1
|
Lv C, Cheng H, Fan R, Sun J, Liu X, Ji Y. Fabrication of rGO/BiOI photocathode and its catalytic performance in the degradation of 4-Fluoroaniline. Heliyon 2024; 10:e37024. [PMID: 39286232 PMCID: PMC11402956 DOI: 10.1016/j.heliyon.2024.e37024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Organic fluorine compounds are acute carcinogenic and mutagenic to humans. Photoelectrocatalysis (PEC) treatment is an innovative technology in the field of the removal of fluorine compounds, and thus current research focused on improving stability and catalytic ability of photoanode. In this study, it has been synthesized a rGO/BiOI photocathode for the efficient degradation of 4-Fluoroaniline (4-FA). The physical characterization and photoelectrochemical properties of the photocathode was determined. The results indicate that the PEC treatment with the rGO/BiOI photocathode was more efficient compared with individual processes. During the optimization experiments, the PEC treatment achieved 99.58 % and 72.12 % of 4-FA degradation and defluorination within 1 h. Cyclic stability experiments show that rGO/BiOI photocathode was efficient and stable, which reached 96.91 % and 67.64 % of 4-FA degradation and defluorination after five cycles. Mechanism analysis indicates that the PEC process was based on an electrochemical reaction and photo-induced processes. The degradation product of 4-FA was mainly 2,4-di-t-butylphenol, and trapping experiments indicates that h+ is the primary oxidizing species. Therefore, PEC treatment with rGO/BiOI photocathode is a competitive green approach to remove fluorine compounds pollutants and brings new insights into development of PEC treatment.
Collapse
Affiliation(s)
- Chenhan Lv
- College of Chemical and Materials Engineering, Quzhou University, Quzhou, 324000, PR China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Haixiang Cheng
- College of Chemical and Materials Engineering, Quzhou University, Quzhou, 324000, PR China
| | - Rui Fan
- College of Chemical and Materials Engineering, Quzhou University, Quzhou, 324000, PR China
| | - Jingyu Sun
- College of Chemical and Materials Engineering, Quzhou University, Quzhou, 324000, PR China
| | - Xinghai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yinghui Ji
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| |
Collapse
|
2
|
Paengjun NK, Polshettiwar V, Ogawa M. Designed Nanoarchitectures of a BiOBr/BiOI Nanosheet Heterojunction Anchored on Dendritic Fibrous Nanosilica as Visible-Light Responsive Photocatalysts. Inorg Chem 2024; 63:11870-11883. [PMID: 38865140 DOI: 10.1021/acs.inorgchem.4c01756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Heterojunctions, particularly those involving BiOBr/BiOI, have attracted significant attention in the field of photocatalysis due to their remarkable properties. In this study, a unique architecture of BiOBr/BiOI was designed to facilitate the rapid transfer of electrons and holes, effectively mitigating the recombination of electron-hole pairs. Accordingly, the BiOBr/BiOI nanosheet heterojunction was anchored on dendritic fibrous nanosilica (DFNS) by the immobilization of Bi2O3 nanodots in DFNS and the subsequent reaction with HBr and then HI vapors at room temperature. The 4 nm-Bi2O3 nanodots acted as a sacrificial template to form BiOX nanosheets by reaction with HX vapors (X = Br, I). The BiOBr/BiOI nanosheet heterojunction with the lateral size remained in the range of 90 to 110 nm and a thickness of 15 nm formed on DFNS, where the BiOBr:BiOI ratio in the product was controlled by the exposure time to HX vapors. The reaction sequence (HBr → HI vapors) was a key for the formation of BiOBr/BiOI nanosheet heterojunction with controlled composition. When the reaction of Bi2O3 nanodots with HI vapor was performed in the reverse sequence (HI→ HBr), the substitution of I- with Br- occurred to form BiOBr sheets on DFNS. The BiOBr/BiOI nanosheet heterojunction anchored on DFNS was used as a visible-light-driven photocatalyst for the decomposition of benzene in water under solar light, and its activity was superior to that of single BiOX nanosheets on DFNS.
Collapse
Affiliation(s)
- Navarut Kan Paengjun
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Pa Yup Nai, Wang Chan, Rayong 21210, Thailand
| | - Vivek Polshettiwar
- Division of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400005, India
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Pa Yup Nai, Wang Chan, Rayong 21210, Thailand
| |
Collapse
|
3
|
Gao D, Dong Z, Feng W, Li Z, Wu H, Wu Y, Wei Q, Meng C, Wu Y, Wang Y, Xu L, Cao X, Zhang Z, Liu Y. Dipole Moment and Built-In Polarization Electric Field Induced by Oxygen Vacancies in BiOX for Boosting Piezoelectric-Photocatalytic Removal of Uranium(VI). Inorg Chem 2024; 63:5931-5944. [PMID: 38490189 DOI: 10.1021/acs.inorgchem.3c04487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Piezoelectric-photocatalysis is distinguished by its piezoelectricity as an external force that induces deformation within the catalyst to engender a polarized electric field compared to conventional photocatalysis. Herein, the piezoelectric photocatalyst BiOBr has been expertly synthesized via a plasma process and applied for piezoelectric-photocatalysis removal of uranium(VI) for the first time. The abundant surface oxygen vacancies (OVs) could induce a dipole moment and built-in electric field, which endows BiOBr with excellent separation and transport efficiency of photogenerated charges to actuate more charges to participate in the piezoelectric-photocatalytic reduction process. Consequently, under visible light and ultrasound (150 W and 40 kHz), the removal rate constant of OVs-BiOBr-30 (0.0306 min-1) was 2.4, 30.6, and 6 times higher than those of BiOBr (0.01273 min-1), ultrasound, or photocatalysis, respectively. The piezoelectric-photocatalytic synergy is also universal for BiOX (X = Cl, Br, or I) to accelerate the reduction rate of uranium(VI). This work highlights the role of piezoelectric-photocatalysis in the treatment of uranium-containing wastewater, which is of great significance for resource conservation and environmental remediation.
Collapse
Affiliation(s)
- Donglin Gao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Zhimin Dong
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Weilong Feng
- Jiangxi Nuclear Industry Environmental Protection Center, Nanchang, Jiangxi 330013, P. R. China
| | - Zifan Li
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Hanting Wu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Yunxuan Wu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Qianglin Wei
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Cheng Meng
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Yongchuan Wu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Youqun Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Lin Xu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Xiaohong Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| |
Collapse
|
4
|
Wang M, Quesada-Cabrera R, Sathasivam S, Blunt MO, Borowiec J, Carmalt CJ. Visible-Light-Active Iodide-Doped BiOBr Coatings for Sustainable Infrastructure. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49270-49280. [PMID: 37824823 PMCID: PMC10614188 DOI: 10.1021/acsami.3c11525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
The search for efficient materials for sustainable infrastructure is an urgent challenge toward potential negative emission technologies and the global environmental crisis. Pleasant, efficient sunlight-activated coatings for applications in self-cleaning windows are sought in the glass industry, particularly those produced from scalable technologies. The current work presents visible-light-active iodide-doped BiOBr thin films fabricated using aerosol-assisted chemical vapor deposition. The impact of dopant concentration on the structural, morphological, and optical properties was studied systematically. The photocatalytic properties of the parent materials and as-deposited doped films were evaluated using the smart ink test. An optimized material was identified as containing 2.7 atom % iodide dopant. Insight into the photocatalytic behavior of these coatings was gathered from photoluminescence and photoelectrochemical studies. The optimum photocatalytic performance could be explained from a balance between photon absorption, charge generation, carrier separation, and charge transport properties under 450 nm irradiation. This optimized iodide-doped BiOBr coating is an excellent candidate for the photodegradation of volatile organic pollutants, with potential applications in self-cleaning windows and other surfaces.
Collapse
Affiliation(s)
- Mingyue Wang
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Raul Quesada-Cabrera
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Department
of Chemistry, Institute of Environmental
Studies and Natural Resources (i-UNAT, FEAM), Universidad de Las Palmas
de Gran Canaria, Campus
de Tafira, Las Palmas 35017, Spain
| | - Sanjayan Sathasivam
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- School
of Engineering, London South Bank University, London SE1 0AA, U.K.
| | - Matthew O. Blunt
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Joanna Borowiec
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Claire J. Carmalt
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| |
Collapse
|
5
|
Reddy NR, Kumar AS, Reddy PM, Merum D, Kakarla RR, Jung JH, Joo SW, Aminabhavi TM. Sharp-edged pencil type ZnO flowers and BiOI flakes combined with carbon nanofibers as heterostructured hybrid photocatalysts for the removal of hazardous pollutants from contaminated water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117397. [PMID: 36731414 DOI: 10.1016/j.jenvman.2023.117397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The growth of advanced micro-and nanostructures with metal oxides has consistently generated extraordinary interest in energy and environmental applications. Cutting-edge nanostructures exhibit superior reactive sites and surface areas, thus improving the performance in crucial domains. In this study, sharp-edged pencil-type ZnO flowers and BiOI flakes as pristine materials, and their composition with carbon nanofibers (CNFs) (ZnO-BiOI@CNFs) as a hetero hybrid catalyst as well as binary compositions such as ZnO-BiOI, ZnO@CNFs, and BiOI@CNFs catalysts were fabricated using a simple and convenient hydrothermal synthesis process. The composition of newly produced innovative nanostructures was examined for azo dye degradation under solar simulator exposure. Dye degradation of ∼95% was achieved by the hybrid catalyst (ZnO-BiOI@CNFs) during 120 min of irradiation, which was ∼1.8 and 2.1-times higher than pristine ZnO and BiOI nanostructures, respectively. The improved hybrid catalysts were able to degrade methyl orange (MO) and rhodamine B (RhB) dyes. Importantly, mixed dyes RhB, MO, and azo dye demonstrated 47% dye degradation using a hybrid catalyst. These mixed dye-scalable hybrid catalyst performances offer additional insights into commercialization/industrialization. The outstanding performance of the hybrid catalyst is attributed to the unidirectional electron flow with pencil-like ZnO, a catalyst with a larger absorption zone, high surface area, and reactive sites, particularly ZnO and BiOI nanostructures, and decreased recombination rate with a heterojunction interface. In addition, CNFs can operate as electron traps and sinks, providing very quick redox reactions. To produce the sophisticated nanostructures with homogeneous morphologies, this work presents new insights into energy and environmental applications.
Collapse
Affiliation(s)
- N Ramesh Reddy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - A Sai Kumar
- Department of Physics, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - P Mohan Reddy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Dhananjaya Merum
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Raghava Reddy Kakarla
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Jae Hak Jung
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, Karnataka, India; University Center for Research & Development (UCRO), Chandigarh University, Gharuan, Mohali, 140413, Punjab, 140 413, India.
| |
Collapse
|
6
|
Bavani T, Sasikala P, Arumugam S, Malathi A, Praserthdam P, Madhavan J. A novel S-scheme Ws 2/BiYWO 6 electrostatic heterostructure for enhanced photocatalytic degradation performance towards the degradation of Rhodamine B. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34468-34480. [PMID: 36512282 DOI: 10.1007/s11356-022-24614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Constructing S-scheme heterojunction between two semiconductor materials is an effective route to increase the photocatalytic degradation efficiency. Here, a novel S-scheme WS2/BiYWO6 heterojunction photocatalyst was prepared by wet chemical route. At the same time, the photocatalytic degradation performance of the fabricated materials was analyzed by the degradation of Rhodamine B under visible light. Of all prepared WS2/BiYWO6 composites, the 20 wt.% WS2 loaded WS2/BiYWO6 composite exhibited an enhanced photocatalytic degradation ability than other prepared photocatalysts. Here, O2·- and ·OH radicals are performing a pivotal role in the Rhodamine B degradation and the optimized composite shows greater photocurrent intensity than pure BiYWO6 and WS2, respectively. Also, the synthesized photocatalyst maintains its stability with negligible changes even after three cycles. Thereby, the constructed S-scheme WS2/BiYWO6 heterojunction is a potential material for the wastewater remediation.
Collapse
Affiliation(s)
- Thirugnanam Bavani
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Parthasarathy Sasikala
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Swaminathan Arumugam
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Arumugam Malathi
- Center of Excellence On Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Piyasan Praserthdam
- Center of Excellence On Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India.
| |
Collapse
|
7
|
Kamakshi P, Joshitha C, Chella S, Selvaraj S. Synthesis, characterization of BiOI/rGO nanocomposite and its photocatalytic functionality analysis under visible light. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
8
|
Sun J, Jiang C, Wu Z, Liu Y, Sun S. A review on the progress of the photocatalytic removal of refractory pollutants from water by BiOBr-based nanocomposites. CHEMOSPHERE 2022; 308:136107. [PMID: 35998730 DOI: 10.1016/j.chemosphere.2022.136107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Organic matters from various sources such as the manufacturing, agricultural, and pharmaceuticals industries is continuously discharged into water bodies, leading to increasingly serious water pollution. Photocatalytic technology is a clean and green advanced oxidation process, that can successfully decompose various organic pollutants into small inorganic molecules such as carbon dioxide and water under visible light irradiation. Bismuth oxybromide (BiOBr) is an attractive visible light photocatalyst with good photocatalytic performance, suitable forbidden bandwidth, and a unique layered structure. However, the rapid combination of the electron-hole pairs generated in BiOBr leads to low photocatalytic activity, which limits its photocatalytic performance. Due to its unique electronic structure, BiOBr can be coupled with a variety of different functional materials to improve its photocatalytic performance. In this paper, We present the morphologically controllable BiOBr and its preparation process with the influence of raw materials, additives, solvents, synthesis methods, and synthesis conditions. Based on this, we propose design synthesis considerations for BiOBr-based nanocomplexes in four aspects: structure, morphology and crystalline phase, reduction of electron-hole pair complexation, photocorrosion resistance, and scale-up synthesis. The literature on BiOBr-based nanocomposites in the last 10 years (2012-2022) are summarized into seven categories, and the mechanism of enhanced photocatalytic activity of BiOBr-based nanocomposites is reviewed. Moreover, the applications of BiOBr-based nanocomposites in the fields of degradation of dye wastewater, antibiotic wastewater, pesticide wastewater, and phenol-containing wastewater are reviewed. Finally, the current challenges and prospects of BiOBr-based nanocomposites are briefly described. In general, this paper reviews the construction of BiOBr-based nanocomposites, the mechanism of photocatalytic activity enhancement and its research status and application prospects in the degradation of organic pollutants.
Collapse
Affiliation(s)
- Julong Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Changbo Jiang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China.
| | - Zhiyuan Wu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Yizhuang Liu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| |
Collapse
|
9
|
Photocatalytic Degradation of 4-tert-butylphenol Using Solar Light Responsive Ag2CO3. Catalysts 2022. [DOI: 10.3390/catal12121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In this work, Ag2CO3 was prepared via a solution-based method and was further characterized by XRD, Raman spectroscopy, SEM/EDS analysis, and UV-VIS spectroscopy. SEM results revealed the formation of micro-sized particles with a rectangular shape. The photocatalytic activity of the catalyst was evaluated in the degradation of 4-tert-butylphenol (4-t-BP) under simulated solar light irradiation. The effects of 4-t-BP initial concentration (2.5–10 ppm), catalyst dosage (100–300 mg/L), different types of lamp sources, and water matrix were investigated. Complete 4-t-BP (5 ppm) degradation was achieved after 60 min by Ag2CO3 (200 mg/L). The effect of anions such as CO32−, HCO3−, NO3−, and Cl- in the concentration range of 100–300 mg/L was also studied. CO32− promoted the photocatalytic degradation process, while HCO3− and NO3− exhibited an inhibition effect, which was marked with increasing HCO3− and NO3− concentrations. The presence of Cl− at the concentration of 100 mg/L increased 4-t-BP degradation, but higher concentrations inhibited the photocatalytic reaction. Cyclic experiments showed that the catalyst practically retained its catalytic activity toward 4-t-BP degradation after three successive experimental runs.
Collapse
|
10
|
Pan L, Zhang M, Mei H, Yao L, Jin Z, Liu H, Zhou S, Yao Z, Zhu G, Cheng L, Zhang L. 3D bionic reactor optimizes photon and mass transfer by expanding reaction space to enhance photocatalytic CO2 reduction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Xu X, Wang Y, Zhang D. A novel strategy of hydrothermal in-situ grown bismuth based film on epoxy resin as recyclable photocatalyst for photodegrading antibiotics and sterilizing microorganism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Synthesis and Theoretical–Experimental Characterization of BiOBr: The Role of Oxygen and Halide Vacancies on the Optoelectric Properties of this Bismuth Oxyhalide. Top Catal 2022. [DOI: 10.1007/s11244-022-01604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Arana-Trenado JA, Ramírez-Ortega D, Serrano-Lázaro A, Hernández-Gordillo A, Rodil SE, Bizarro M. Synergistic photocatalytic effect of BiOBr-BiOI heterojunctions due to appropriate layer stacking. Dalton Trans 2022; 51:2413-2427. [PMID: 35048098 DOI: 10.1039/d1dt03782j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The increasing interest in acquiring efficient visible-light active photocatalytic materials has led to the formation of heterojunctions with different combinations of semiconductors. Despite the fact that increasingly more complex structures are proposed, there are still many unclear factors affecting their performance and limiting their prompt implementation. In this work, we used the spray pyrolysis technique to deposit individual visible light-active BiOBr and BiOI films and formed the heterojunctions BiOBr-BiOI and BiOI-BiOBr to determine the effect of the stacking order of semiconductors. These materials were widely characterized; their structural, optical, (photo)electrochemical, and photocatalytic properties were evaluated, revealing that the configuration BiOI-BiOBr boosted the photocatalytic indigo carmine dye removal under simulated sunlight irradiation, but the opposite layout quenched it. The high efficiency is attributed to a better use of the incident radiation and the effective migration of the photogenerated carriers. BiOBr - with a wider band gap and a less negative conduction band with respect to BiOI - provides its good attributes to the heterostructure, such as high stability and low recombination rates, when it is at the surface. We demonstrated that in thin-film heterostructures, the order in which the layers are stacked becomes decisive for the photocatalytic performance and that the energy band gap and the relative band positions of both semiconductors are the principal features that govern the photocatalytic mechanism. These findings provide a key to designing more efficient photocatalysts without several unsuccessful trials.
Collapse
Affiliation(s)
- J Alejandro Arana-Trenado
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico.
| | - David Ramírez-Ortega
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México. Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Amauri Serrano-Lázaro
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico.
| | - Agileo Hernández-Gordillo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico.
| | - Sandra E Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico.
| | - Monserrat Bizarro
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico.
| |
Collapse
|
14
|
Synthesis and property analysis of high magnetic and stable ternary composite Fe3O4/BiOBr/BiOI. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Zare EN, Iftekhar S, Park Y, Joseph J, Srivastava V, Khan MA, Makvandi P, Sillanpaa M, Varma RS. An overview on non-spherical semiconductors for heterogeneous photocatalytic degradation of organic water contaminants. CHEMOSPHERE 2021; 280:130907. [PMID: 34162104 DOI: 10.1016/j.chemosphere.2021.130907] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Because of their carcinogenicity and mutagenicity, the elimination of organic contaminants from surface and subsurface water is a subject of environmental significance. Conventional water decontamination approaches such as membrane separation, ultrafiltration, adsorption, reverse osmosis, coagulation, etc., have relatively higher operating costs and can generate highly toxic secondary contaminants. On the other hand, heterogeneous photocatalysis, an advanced oxidation process (AOP), is considered a clean and cost-effective process for organic pollutants degradation. Owing to their distinctive structure and physicochemical properties non-spherical semiconductors have gained considerable limelight in the photocatalytic degradation of organic contaminants. The current review briefly introduces a wide range of organic water contaminants. Recent advances in non-spherical semiconductor assembly and their photocatalytic degradation applications are highlighted. The underlying mechanism, fundamentals of photocatalytic reactions, and the factors affecting the degradation performance are also alluded including the current challenges and future research perspectives.
Collapse
Affiliation(s)
| | - Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, Kuopio, 70210, Finland
| | - Yuri Park
- Department of Separation Science, Lappeenranta-Lahti University of Technology LUT, Sammonkatu 12, FI, 50130, Mikkeli, Finland
| | - Jessy Joseph
- Department of Separation Science, Lappeenranta-Lahti University of Technology LUT, Sammonkatu 12, FI, 50130, Mikkeli, Finland
| | - Varsha Srivastava
- Department of Separation Science, Lappeenranta-Lahti University of Technology LUT, Sammonkatu 12, FI, 50130, Mikkeli, Finland
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Pooyan Makvandi
- Center for Materials Interfaces, Istituto Italiano di Tecnologia (IIT), Viale R. Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Mika Sillanpaa
- Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
16
|
Narenuch T, Senasu T, Chankhanittha T, Nanan S. Sunlight-Active BiOI Photocatalyst as an Efficient Adsorbent for the Removal of Organic Dyes and Antibiotics from Aqueous Solutions. Molecules 2021; 26:5624. [PMID: 34577100 PMCID: PMC8471800 DOI: 10.3390/molecules26185624] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
A bismuth oxyiodide (BiOI) photocatalyst with excellent sunlight-driven performance was synthesized by a solvothermal route without the addition of surfactants or capping agents. The prepared photocatalyst exhibited a tetragonal phase with an energy band gap of 2.15 eV. The efficiency of the photocatalyst was elucidated by monitoring the photodegradation of organic dyes and antibiotics. The BiOI photocatalyst provided a 95% removal of norfloxacin (NOR) antibiotics under visible light illumination. Interestingly, the complete removal of Rhodamine B (RhB) dye was achieved after 80 min of natural sunlight irradiation. The photodegradation reaction followed the first-order reaction. Both photo-generated holes and electrons play vital roles in the photodegradation of the pollutant. The BiOI photocatalyst remains stable and still shows a high efficiency even after the fifth run. This confirms the great cycling ability and high structural stability of the photocatalyst. The prepared BiOI catalyst, with a high surface area of 118 m2 g-1, can act as an excellent adsorbent as well. The synergistic effect based on both adsorption and photocatalysis is a key factor in achieving a very high removal efficiency. The photoactivity under sunlight is higher than that observed under visible light, supporting the practical use of the BiOI photocatalyst for the removal of organic pollutants in wastewater through the utilization of abundant solar energy.
Collapse
Affiliation(s)
| | | | | | - Suwat Nanan
- Materials Chemistry Research Center, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (T.N.); (T.S.); (T.C.)
| |
Collapse
|
17
|
Bavani T, Madhavan J, Prasad S, AlSalhi MS, ALJaffreh M, Vijayanand S. Fabrication of novel AgVO 3/BiOI nanocomposite photocatalyst with photoelectrochemical activity towards the degradation of Rhodamine B under visible light irradiation. ENVIRONMENTAL RESEARCH 2021; 200:111365. [PMID: 34033832 DOI: 10.1016/j.envres.2021.111365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
In the present work, a visible light driven AgVO3/BiOI nanocomposite photocatalyst with different wt % (1, 2, 3) of AgVO3 was fabricated by using facile hydrothermal method. Further, the nanocomposite was characterized by FT-IR, XRD, SEM, TEM, EDS, UV-vis DRS, photoluminescence and photoelectrochemical studies. The structural characterization showed nanorods on nanosheet surface. Among different AgVO3 loaded samples, the photocatalytic efficiency of 1 wt % AgVO3/BiOI nanocomposite was found to be comparatively higher than the pure BiOI and AgVO3. The photodegradation rate constant values of pure BiOI, AgVO3 and 1, 2, 3 wt % AgVO3/BiOI nanocomposites are 0.006, 0.0033, 0.0255, 0.01575, 0.0116 min-1 respectively. This enhanced photocatalytic activity was due to the increasing visible light absorption ability and efficient separation of the charge carriers. Thereby, the 1 wt % AgVO3/BiOI nanocomposite photocatalyst exhibited increased photodegradation activity, photostability and recyclability characteristics. The radical trapping experiment confirmed the role of OH and h+ in the photocatalytic degradation of RhB. Based on this, the probable mechanism of degradation of RhB under visible light irradiation has also been proposed. Hence, we believe it could be a promising material that can be employed for the photodegradation of organic pollutants present in wastewater.
Collapse
Affiliation(s)
- Thirugnanam Bavani
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India.
| | - Saradh Prasad
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia; Research Chair on Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia; Research Chair on Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Mamduh ALJaffreh
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia; Research Chair on Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Selvaraj Vijayanand
- Department of Biotechnology, Thiruvalluvar University, Vellore, 632115, India
| |
Collapse
|
18
|
Li Y, Jiang H, Wang X, Hong X, Liang B. Recent advances in bismuth oxyhalide photocatalysts for degradation of organic pollutants in wastewater. RSC Adv 2021; 11:26855-26875. [PMID: 35479985 PMCID: PMC9037621 DOI: 10.1039/d1ra05796k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022] Open
Abstract
Photocatalysis has been considered as an environmental-friendly strategy for degradation of organic pollutants to the nontoxic products of H2O and CO2. Compared to metal oxide semiconductors, BiOX (X = Cl, Br and I) photocatalysts exhibit some advantages, such as, unique layered structure, good chemical stability and superior photocatalytic activity. This review provides an overview on the controllable synthesis of BiOX-based photocatalysts and their application in photodegradation of organic pollutants. Firstly, the controllable synthesis of BiOX is introduced, including hydrothermal, solvothermal, hydrolysis, precipitation, two-phase methods, ultrasonic/microwave-assisted methods, and physical methods. Then, the doping and surface modification of BiOX are summarized, including non-metal doping, metal doping, dual doping, and the modification by introducing surface terminations or carriers. In addition, the heterojunctions of BiOX/BiOY and BiOX/Bi m O n X z are introduced. At last, the promising research trends of BiOX-based photocatalysts are put forward. The main purpose is providing practical guidelines for developing high-performance BiOX photocatalysts.
Collapse
Affiliation(s)
- Yang Li
- College of Materials Science and Engineering, Liaoning Technical University Fuxin 123000 China
| | - Haiyan Jiang
- Basic Department, Liaoning Institute of Science and Technology Benxi 117004 China
| | - Xu Wang
- College of Materials Science and Engineering, Liaoning Technical University Fuxin 123000 China
| | - Xiaodong Hong
- School of Materials Science and Hydrogen Energy, Foshan University Foshan 528000 China
| | - Bing Liang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China
| |
Collapse
|
19
|
Kivyiro AO, Darkwah WK, Bofah‐Buoh R, Koomson DA, Sandrine MKC, Puplampu JB. Photocatalytic Reduction of Hexavalent Chromium (Cr
6+
) Over BiOI Calcined at Different Temperature Under Visible Light Irradiation. ChemistrySelect 2021. [DOI: 10.1002/slct.202101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Adinas Oswald Kivyiro
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education College of Environment Hohai University No.1, Xikang Road Nanjing 210098 China
| | - Williams Kweku Darkwah
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education College of Environment Hohai University No.1, Xikang Road Nanjing 210098 China
- Department of Biochemistry School of Biological Sciences University of Cape Coast Cape Coast Ghana
| | - Robert Bofah‐Buoh
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education College of Environment Hohai University No.1, Xikang Road Nanjing 210098 China
| | - Desmond Ato Koomson
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education College of Environment Hohai University No.1, Xikang Road Nanjing 210098 China
- Department of Biochemistry School of Biological Sciences University of Cape Coast Cape Coast Ghana
| | - Masso Kody Christelle Sandrine
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education College of Environment Hohai University No.1, Xikang Road Nanjing 210098 China
| | - Joshua Buer Puplampu
- Department of Biochemistry School of Biological Sciences University of Cape Coast Cape Coast Ghana
| |
Collapse
|
20
|
Hasan J, Ouyang G, Wang J, Li H, Tian G, Qin C. Efficient visible-light-driven photocatalysis of flower-like composites of AgI nanoparticle dotting BiOI nanosheet. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Huang Y, Jia Y, Shen K, Hou R, Zhang Y, Hou L. Degradation of gaseous unsymmetrical dimethylhydrazine by vacuum ultraviolet coupled with MnO 2. NEW J CHEM 2021. [DOI: 10.1039/d0nj05167e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhanced degradation of gaseous UDMH under VUV irradiation by catalytic ozonation with MnO2.
Collapse
Affiliation(s)
| | - Ying Jia
- Xi’an High Technology Institute
- Xi'an 710025
- China
| | - Keke Shen
- Xi’an High Technology Institute
- Xi'an 710025
- China
| | - Ruomeng Hou
- Xi’an High Technology Institute
- Xi'an 710025
- China
| | | | - Li’an Hou
- Xi’an High Technology Institute
- Xi'an 710025
- China
| |
Collapse
|
22
|
Wei Z, Zheng N, Dong X, Zhang X, Ma H, Zhang X, Xue M. Green and controllable synthesis of one-dimensional Bi 2O 3/BiOI heterojunction for highly efficient visible-light-driven photocatalytic reduction of Cr(VI). CHEMOSPHERE 2020; 257:127210. [PMID: 32502738 DOI: 10.1016/j.chemosphere.2020.127210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/13/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
BiOI nanosheets have been successfully deposited on the porous Bi2O3 nanorobs via a one-pot precipitation method. The physicochemical features of the as-prepared materials were characterized in detail by a series of techniques, and the results revealed that BiOI nanosheets were evenly distributed on the porous Bi2O3 nanorobs. Because of higher photogenerated electron-hole pairs separation efficiency and the larger specific surface area compared to the pristine Bi2O3 and BiOI, the 50%Bi2O3/BiOI composite exhibited significantly enhanced photocatalytic activity for Cr(VI) reduction under visible light irradiation, and the reduction rate constant was 0.02002 min-1, which was about 27.4 and 2.6 times higher than that of pure Bi2O3 (0.00073 min-1) and BiOI (0.00769 min-1), respectively. Moreover, the 50%Bi2O3/BiOI composite also possessed the excellent photochemical stability and recyclability, thereby facilitating its wastewater treatment application.
Collapse
Affiliation(s)
- Zhiping Wei
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China
| | - Nan Zheng
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China
| | - Xiaoli Dong
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China.
| | - Xiufang Zhang
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China
| | - Hongchao Ma
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China
| | - Xinxin Zhang
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China
| | - Mang Xue
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China
| |
Collapse
|
23
|
Fabrication of novel superhydrophobic ZIF-8 modified directly Z-scheme bismuth oxyiodide/cadmium sulfide melamine sponge for efficient oil/water separation and visible-light photodegradation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Saffari R, Shariatinia Z, Jourshabani M. Synthesis and photocatalytic degradation activities of phosphorus containing ZnO microparticles under visible light irradiation for water treatment applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113902. [PMID: 31918149 DOI: 10.1016/j.envpol.2019.113902] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
A series of phosphorus containing ZnO (P-ZnO) photocatalysts with various percentages of phosphorus were successfully synthesized using the hydrothermal method. The structural, physical and optical properties of the obtained microparticles were investigated using diverse techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible diffusion reflectance spectroscopy (UV-Vis DRS), photoluminescence (PL) spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and N2 adsorption-desorption analysis. The photocatalytic activities of the pure and P-ZnO samples were evaluated for the degradation of Rhodamine B (RhB) under visible light irradiation. The parameters such as pH, catalyst dosage, contaminant concentration and effect of persulfate as an oxidant were studied. It was found that the P-ZnO1.8% photocatalyst could destroy 99% of RhB (5 ppm) in 180 min at pH = 7; furthermore, it degraded ∼100% of 5 and 10 ppm of the RhB pollutant in 120 and 180 min, respectively, only by adding 0.01 g of persulfate into the reaction solution. To determine the photocatalytic mechanism, 2-propanol, benzoquinone and EDTA were used and it was indicated that hydroxyl radicals, superoxide ions and holes, all had major roles in the photocatalytic degradation but the hydroxyl radical effect was the most significant. The phenol degradation was also investigated using the P-ZnO1.8% optimum photocatalyst which could destroy 53% of the phenol (5 ppm) in 180 min. According to the reusability test, it was proved that after 5 cycles, the catalyst activity was not highly changed and it was potentially capable of pollutant degradation.
Collapse
Affiliation(s)
- Reyhaneh Saffari
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), P.O.Box:15875-4413, Tehran, Iran
| | - Zahra Shariatinia
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), P.O.Box:15875-4413, Tehran, Iran.
| | - Milad Jourshabani
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), P.O.Box:15875-4413, Tehran, Iran
| |
Collapse
|