1
|
Sytu MRC, Hahm JI. Principles and Applications of ZnO Nanomaterials in Optical Biosensors and ZnO Nanomaterial-Enhanced Biodetection. BIOSENSORS 2024; 14:480. [PMID: 39451693 PMCID: PMC11506539 DOI: 10.3390/bios14100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Significant research accomplishments have been made so far for the development and application of ZnO nanomaterials in enhanced optical biodetection. The unparalleled optical properties of ZnO nanomaterials and their reduced dimensionality have been successfully exploited to push the limits of conventional optical biosensors and optical biodetection platforms for a wide range of bioanalytes. ZnO nanomaterial-enabled advancements in optical biosensors have been demonstrated to improve key sensor performance characteristics such as the limit of detection and dynamic range. In addition, all nanomaterial forms of ZnO, ranging from 0-dimensional (0D) and 1D to 2D nanostructures, have been proven to be useful, ensuring their versatile fabrication into functional biosensors. The employment of ZnO as an essential biosensing element has been assessed not only for ensembles but also for individual nanomaterials, which is advantageous for the realization of high miniaturization and minimal invasiveness in biosensors and biodevices. Moreover, the nanomaterials' incorporations into biosensors have been shown to be useful and functional for a variety of optical detection modes, such as absorption, colorimetry, fluorescence, near-band-edge emission, deep-level emission, chemiluminescence, surface evanescent wave, whispering gallery mode, lossy-mode resonance, surface plasmon resonance, and surface-enhanced Raman scattering. The detection capabilities of these ZnO nanomaterial-based optical biosensors demonstrated so far are highly encouraging and, in some cases, permit quantitative analyses of ultra-trace level bioanalytes that cannot be measured by other means. Hence, steady research endeavors are expected in this burgeoning field, whose scientific and technological impacts will grow immensely in the future. This review provides a timely and much needed review of the research efforts made in the field of ZnO nanomaterial-based optical biosensors in a comprehensive and systematic manner. The topical discussions in this review are organized by the different modes of optical detection listed above and further grouped by the dimensionality of the ZnO nanostructures used in biosensors. Following an overview of a given optical detection mode, the unique properties of ZnO nanomaterials critical to enhanced biodetection are presented in detail. Subsequently, specific biosensing applications of ZnO nanomaterials are discussed for ~40 different bioanalytes, and the important roles that the ZnO nanomaterials play in bioanalyte detection are also identified.
Collapse
Affiliation(s)
| | - Jong-In Hahm
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| |
Collapse
|
2
|
Goodrum R, Li H. Advances in three dimensional metal enhanced fluorescence based biosensors using metal nanomaterial and nano-patterned surfaces. Biotechnol J 2024; 19:e2300519. [PMID: 37997672 DOI: 10.1002/biot.202300519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Metal enhanced fluorescence (MEF) is a phenomenon that increases fluorescence signal through placement of metal near a fluorophore. For biosensing applications, MEF-based biosensors are becoming increasingly popular as it enables highly sensitive detection of molecules, important for early diagnosis. The structure and size of the metal influence the optical properties through enhancing the fluorophore photostability and light absorption and emission. In recent years, many metal nanostructures have been fabricated and examined for their effectiveness in developing MEF-based biosensors. This review focuses on the latest applications of three-dimensional nanostructures and nano-patterned surfaces used to develop and improve fluorescence sensing via MEF. Current reviews mostly discussed the applications of two dimensional MEF and metal-nanoparticles-based MEF with a focus on fabrication of nanoparticles and metal substrates. In this article, we focused more on the effect of the metal nanostructure and size on MEF and then provided an in-depth summary of the performance of the state-of-the-art three dimensional MEF-based biosensors. While more work is needed to demonstrate applicability for complex samples, it is evident that with the use of metal nanoparticles and three dimensional nano-patterns, the assay sensitivity of fluorescence-based detection can be greatly improved, making it suitable for use in early disease diagnostics.
Collapse
Affiliation(s)
- Rebecca Goodrum
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| | - Huiyan Li
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Zhang H, Zhang C, Wang Z, Cao W, Yu M, Sun Y. Antibody- and aptamer-free SERS substrate for ultrasensitive and anti-interference detection of SARS-CoV-2 spike protein in untreated saliva. Biosens Bioelectron 2023; 237:115457. [PMID: 37321043 PMCID: PMC10247595 DOI: 10.1016/j.bios.2023.115457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/12/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Sensitive and anti-interference detection of targeted signal(s) in body fluids is one of the paramount tasks in biosensing. Overcoming the complication and high cost of antibody/aptamer-modification, surface-enhanced Raman spectroscopy (SERS) based on antibody/aptamer-free (AAF) substrates has shown great promise, yet with rather limited detection sensitivity. Herein, we report ultrasensitive and anti-interference detection of SARS-CoV-2 spike protein in untreated saliva by an AAF SERS substrate, applying the evanescent field induced by the high-order waveguide modes of well-defined nanorods for SERS for the first time. A detection limit of 3.6 × 10-17 M and 1.6 × 10-16 M are obtained in phosphate buffered saline and untreated saliva, respectively; the detection limits are three orders of magnitude improved than the best records from AAF substrates. This work unlocks an exciting path to design AAF SERS substrates for ultrasensitive biosensing, not limited to detection of viral antigens.
Collapse
Affiliation(s)
- Hong Zhang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilonɡjianɡ, PR China
| | - Chenggang Zhang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilonɡjianɡ, PR China
| | - Zhaotong Wang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilonɡjianɡ, PR China
| | - Wenwu Cao
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilonɡjianɡ, PR China
| | - Miao Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilonɡjianɡ, PR China.
| | - Ye Sun
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilonɡjianɡ, PR China.
| |
Collapse
|
4
|
Semeniak D, Cruz DF, Chilkoti A, Mikkelsen MH. Plasmonic Fluorescence Enhancement in Diagnostics for Clinical Tests at Point-of-Care: A Review of Recent Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107986. [PMID: 35332957 PMCID: PMC9986847 DOI: 10.1002/adma.202107986] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/26/2022] [Indexed: 05/31/2023]
Abstract
Fluorescence-based biosensors have widely been used in the life-sciences and biomedical applications due to their low limit of detection and a diverse selection of fluorophores that enable simultaneous measurements of multiple biomarkers. Recent research effort has been made to implement fluorescent biosensors into the exploding field of point-of-care testing (POCT), which uses cost-effective strategies for rapid and affordable diagnostic testing. However, fluorescence-based assays often suffer from their feeble signal at low analyte concentrations, which often requires sophisticated, costly, and bulky instrumentation to maintain high detection sensitivity. Metal- and metal oxide-based nanostructures offer a simple solution to increase the output signal from fluorescent biosensors due to the generation of high field enhancements close to a metal or metal oxide surface, which has been shown to improve the excitation rate, quantum yield, photostability, and radiation pattern of fluorophores. This article provides an overview of existing biosensors that employ various strategies for fluorescence enhancement via nanostructures and have demonstrated the potential for use as POCT. Biosensors using nanostructures such as planar substrates, freestanding nanoparticles, and metal-dielectric-metal nanocavities are discussed with an emphasis placed on technologies that have shown promise towards POCT applications without the need for centralized laboratories.
Collapse
Affiliation(s)
- Daria Semeniak
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Daniela F Cruz
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Maiken H Mikkelsen
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
5
|
Unksov IN, Anttu N, Verardo D, Höök F, Prinz CN, Linke H. Fluorescence excitation enhancement by waveguiding nanowires. NANOSCALE ADVANCES 2023; 5:1760-1766. [PMID: 36926575 PMCID: PMC10012842 DOI: 10.1039/d2na00749e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The optical properties of vertical semiconductor nanowires can allow an enhancement of fluorescence from surface-bound fluorophores, a feature proven useful in biosensing. One of the contributing factors to the fluorescence enhancement is thought to be the local increase of the incident excitation light intensity in the vicinity of the nanowire surface, where fluorophores are located. However, this effect has not been experimentally studied in detail to date. Here, we quantify the excitation enhancement of fluorophores bound to a semiconductor nanowire surface by combining modelling with measurements of fluorescence photobleaching rate, indicative of the excitation light intensity, using epitaxially grown GaP nanowires. We study the excitation enhancement for nanowires with a diameter of 50-250 nm and show that excitation enhancement reaches a maximum for certain diameters, depending on the excitation wavelength. Furthermore, we find that the excitation enhancement decreases rapidly within tens of nanometers from the nanowire sidewall. The results can be used to design nanowire-based optical systems with exceptional sensitivities for bioanalytical applications.
Collapse
Affiliation(s)
- Ivan N Unksov
- NanoLund and Solid State Physics, Lund University Box 118 22100 Lund Sweden
| | - Nicklas Anttu
- Physics, Faculty of Science and Engineering, Åbo Akademi University FI-20500 Turku Finland
| | - Damiano Verardo
- NanoLund and Solid State Physics, Lund University Box 118 22100 Lund Sweden
- AlignedBio AB, Medicon Village Scheeletorget 1 223 63 Lund Sweden
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Christelle N Prinz
- NanoLund and Solid State Physics, Lund University Box 118 22100 Lund Sweden
| | - Heiner Linke
- NanoLund and Solid State Physics, Lund University Box 118 22100 Lund Sweden
| |
Collapse
|
6
|
Du B, Zhang M, Ye J, Wang D, Han J, Zhang T. Novel Au Nanoparticle-Modified ZnO Nanorod Arrays for Enhanced Photoluminescence-Based Optical Sensing of Oxygen. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23062886. [PMID: 36991596 PMCID: PMC10051414 DOI: 10.3390/s23062886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 05/31/2023]
Abstract
Novel optical gas-sensing materials for Au nanoparticle (NP)-modified ZnO nanorod (NR) arrays were fabricated using hydrothermal synthesis and magnetron sputtering on Si substrates. The optical performance of ZnO NR can be strongly modulated by the annealing temperature and Au sputtering time. With exposure to trace quantities of oxygen, the ultraviolet (UV) emission of the photoluminescence (PL) spectra of Au/ZnO samples at ~390 nm showed a large variation in intensity. Based on this mechanism, ZnO NR based oxygen gas sensing via PL spectra variation demonstrated a wide linear detection range of 10-100%, a high response value, and a 1% oxygen content sensitivity detection limit at 225 °C. This outstanding optical oxygen-sensing performance can be attributed to the large surface area to volume ratio, high crystal quality, and high UV emission efficiency of the Au NP-modified ZnO NR arrays. Density functional theory (DFT) simulation results confirmed that after the Au NPs modified the surface of the ZnO NR, the charge at the interface changed, and the structure of Au/ZnO had the lowest adsorption energy for oxygen molecules. These results suggest that Au NP-modified ZnO NR are promising for high-performance optical gas-sensing applications.
Collapse
Affiliation(s)
- Baosheng Du
- State Key Laboratory of Laser Propulsion and Application, Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
| | - Meng Zhang
- Institute of War Studies, Academy of Military Sciences, Beijing 100091, China
| | - Jifei Ye
- State Key Laboratory of Laser Propulsion and Application, Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
| | - Diankai Wang
- State Key Laboratory of Laser Propulsion and Application, Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
| | - Jianhui Han
- State Key Laboratory of Laser Propulsion and Application, Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
| | - Tengfei Zhang
- State Key Laboratory of Laser Propulsion and Application, Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
| |
Collapse
|
7
|
Valderas-Gutiérrez J, Davtyan R, Sivakumar S, Anttu N, Li Y, Flatt P, Shin JY, Prinz CN, Höök F, Fioretos T, Magnusson MH, Linke H. Enhanced Optical Biosensing by Aerotaxy Ga(As)P Nanowire Platforms Suitable for Scalable Production. ACS APPLIED NANO MATERIALS 2022; 5:9063-9071. [PMID: 35909504 PMCID: PMC9315950 DOI: 10.1021/acsanm.2c01372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sensitive detection of low-abundance biomolecules is central for diagnostic applications. Semiconductor nanowires can be designed to enhance the fluorescence signal from surface-bound molecules, prospectively improving the limit of optical detection. However, to achieve the desired control of physical dimensions and material properties, one currently uses relatively expensive substrates and slow epitaxy techniques. An alternative approach is aerotaxy, a high-throughput and substrate-free production technique for high-quality semiconductor nanowires. Here, we compare the optical sensing performance of custom-grown aerotaxy-produced Ga(As)P nanowires vertically aligned on a polymer substrate to GaP nanowires batch-produced by epitaxy on GaP substrates. We find that signal enhancement by individual aerotaxy nanowires is comparable to that from epitaxy nanowires and present evidence of single-molecule detection. Platforms based on both types of nanowires show substantially higher normalized-to-blank signal intensity than planar glass surfaces, with the epitaxy platforms performing somewhat better, owing to a higher density of nanowires. With further optimization, aerotaxy nanowires thus offer a pathway to scalable, low-cost production of highly sensitive nanowire-based platforms for optical biosensing applications.
Collapse
Affiliation(s)
- Julia Valderas-Gutiérrez
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Rubina Davtyan
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Sudhakar Sivakumar
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Nicklas Anttu
- Physics,
Faculty of Science and Engineering, Åbo
Akademi University, Henrikinkatu
2, FI-20500 Turku, Finland
| | - Yuyu Li
- AlignedBio
AB, Medicon Village,
Scheeletorget 1, SE-22363, Lund 22100, Sweden
| | - Patrick Flatt
- AlignedBio
AB, Medicon Village,
Scheeletorget 1, SE-22363, Lund 22100, Sweden
| | - Jae Yen Shin
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Christelle N. Prinz
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Fredrik Höök
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Department
of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Thoas Fioretos
- Division
of Clinical Genetics, Lund University, SE-22185 Lund, Sweden
| | - Martin H. Magnusson
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Heiner Linke
- NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
- Division
of Solid State Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| |
Collapse
|
8
|
Unksov IN, Korosec CS, Surendiran P, Verardo D, Lyttleton R, Forde NR, Linke H. Through the Eyes of Creators: Observing Artificial Molecular Motors. ACS NANOSCIENCE AU 2022; 2:140-159. [PMID: 35726277 PMCID: PMC9204826 DOI: 10.1021/acsnanoscienceau.1c00041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Inspired by molecular motors in biology, there has been significant progress in building artificial molecular motors, using a number of quite distinct approaches. As the constructs become more sophisticated, there is also an increasing need to directly observe the motion of artificial motors at the nanoscale and to characterize their performance. Here, we review the most used methods that tackle those tasks. We aim to help experimentalists with an overview of the available tools used for different types of synthetic motors and to choose the method most suited for the size of a motor and the desired measurements, such as the generated force or distances in the moving system. Furthermore, for many envisioned applications of synthetic motors, it will be a requirement to guide and control directed motions. We therefore also provide a perspective on how motors can be observed on structures that allow for directional guidance, such as nanowires and microchannels. Thus, this Review facilitates the future research on synthetic molecular motors, where observations at a single-motor level and a detailed characterization of motion will promote applications.
Collapse
Affiliation(s)
- Ivan N. Unksov
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Chapin S. Korosec
- Department
of Physics, Simon Fraser University, V5A 1S6 Burnaby, British Columbia, Canada
| | | | - Damiano Verardo
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
- AlignedBio
AB, Medicon Village, Scheeletorget 1, 223 63 Lund, Sweden
| | - Roman Lyttleton
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Nancy R. Forde
- Department
of Physics, Simon Fraser University, V5A 1S6 Burnaby, British Columbia, Canada
| | - Heiner Linke
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| |
Collapse
|
9
|
Chae WS, Cho S, Jung JY, Kim JH, Lee JS. Multiple-Route Exciton Recombination Dynamics and Improved Stability of Perovskite Quantum Dots by Plasmonic Photonic Crystal. J Phys Chem Lett 2022; 13:5040-5048. [PMID: 35652905 DOI: 10.1021/acs.jpclett.2c00735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have studied the excited-state exciton recombination dynamics of perovskite quantum dots (QDs) through time-resolved photoluminescence (PL), PL blinking, PL intensity-dependent lifetime modulation, and long-term photostability tests. The various spectroscopic characterizations elucidate that the perovskite QDs have multiple intrinsic exciton recombination routes even in a single QD, i.e., exciton, biexciton, and positive/negative trions, which are dissimilarly contributed to ON and OFF state emissions. We also find that the enhanced radiative recombination from placing green QDs on a photonic Ag nanotip array induces notably improved long-term PL stability. We consider that the accelerated radiative recombination of QDs by strong coupling with the plasmonics of the photonic Ag nanotip array, while eliminating nonradiative pathways, is proven to be a critical factor for improved long-term stability.
Collapse
Affiliation(s)
- Weon-Sik Chae
- Daegu Center, Korea Basic Science Institute, Daegu 41566, Republic of Korea
| | - Sinyoung Cho
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Republic of Korea
| | - Joo-Yun Jung
- Nano-convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343, Republic of Korea
| | - Jong-Hwa Kim
- Daegu Center, Korea Basic Science Institute, Daegu 41566, Republic of Korea
| | - Jong-Soo Lee
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
10
|
Minopoli A, Scardapane E, Ventura BD, Tanner JA, Offenhäusser A, Mayer D, Velotta R. Double-Resonant Nanostructured Gold Surface for Multiplexed Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6417-6427. [PMID: 35089707 PMCID: PMC8832399 DOI: 10.1021/acsami.1c23438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/18/2022] [Indexed: 05/17/2023]
Abstract
A novel double-resonant plasmonic substrate for fluorescence amplification in a chip-based apta-immunoassay is herein reported. The amplification mechanism relies on plasmon-enhanced fluorescence (PEF) effect. The substrate consists of an assembly of plasmon-coupled and plasmon-uncoupled gold nanoparticles (AuNPs) immobilized onto a glass slide. Plasmon-coupled AuNPs are hexagonally arranged along branch patterns whose resonance lies in the red band (∼675 nm). Plasmon-uncoupled AuNPs are sprinkled onto the substrate, and they exhibit a narrow resonance at 524 nm. Numerical simulations of the plasmonic response of the substrate through the finite-difference time-domain (FDTD) method reveal the presence of electromagnetic hot spots mainly confined in the interparticle junctions. In order to realize a PEF-based device for potential multiplexing applications, the plasmon resonances are coupled with the emission peak of 5-carboxyfluorescein (5-FAM) fluorophore and with the excitation/emission peaks of cyanine 5 (Cy5). The substrate is implemented in a malaria apta-immunoassay to detect Plasmodium falciparum lactate dehydrogenase (PfLDH) in human whole blood. Antibodies against Plasmodium biomarkers constitute the capture layer, whereas fluorescently labeled aptamers recognizing PfLDH are adopted as the top layer. The fluorescence emitted by 5-FAM and Cy5 fluorophores are linearly correlated (logarithm scale) to the PfLDH concentration over five decades. The limits of detection are 50 pM (1.6 ng/mL) with the 5-FAM probe and 260 fM (8.6 pg./mL) with the Cy5 probe. No sample preconcentration and complex pretreatments are required. Average fluorescence amplifications of 160 and 4500 are measured in the 5-FAM and Cy5 channel, respectively. These results are reasonably consistent with those worked out by FDTD simulations. The implementation of the proposed approach in multiwell-plate-based bioassays would lead to either signal redundancy (two dyes for a single analyte) or to a simultaneous detection of two analytes by different dyes, the latter being a key step toward high-throughput analysis.
Collapse
Affiliation(s)
- Antonio Minopoli
- Department
of Physics “E. Pancini”, University
Federico II, Via Cintia 26, 80126 Naples, Italy
- Institute
of Biological Information Processing (IBI-3), Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Emanuela Scardapane
- Department
of Physics “E. Pancini”, University
Federico II, Via Cintia 26, 80126 Naples, Italy
| | | | - Julian A. Tanner
- School
of Biomedical Sciences, University of Hong
Kong, Hong Kong, China
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing (IBI-3), Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dirk Mayer
- Institute
of Biological Information Processing (IBI-3), Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Raffaele Velotta
- Department
of Physics “E. Pancini”, University
Federico II, Via Cintia 26, 80126 Naples, Italy
| |
Collapse
|
11
|
Nirala NR, Shtenberg G. Bovine mastitis inflammatory assessment using silica coated ZnO-NPs induced fluorescence of NAGase biomarker assay. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119769. [PMID: 33848951 DOI: 10.1016/j.saa.2021.119769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/07/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Bovine mastitis (BM) is the most common inflammatory disease in the dairy sector worldwide, originated from bacterial invasion onto the mammary gland. Early BM detection is crucial for identifying new pathogenic infections within the dairy herd, which can be alleviated by antimicrobial therapy. N-acetyl-β-D-glucosaminidase (NAGase) is a prominent BM inflammatory biomarker secreted onto the blood circulation upon pathogenesis and then released into milk, capable of separating healthy quarters from subclinical and clinical BM cases. Herein, we report on a sensitive differentiation assay of BM severity based on enhanced fluorescence emission of a conventional NAGase activity assay. The addition of silica-coated zinc oxide nanoparticles induces non-radiative energy transfer to the lysosomal reaction products, thus leading to enhanced fluorescence (above 3-fold). Various milk qualities within the entire inflammatory spectrum were evaluated by the modified fluorescence assay with respect to non-infected milk. The amplified emission values differentiate between two predominant BM causative pathogens (Streptococcus dysgalactiae and Escherichia coli) at various somatic cell counts. In general, the presented concept offers an efficient, simple, cost-effective fluorescence signal augmentation for mastitis identification, thus offering means to diagnose the severity of the associated disease.
Collapse
Affiliation(s)
- Narsingh R Nirala
- Institute of Agricultural Engineering, ARO, the Volcani Center, Bet Dagan 50250, Israel
| | - Giorgi Shtenberg
- Institute of Agricultural Engineering, ARO, the Volcani Center, Bet Dagan 50250, Israel.
| |
Collapse
|
12
|
Zhao D, Wu Z, Zhang W, Yu J, Li H, Di W, Duan Y. Substrate-Induced Growth of Micro/Nanostructured Zn(OH)F Arrays for Highly Sensitive Microfluidic Fluorescence Assays. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28462-28471. [PMID: 34124881 DOI: 10.1021/acsami.1c04752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To date, ZnO array-based microfluidic fluorescence assays have been widely investigated and have exhibited excellent performance in the detection of cancer biomarkers. However, the requirements of highly sensitive detection necessitate further improvement of current Zn-based fluorescence detection devices. Here, a rhombus-like Zn(OH)F array-based microfluidic fluorescence detection device is proposed. Construction of Zn(OH)F arrays on the inner wall of a microchannel is carried out via a microfluidic chemical method. A substrate-induced growth strategy for Zn(OH)F arrays is proposed, and various micro/nanostructured Zn(OH)F arrays are successfully obtained. Zn(OH)F nanorod arrays with a high aspect ratio can be constructed on the columnar ZnO nanorod arrays, and the results indicate that the fluorescence enhancement factor (EF) of the Zn(OH)F arrays toward Cy3 is approximately 4-fold that of the ZnO nanorod arrays, which can be attributed to the higher excitation light absorption and evanescent electric field. In human epididymis-specific protein 4 (HE4) detection, the limit of detection (LOD) reaches 9.3 fM, and the dynamic linear range is 10 fM to 100 pM. It has been demonstrated that Zn(OH)F nanorod array-based microfluidic devices are excellent fluorescence assay platforms that also provide a new design and construction strategy for fluorescence enhancement substrates for the detection of biomarkers.
Collapse
Affiliation(s)
- De Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhihua Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Wei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - He Li
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wen Di
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| |
Collapse
|
13
|
Randomly positioned gold nanoparticles as fluorescence enhancers in apta-immunosensor for malaria test. Mikrochim Acta 2021; 188:88. [PMID: 33594523 PMCID: PMC7886758 DOI: 10.1007/s00604-021-04746-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
A plasmon-enhanced fluorescence-based antibody-aptamer biosensor - consisting of gold nanoparticles randomly immobilized onto a glass substrate via electrostatic self-assembly - is described for specific detection of proteins in whole blood. Analyte recognition is realized through a sandwich scheme with a capture bioreceptor layer of antibodies - covalently immobilized onto the gold nanoparticle surface in upright orientation and close-packed configuration by photochemical immobilization technique (PIT) - and a top bioreceptor layer of fluorescently labelled aptamers. Such a sandwich configuration warrants not only extremely high specificity, but also an ideal fluorophore-nanostructure distance (approximately 10-15 nm) for achieving strong fluorescence amplification. For a specific application, we tested the biosensor performance in a case study for the detection of malaria-related marker Plasmodium falciparum lactate dehydrogenase (PfLDH). The proposed biosensor can specifically detect PfLDH in spiked whole blood down to 10 pM (0.3 ng/mL) without any sample pretreatment. The combination of simple and scalable fabrication, potentially high-throughput analysis, and excellent sensing performance provides a new approach to biosensing with significant advantages compared to conventional fluorescence immunoassays.
Collapse
|
14
|
Verardo D, Liljedahl L, Richter C, Agnarsson B, Axelsson U, Prinz CN, Höök F, Borrebaeck CAK, Linke H. Fluorescence Signal Enhancement in Antibody Microarrays Using Lightguiding Nanowires. NANOMATERIALS 2021; 11:nano11010227. [PMID: 33467141 PMCID: PMC7829981 DOI: 10.3390/nano11010227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/13/2023]
Abstract
Fluorescence-based detection assays play an essential role in the life sciences and medicine. To offer better detection sensitivity and lower limits of detection (LOD), there is a growing need for novel platforms with an improved readout capacity. In this context, substrates containing semiconductor nanowires may offer significant advantages, due to their proven light-emission enhancing, waveguiding properties, and increased surface area. To demonstrate and evaluate the potential of such nanowires in the context of diagnostic assays, we have in this work adopted a well-established single-chain fragment antibody-based assay, based on a protocol previously designed for biomarker detection using planar microarrays, to freestanding, SiO2-coated gallium phosphide nanowires. The assay was used for the detection of protein biomarkers in highly complex human serum at high dilution. The signal quality was quantified and compared with results obtained on conventional flat silicon and plastic substrates used in the established microarray applications. Our results show that using the nanowire-sensor platform in combination with conventional readout methods, improves the signal intensity, contrast, and signal-to-noise by more than one order of magnitude compared to flat surfaces. The results confirm the potential of lightguiding nanowires for signal enhancement and their capacity to improve the LOD of standard diagnostic assays.
Collapse
Affiliation(s)
- Damiano Verardo
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden; (D.V.); (C.N.P.); (F.H.)
- Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
- AlignedBio AB, Medicon Village, Scheeletorget 1, 223 63 Lund, Sweden
| | - Leena Liljedahl
- CREATE Health Translational Cancer Center, Department of Immunotechnology, Lund University, Medicon Village Bldg 406, 223 63 Lund, Sweden; (L.L.); (C.R.); (U.A.); (C.A.K.B.)
| | - Corinna Richter
- CREATE Health Translational Cancer Center, Department of Immunotechnology, Lund University, Medicon Village Bldg 406, 223 63 Lund, Sweden; (L.L.); (C.R.); (U.A.); (C.A.K.B.)
| | - Björn Agnarsson
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden;
| | - Ulrika Axelsson
- CREATE Health Translational Cancer Center, Department of Immunotechnology, Lund University, Medicon Village Bldg 406, 223 63 Lund, Sweden; (L.L.); (C.R.); (U.A.); (C.A.K.B.)
| | - Christelle N. Prinz
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden; (D.V.); (C.N.P.); (F.H.)
- Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Fredrik Höök
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden; (D.V.); (C.N.P.); (F.H.)
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden;
| | - Carl A. K. Borrebaeck
- CREATE Health Translational Cancer Center, Department of Immunotechnology, Lund University, Medicon Village Bldg 406, 223 63 Lund, Sweden; (L.L.); (C.R.); (U.A.); (C.A.K.B.)
| | - Heiner Linke
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden; (D.V.); (C.N.P.); (F.H.)
- Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
- Correspondence:
| |
Collapse
|
15
|
Ultrasensitive antibody-aptamer plasmonic biosensor for malaria biomarker detection in whole blood. Nat Commun 2020; 11:6134. [PMID: 33262332 PMCID: PMC7708447 DOI: 10.1038/s41467-020-19755-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
Development of plasmonic biosensors combining reliability and ease of use is still a challenge. Gold nanoparticle arrays made by block copolymer micelle nanolithography (BCMN) stand out for their scalability, cost-effectiveness and tunable plasmonic properties, making them ideal substrates for fluorescence enhancement. Here, we describe a plasmon-enhanced fluorescence immunosensor for the specific and ultrasensitive detection of Plasmodium falciparum lactate dehydrogenase (PfLDH)—a malaria marker—in whole blood. Analyte recognition is realized by oriented antibodies immobilized in a close-packed configuration via the photochemical immobilization technique (PIT), with a top bioreceptor of nucleic acid aptamers recognizing a different surface of PfLDH in a sandwich conformation. The combination of BCMN and PIT enabled maximum control over the nanoparticle size and lattice constant as well as the distance of the fluorophore from the sensing surface. The device achieved a limit of detection smaller than 1 pg/mL (<30 fM) with very high specificity without any sample pretreatment. This limit of detection is several orders of magnitude lower than that found in malaria rapid diagnostic tests or even commercial ELISA kits. Thanks to its overall dimensions, ease of use and high-throughput analysis, the device can be used as a substrate in automated multi-well plate readers and improve the efficiency of conventional fluorescence immunoassays. Reliable plasmonic biosensors with high throughput and ease of use are highly sought after. Here, the authors report a plasmon-enhanced fluorescence antibody-aptamer biosensor based on a gold nanoparticle array, and demonstrate its use for effective specific detection of a malaria marker, at femtomolar level, in whole blood.
Collapse
|
16
|
Badshah MA, Koh NY, Zia AW, Abbas N, Zahra Z, Saleem MW. Recent Developments in Plasmonic Nanostructures for Metal Enhanced Fluorescence-Based Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1749. [PMID: 32899375 PMCID: PMC7558009 DOI: 10.3390/nano10091749] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/14/2023]
Abstract
Metal-enhanced fluorescence (MEF) is a unique phenomenon of surface plasmons, where light interacts with the metallic nanostructures and produces electromagnetic fields to enhance the sensitivity of fluorescence-based detection. In particular, this enhancement in sensing capacity is of importance to many research areas, including medical diagnostics, forensic science, and biotechnology. The article covers the basic mechanism of MEF and recent developments in plasmonic nanostructures fabrication for efficient fluorescence signal enhancement that are critically reviewed. The implications of current fluorescence-based technologies for biosensors are summarized, which are in practice to detect different analytes relevant to food control, medical diagnostics, and forensic science. Furthermore, characteristics of existing fabrication methods have been compared on the basis of their resolution, design flexibility, and throughput. The future projections emphasize exploring the potential of non-conventional materials and hybrid fabrication techniques to further enhance the sensitivity of MEF-based biosensors.
Collapse
Affiliation(s)
- Mohsin Ali Badshah
- Department of Chemical and Biomolecular Engineering, University of California-Irvine, Irvine, CA 92697, USA
| | - Na Yoon Koh
- Plamica Labs, Batten Hall, 125 Western Ave, Allston, MA 02163, USA;
| | - Abdul Wasy Zia
- Institute of Structural Health Management, Faculty of Civil Engineering and Engineering Mechanics, Jiangsu University, Zhenjiang 212013, China;
| | - Naseem Abbas
- School of Mechanical Engineering, Chung-Ang University, Seoul 06974, Korea;
| | - Zahra Zahra
- Department of Civil & Environmental Engineering, University of California-Irvine, Irvine, CA 92697, USA;
| | - Muhammad Wajid Saleem
- Department of Mechanical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan;
| |
Collapse
|