
Collapse
Affiliation(s)
- Wenli Ye
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
| | - Jiaxuan Wu
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
| | - Qiaozhi Jiang
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Haiqing Liao
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of Oral & Maxillofacial Rehabilitation & Reconstruction, Nanning, China
| | - Zhenmin Liu
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of Oral & Maxillofacial Rehabilitation & Reconstruction, Nanning, China
| | - Renchuan Tao
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of Oral & Maxillofacial Rehabilitation & Reconstruction, Nanning, China
| | - Xiangzhi Yong
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of Oral & Maxillofacial Rehabilitation & Reconstruction, Nanning, China
| |
Collapse
|
3
|
Huang R, Hu Q, Ko CN, Tang FK, Xuan S, Wong HM, Jin L, Li X, Leung KCF. Nano-based theranostic approaches for infection control: current status and perspectives. MATERIALS CHEMISTRY FRONTIERS 2024; 8:9-40. [DOI: 10.1039/d3qm01048a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Nano-based theranostic platforms constructed from various nanomaterials possess unique advantages in tackling bacterial and fungal infections while detecting pathogenic cells, making them a potential modality for addressing global healthcare burdens.
Collapse
Affiliation(s)
- Regina Huang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Qin Hu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Chung-Nga Ko
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| | - Fung Kit Tang
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Hai Ming Wong
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Xuan Li
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Ken Cham-Fai Leung
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| |
Collapse
|
4
|
Rosário JDS, Moreira FH, Rosa LHF, Guerra W, Silva-Caldeira PP. Biological Activities of Bismuth Compounds: An Overview of the New Findings and the Old Challenges Not Yet Overcome. Molecules 2023; 28:5921. [PMID: 37570891 PMCID: PMC10421188 DOI: 10.3390/molecules28155921] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Bismuth-based drugs have been used primarily to treat ulcers caused by Helicobacter pylori and other gastrointestinal ailments. Combined with antibiotics, these drugs also possess synergistic activity, making them ideal for multiple therapy regimens and overcoming bacterial resistance. Compounds based on bismuth have a low cost, are safe for human use, and some of them are also effective against tumoral cells, leishmaniasis, fungi, and viruses. However, these compounds have limited bioavailability in physiological environments. As a result, there is a growing interest in developing new bismuth compounds and approaches to overcome this challenge. Considering the beneficial properties of bismuth and the importance of discovering new drugs, this review focused on the last decade's updates involving bismuth compounds, especially those with potent activity and low toxicity, desirable characteristics for developing new drugs. In addition, bismuth-based compounds with dual activity were also highlighted, as well as their modes of action and structure-activity relationship, among other relevant discoveries. In this way, we hope this review provides a fertile ground for rationalizing new bismuth-based drugs.
Collapse
Affiliation(s)
- Jânia dos Santos Rosário
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte 30421-169, MG, Brazil
| | - Fábio Henrique Moreira
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte 30421-169, MG, Brazil
| | - Lara Hewilin Fernandes Rosa
- Institute of Chemistry, Universidade Federal de Uberlândia, Campus Santa Mônica, Uberlândia 38400-142, MG, Brazil
| | - Wendell Guerra
- Institute of Chemistry, Universidade Federal de Uberlândia, Campus Santa Mônica, Uberlândia 38400-142, MG, Brazil
| | | |
Collapse
|
5
|
Huang R, Zhou Z, Lan X, Tang FK, Cheng T, Sun H, Cham-Fai Leung K, Li X, Jin L. Rapid synthesis of bismuth-organic frameworks as selective antimicrobial materials against microbial biofilms. Mater Today Bio 2023; 18:100507. [PMID: 36504541 PMCID: PMC9730226 DOI: 10.1016/j.mtbio.2022.100507] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Antibiotic resistance is a global public health threat, and urgent actions should be undertaken for developing alternative antimicrobial strategies and approaches. Notably, bismuth drugs exhibit potent antimicrobial effects on various pathogens and promising efficacy in tackling SARS-CoV-2 and related infections. As such, bismuth-based materials could precisely combat pathogenic bacteria and effectively treat the resultant infections and inflammatory diseases through a controlled release of Bi ions for targeted drug delivery. Currently, it is a great challenge to rapidly and massively manufacture bismuth-based particles, and yet there are no reports on effectively constructing such porous antimicrobial-loaded particles. Herein, we have developed two rapid approaches (i.e., ultrasound-assisted and agitation-free methods) to synthesizing bismuth-based materials with ellipsoid- (Ellipsoids) and rod-like (Rods) morphologies respectively, and fully characterized physicochemical properties. Rods with a porous structure were confirmed as bismuth metal-organic frameworks (Bi-MOF) and aligned with the crystalline structure of CAU-17. Importantly, the formation of Rods was a 'two-step' crystallization process of growing almond-flake-like units followed by stacking into the rod-like structure. The size of Bi-MOF was precisely controlled from micro-to nano-scales by varying concentrations of metal ions and their ratio to the ligand. Moreover, both Ellipsoids and Rods showed excellent biocompatibility with human gingival fibroblasts and potent antimicrobial effects on the Gram-negative oral pathogens including Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum. Both Ellipsoids and Rods at 50 μg/mL could disrupt the bacterial membranes, and particularly eliminate P. gingivalis biofilms. This study demonstrates highly efficient and facile approaches to synthesizing bismuth-based particles. Our work could enrich the administration modalities of metallic drugs for promising antibiotic-free healthcare.
Collapse
Affiliation(s)
- Regina Huang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Zhiwen Zhou
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Xinmiao Lan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Fung Kit Tang
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Hong Kong SAR, China
| | - Tianfan Cheng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong SAR, China
| | - Ken Cham-Fai Leung
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Hong Kong SAR, China
| | - Xuan Li
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Haque MM, Yerex K, Kelekis-Cholakis A, Duan K. Advances in novel therapeutic approaches for periodontal diseases. BMC Oral Health 2022; 22:492. [PMID: 36380339 PMCID: PMC9664646 DOI: 10.1186/s12903-022-02530-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractPeriodontal diseases are pathological processes resulting from infections and inflammation affecting the periodontium or the tissue surrounding and supporting the teeth. Pathogenic bacteria living in complex biofilms initiate and perpetuate this disease in susceptible hosts. In some cases, broad-spectrum antibiotic therapy has been a treatment of choice to control bacterial infection. However, increasing antibiotic resistance among periodontal pathogens has become a significant challenge when treating periodontal diseases. Thanks to the improved understanding of the pathogenesis of periodontal disease, which involves the host immune response, and the importance of the human microbiome, the primary goal of periodontal therapy has shifted, in recent years, to the restoration of homeostasis in oral microbiota and its harmonious balance with the host periodontal tissues. This shift in therapeutic goals and the drug resistance challenge call for alternative approaches to antibiotic therapy that indiscriminately eliminate harmful or beneficial bacteria. In this review, we summarize the recent advancement of alternative methods and new compounds that offer promising potential for the treatment and prevention of periodontal disease. Agents that target biofilm formation, bacterial quorum-sensing systems and other virulence factors have been reviewed. New and exciting microbiome approaches, such as oral microbiota replacement therapy and probiotic therapy for periodontal disease, are also discussed.
Collapse
|
7
|
RNA Sequencing Reveals the Upregulation of FOXO Signaling Pathway in Porphyromonas gingivalis Persister-Treated Human Gingival Epithelial Cells. Int J Mol Sci 2022; 23:ijms23105728. [PMID: 35628542 PMCID: PMC9146424 DOI: 10.3390/ijms23105728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Porphyromonas gingivalis as the keystone periodontopathogen plays a critical role in the pathogenesis of periodontitis, and crucially accounts for inflammatory comorbidities such as cardiovascular disease and Alzheimer's disease. We recently identified the existence of P. gingivalis persisters and revealed the unforeseen perturbation of innate response in human gingival epithelial cells (HGECs) due to these noxious persisters. Herein, RNA sequencing revealed how P. gingivalis persisters affected the expression profile of cytokine genes and related signaling pathways in HGECs. Results showed that metronidazole-treated P. gingivalis persisters (M-PgPs) impaired the innate host defense of HGECs, in a similar fashion to P. gingivalis. Notably, over one thousand differentially expressed genes were identified in HGECs treated with M-PgPs or P. gingivalis with reference to the controls. Gene Ontology and KEGG pathway analysis demonstrated significantly enriched signaling pathways, such as FOXO. Importantly, the FOXO1 inhibitor rescued the M-PgP-induced disruption of cytokine expression. This study suggests that P. gingivalis persisters may perturb innate host defense, through the upregulation of the FOXO signaling pathway. Thus, the current findings could contribute to developing new approaches to tackling P. gingivalis persisters for the effective control of periodontitis and P. gingivalis-related inflammatory comorbidities.
Collapse
|
8
|
Human Oral Keratinocytes Challenged by Streptococcus sanguinis and Porphyromonas gingivalis Differentially Affect the Chemotactic Activity of THP-1 Monocytes. Int J Microbiol 2022; 2022:9112039. [PMID: 35519507 PMCID: PMC9064506 DOI: 10.1155/2022/9112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
Periodontal diseases are initiated by the shift from microbe-host symbiosis to dysbiosis, and the disrupted host response predominantly contributes to tissue destruction. This study investigated whether and to what extent human oral keratinocytes (HOKs) challenged by a periodontal commensal or pathogen could differentially affect the chemotactic activity of THP-1 monocytes. A selected periodontal commensal (Streptococcus sanguinis ATCC 10556) and a pathogen (Porphyromonas gingivalis ATCC 33277) were cultured and inoculated, respectively, into the lower chamber of Transwell® Permeable Supports with HOKs and incubated for 2 h or 18 h at 37°C under appropriate cell growth conditions. HOKs alone served as the control for the transwell migration assay. Well-stained THP-1 monocytes were seeded in the top chamber of the device, incubated for 2 h and then collected from the lower well for quantitation of the migrated fluorescence-labeled cells by the FACSCalibur™ flow cytometer. The statistical significance was determined using one-way ANOVA. The HOKs challenged by S. sanguinis attracted a significantly higher number of THP-1 cell migration as compared with the control after 2 h or 18 h interaction (
). By contrast, P. gingivalis-treated HOKs exhibited a markedly reduced chemotactic effect on THP-1 cells (
, 2 h;
, 18 h). There was no significant difference in THP-1 cell migration among the groups with either S. sanguinis or P. gingivalis alone. The current findings on P. gingivalis-HOKs interactions with resultant paralysis of THP-1 cell chemotaxis provide further evidence that the keystone periodontopathogen P. gingivalis can evade innate defense and contribute to periodontal pathogenesis.
Collapse
|
9
|
A quantitative framework reveals traditional laboratory growth is a highly accurate model of human oral infection. Proc Natl Acad Sci U S A 2022; 119:2116637119. [PMID: 34992142 PMCID: PMC8764681 DOI: 10.1073/pnas.2116637119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/08/2023] Open
Abstract
Bacterial behavior and virulence during human infection is difficult to study and largely unknown, as our vast knowledge of infection microbiology is primarily derived from studies using in vitro and animal models. Here, we characterize the physiology of Porphyromonas gingivalis, a periodontal pathogen, in its native environment using 93 published metatranscriptomic datasets from periodontally healthy and diseased individuals. P. gingivalis transcripts were more abundant in samples from periodontally diseased patients but only above 0.1% relative abundance in one-third of diseased samples. During human infection, P. gingivalis highly expressed genes encoding virulence factors such as fimbriae and gingipains (proteases) and genes involved in growth and metabolism, indicating that P. gingivalis is actively growing during disease. A quantitative framework for assessing the accuracy of model systems showed that 96% of P. gingivalis genes were expressed similarly in periodontitis and in vitro midlogarithmic growth, while significantly fewer genes were expressed similarly in periodontitis and in vitro stationary phase cultures (72%) or in a murine abscess infection model (85%). This high conservation in gene expression between periodontitis and logarithmic laboratory growth is driven by overall low variance in P. gingivalis gene expression, relative to other pathogens including Pseudomonas aeruginosa and Staphylococcus aureus Together, this study presents strong evidence for the use of simple test tube growth as the gold standard model for studying P. gingivalis biology, providing biological relevance for the thousands of laboratory experiments performed with logarithmic phase P. gingivalis Furthermore, this work highlights the need to quantitatively assess the accuracy of model systems.
Collapse
|
10
|
Yang B, Pang X, Li Z, Chen Z, Wang Y. Immunomodulation in the Treatment of Periodontitis: Progress and Perspectives. Front Immunol 2021; 12:781378. [PMID: 34868054 PMCID: PMC8640126 DOI: 10.3389/fimmu.2021.781378] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is one of the most common dental diseases. Compared with healthy periodontal tissues, the immune microenvironment plays the key role in periodontitis by allowing the invasion of pathogens. It is possible that modulating the immune microenvironment can supplement traditional treatments and may even promote periodontal regeneration by using stem cells, bacteria, etc. New anti-inflammatory therapies can enhance the generation of a viable local immune microenvironment and promote cell homing and tissue formation, thereby achieving higher levels of immune regulation and tissue repair. We screened recent studies to summarize the advances of the immunomodulatory treatments for periodontitis in the aspects of drug therapy, microbial therapy, stem cell therapy, gene therapy and other therapies. In addition, we included the changes of immune cells and cytokines in the immune microenvironment of periodontitis in the section of drug therapy so as to make it clearer how the treatments took effects accordingly. In the future, more research needs to be done to improve immunotherapy methods and understand the risks and long-term efficacy of these methods in periodontitis.
Collapse
Affiliation(s)
- Bo Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xuefei Pang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhipeng Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Griffith DM, Li H, Werrett MV, Andrews PC, Sun H. Medicinal chemistry and biomedical applications of bismuth-based compounds and nanoparticles. Chem Soc Rev 2021; 50:12037-12069. [PMID: 34533144 DOI: 10.1039/d0cs00031k] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bismuth as a relatively non-toxic and inexpensive metal with exceptional properties has numerous biomedical applications. Bismuth-based compounds are used extensively as medicines for the treatment of gastrointestinal disorders including dyspepsia, gastric ulcers and H. pylori infections. Recently, its medicinal application was further extended to potential treatments of viral infection, multidrug resistant microbial infections, cancer and also imaging, drug delivery and biosensing. In this review we have highlighted the unique chemistry and biological chemistry of bismuth-209 as a prelude to sections covering the unique antibacterial activity of bismuth including a description of research undertaken to date to elucidate key molecular mechanisms of action against H. pylori, the development of novel compounds to treat infection from microbes beyond H. pylori and the significant role bismuth compounds can play as resistance breakers. Furthermore we have provided an account of the potential therapeutic application of bismuth-213 in targeted alpha therapy as well as a summary of the biomedical applications of bismuth-based nanoparticles and composites. Ultimately this review aims to provide the state of the art, highlight the untapped biomedical potential of bismuth and encourage original contributions to this exciting and important field.
Collapse
Affiliation(s)
- Darren M Griffith
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.,SSPC, Synthesis and Solid State Pharmaceutical Centre, Ireland
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | | | - Philip C Andrews
- School of Chemistry, Monash University, Melbourne, VIC, Australia
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
12
|
Gong M, Zhang R, Qi J, Wang J, Liu Q, Zhou H, Song Y, Song X, Mei Y. In vitro evaluation of the antibacterial effect of colloidal bismuth subcitrate on Porphyromonas gingivalis and its biofilm. Arch Oral Biol 2021; 133:105300. [PMID: 34742000 DOI: 10.1016/j.archoralbio.2021.105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the antibacterial and anti-biofilm effects of colloidal bismuth subcitrate (CBS) on Porphyromonas gingivalis (P. gingivalis) in its planktonic and biofilm forms and also compare it with that of 0.2% chlorhexidine (CHX). DESIGN The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CBS were determined by the microdilution method; the bacteriostatic rate of CBS was determined by the MTT assay; the effect of CBS on the membrane integrity of P. gingivalis was investigated by the flow cytometric methods. The effects of CBS on the biomass and bacterial activity of biofilm were investigated. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were used to investigate the activity and structure of biofilms. RESULTS The MIC and MBC values were 18.75 µg/mL and 37.5 µg/mL. CBS could damage the cell membrane of P. gingivalis. CBS effectively inhibited biofilm formation and promoted dissociation at higher concentrations of 37.5 µg/mL and 75 µg/mL, respectively. The results also indicated an altered biofilm structure and reduced biofilm thickness and bacterial aggregation. CONCLUSIONS CBS affected the metabolic and physiological processes of P. gingivalis, inhibited the formation of biofilm, and disrupted the mature biofilm.
Collapse
Affiliation(s)
- Min Gong
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Pediatric Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Rui Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Pediatric Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jianyan Qi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Pediatric Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jue Wang
- Department of Pediatric Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Qian Liu
- Department of Pediatric Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hongyan Zhou
- Department of Pediatric Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yumeng Song
- Nanjing Stomatological Hospital Medical School of Nanjing University, Nanjing, China
| | - Xiaomeng Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yufeng Mei
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Pediatric Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Wang C, Li X, Cheng T, Sun H, Jin L. Eradication of Porphyromonas gingivalis Persisters Through Colloidal Bismuth Subcitrate Synergistically Combined With Metronidazole. Front Microbiol 2021; 12:748121. [PMID: 34745052 PMCID: PMC8565575 DOI: 10.3389/fmicb.2021.748121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Microbial persisters enable the development of certain intrinsic strategies for survival with extreme tolerance to multiple antimicrobials. Porphyromonas gingivalis is considered to be the "keystone" periodontopathogen. Indeed, periodontitis, as a highly common inflammatory disease, is the major cause of severe tooth loss and edentulism in adults globally, and yet it is crucially involved in various systemic comorbidities like diabetes. We have recently revealed P. gingivalis persisters-induced perturbation of immuno-inflammatory responses and effective suppression of this key pathogen by bismuth drugs. This study further explored novel approaches to eradicating P. gingivalis persisters through synergistic combination of colloidal bismuth subcitrate (CBS) with traditional antibiotics. P. gingivalis (ATCC 33277) cells in planktonic and biofilm states were cultured to stationary phase, and then treated with metronidazole (100 mg/L), amoxicillin (100 mg/L), CBS, (100 μM) and combinations of these medications, respectively. Persister survival rate was calculated by colony-forming unit. Cell viability and cytotoxicity of CBS were assessed in human gingival epithelial cells (HGECs). Notably, CBS combined with metronidazole enabled the effective eradication of P. gingivalis persisters in planktonic mode, and nearly eliminated their existence in biofilm mode. Importantly, CBS exhibited no effects on the viability of HGECs, along with minimal cytotoxicity (<5%) even at a high concentration (400 μM). This pioneering study shows that P. gingivalis persisters could be well eliminated via the synergistic combination of CBS with metronidazole. Our findings may contribute to developing novel approaches to tackling periodontitis and inflammatory systemic comorbidities.
Collapse
Affiliation(s)
- Chuan Wang
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xuan Li
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Tianfan Cheng
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Lijian Jin
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
Should We Be Concerned about the Association of Diabetes Mellitus and Periodontal Disease in the Risk of Infection by SARS-CoV-2? A Systematic Review and Hypothesis. ACTA ACUST UNITED AC 2021; 57:medicina57050493. [PMID: 34068221 PMCID: PMC8153122 DOI: 10.3390/medicina57050493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022]
Abstract
The objective of this article was to conduct a systematic review of the literature to contrast the existing evidence regarding the relationship between periodontal disease (PD) and diabetes mellitus (DM) with the possibly increased risk of SARS-CoV-2 infection, as well as to establish a hypothesis that explains the ways in which this interaction could take place. A literature search up from 1 January 2020 to 21 March 2021 was conducted in three electronic databases, namely, PubMed, Web of Science, and Scopus, in order to identify studies on periodontal disease alone or in conjunction with diabetes mellitus, reporting any relation with SARS-CoV-2 infection as a primary outcome. Only articles published in the English language were included. Due to the lack of studies, we decided to collect all the theoretical and clinical evidence suggesting a possible biological pathway evidencing the relationship among PD, DM, and SARS-CoV-2 infection. From a total of 29 articles, 12 were included for final review studies (five reviews, two hypotheses, one Special Issue, one perspective, one commentary, one case–control study, and one case report). In addition, this systematic review article hypothesizes the correlation between PD and type 2 diabetes mellitus (T2DM) by expression of angiotensin-converting enzyme 2 (ACE2) in periodontal tissue and the risk of SARS-CoV-2 infection. T2DM is a metabolic disorder characterized by high blood glucose levels resulting from altered insulin secretion or action. Likewise, periodontitis and T2DM are inflammatory disorders with a bidirectional association, and both diseases have a similar immunomodulatory cascade and cytokine profile. ACE2 is a crucial component of the renin–angiotensin system (RAS) and the key factor of entry in the cells by the new SARS-CoV-2. ACE2 is widely distributed in the lung and kidneys, and interestingly has a great distribution in the oral cavity, principally in the tongue and periodontal tissue. ACE2 in periodontal tissue plays a crucial role between health and disease. Moreover, the ACE2/Ang-(1-7)/MasR axis is downregulated in the dysbiotic and inflammatory periodontal environment. Nevertheless, the balance of ACE2 activity is modified in the context of concurrent diabetes, increasing the expression of ACE2 by the uncontrolled glycemia chronic in T2DM. Therefore, the uncontrolled hyperglycemia possibly increases the risk of developing periodontitis and triggering overexpression of ACE2 in periodontal tissue of T2DM patients, with these events potentially being essential to SARS-CoV-2 infection and the development of mild-to-severe form of COVID-19. In this sense, we would like to point out that the need for randomized controlled trials is imperative to support this association.
Collapse
|
15
|
Metallodrug ranitidine bismuth citrate suppresses SARS-CoV-2 replication and relieves virus-associated pneumonia in Syrian hamsters. Nat Microbiol 2020; 5:1439-1448. [PMID: 33028965 DOI: 10.1038/s41564-020-00802-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is causing a pandemic of COVID-19, with high infectivity and significant mortality1. Currently, therapeutic options for COVID-19 are limited. Historically, metal compounds have found use as antimicrobial agents, but their antiviral activities have rarely been explored. Here, we test a set of metallodrugs and related compounds, and identify ranitidine bismuth citrate, a commonly used drug for the treatment of Helicobacter pylori infection, as a potent anti-SARS-CoV-2 agent, both in vitro and in vivo. Ranitidine bismuth citrate exhibited low cytotoxicity and protected SARS-CoV-2-infected cells with a high selectivity index of 975. Importantly, ranitidine bismuth citrate suppressed SARS-CoV-2 replication, leading to decreased viral loads in both upper and lower respiratory tracts, and relieved virus-associated pneumonia in a golden Syrian hamster model. In vitro studies showed that ranitidine bismuth citrate and its related compounds exhibited inhibition towards both the ATPase (IC50 = 0.69 µM) and DNA-unwinding (IC50 = 0.70 µM) activities of the SARS-CoV-2 helicase via an irreversible displacement of zinc(II) ions from the enzyme by bismuth(III) ions. Our findings highlight viral helicase as a druggable target and the clinical potential of bismuth(III) drugs or other metallodrugs for the treatment of SARS-CoV-2 infection.
Collapse
|
16
|
Kalimuthu S, Cheung BP, Yau JY, Shanmugam K, Solomon AP, Neelakantan P. A Novel Small Molecule, 1,3-di-m-tolyl-urea, Inhibits and Disrupts Multispecies Oral Biofilms. Microorganisms 2020; 8:E1261. [PMID: 32825310 PMCID: PMC7570320 DOI: 10.3390/microorganisms8091261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
An imbalance of homeostasis between the microbial communities and the host system leads to dysbiosis in oral micro flora. DMTU (1,3-di-m-tolyl-urea) is a biocompatible compound that was shown to inhibit Streptococcus mutans biofilm by inhibiting its communication system (quorum sensing). Here, we hypothesized that DMTU is able to inhibit multispecies biofilms. We developed a multispecies oral biofilm model, comprising an early colonizer Streptococcus gordonii, a bridge colonizer Fusobacterium nucleatum, and late colonizers Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. We performed comprehensive investigations to demonstrate the effect of DMTU on planktonic cells and biofilms. Our findings showed that DMTU inhibits and disrupts multispecies biofilms without bactericidal effects. Mechanistic studies revealed a significant down regulation of biofilm and virulence-related genes in P. gingivalis. Taken together, our study highlights the potential of DMTU to inhibit polymicrobial biofilm communities and their virulence.
Collapse
Affiliation(s)
- Shanthini Kalimuthu
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong; (S.K.); (B.P.K.C.); (J.Y.Y.Y.)
- Quorum Sensing Laboratory, Center of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India;
| | - Becky P.K. Cheung
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong; (S.K.); (B.P.K.C.); (J.Y.Y.Y.)
| | - Joyce Y.Y. Yau
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong; (S.K.); (B.P.K.C.); (J.Y.Y.Y.)
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Center of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India;
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Center of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India;
| | - Prasanna Neelakantan
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong; (S.K.); (B.P.K.C.); (J.Y.Y.Y.)
| |
Collapse
|
17
|
Xu X, Wang H, Li H, Sun H. Metalloproteomic Approaches for Matching Metals to Proteins: The Power of Inductively Coupled Plasma Mass Spectrometry (ICP-MS). CHEM LETT 2020; 49:697-704. [DOI: 10.1246/cl.200155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Xiaohan Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Haibo Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
18
|
Metronidazole-Treated Porphyromonas gingivalis Persisters Invade Human Gingival Epithelial Cells and Perturb Innate Responses. Antimicrob Agents Chemother 2020; 64:AAC.02529-19. [PMID: 32205352 DOI: 10.1128/aac.02529-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/01/2020] [Indexed: 11/20/2022] Open
Abstract
Periodontitis as a biofilm-associated inflammatory disease is highly prevalent worldwide. It severely affects oral health and yet closely links to systemic diseases like diabetes and cardiovascular disease. Porphyromonas gingivalis as a "keystone" periodontopathogen drives the shift of microbe-host symbiosis to dysbiosis and critically contributes to the pathogenesis of periodontitis. Persisters represent a tiny subset of biofilm-associated microbes highly tolerant to lethal treatment of antimicrobials, and, notably, metronidazole-tolerant P. gingivalis persisters have recently been identified by our group. This study further explored the interactive profiles of metronidazole-treated P. gingivalis persisters (M-PgPs) with human gingival epithelial cells (HGECs). P. gingivalis cells (ATCC 33277) at stationary phase were treated with a lethal dosage of metronidazole (100 μg/ml, 6 h) for generating M-PgPs. The interaction of M-PgPs with HGECs was assessed by microscopy, flow cytometry, cytokine profiling, and quantitative PCR (qPCR). We demonstrated that the overall morphology and ultracellular structure of M-PgPs remained unchanged. Importantly, M-PgPs maintained the capabilities to adhere to and invade HGECs. Moreover, M-PgPs significantly suppressed proinflammatory cytokine expression in HGECs at a level comparable to that seen with the untreated P. gingivalis cells, through the thermosensitive components. The present report reveals that P. gingivalis persisters induced by lethal treatment of antibiotics were able to maintain their capabilities to adhere to and invade human gingival epithelial cells and to perturb the innate host responses. Novel strategies and approaches need to be developed for tackling P. gingivalis and favorably modulating the dysregulated immunoinflammatory responses for oral/periodontal health and general well-being.
Collapse
|
19
|
Wang H, Zhou Y, Xu X, Li H, Sun H. Metalloproteomics in conjunction with other omics for uncovering the mechanism of action of metallodrugs: Mechanism-driven new therapy development. Curr Opin Chem Biol 2020; 55:171-179. [PMID: 32200302 DOI: 10.1016/j.cbpa.2020.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Abstract
Medicinal inorganic chemistry has been largely stimulated by the clinic success of platinum anticancer drugs. An array of metal-based drugs (e.g. platinum, gold, bismuth, and silver) are currently used clinically for the treatment of various diseases. Integrating multiomics approaches, particularly metalloproteomics, with other biochemical characterizations enables comprehensive understanding of cellular responses of metallodrugs, which in turn will guide the rational design of a new drug and modification of the presently used drugs. This review aims to summarize the recent progress in this area. We will describe the technology platforms and their applications for uncovering the mechanisms of action of metallodrugs, for which remarkable advances have been achieved recently. Moreover, we will also highlight the application of newly generated knowledge for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China
| | - Ying Zhou
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China
| | - Xiaohan Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China.
| |
Collapse
|
20
|
Wang R, Li H, Ip TKY, Sun H. Bismuth drugs as antimicrobial agents. Med Chem 2020. [DOI: 10.1016/bs.adioch.2019.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|