1
|
Guo J, Berenov A, Skinner SJ. In situ investigation of ruthenium doped lanthanum nickel titanium double perovskite and its exsolution behaviour. NANOSCALE ADVANCES 2024; 6:4394-4406. [PMID: 39170972 PMCID: PMC11334975 DOI: 10.1039/d4na00349g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024]
Abstract
Exsolution, an innovative method for fabricating perovskite-based oxides decorated with metal nanoparticles, has garnered significant interest in the fields of catalyst fabrication and electrochemical devices. Although dopant exsolution from single perovskite structures has been extensively studied, the exsolution behaviour of double perovskite structures remains insufficiently understood. In this study, we synthesized B-site double perovskite Ru-doped lanthanum nickel titanates with a 7.5 at% A-site deficiency, and systematically investigated the exsolution process that formed nickel metal nanoparticles on the material surface, across a broad reduction temperature range of 350-1000 °C. Both Ex situ and in situ characterization revealed that small, uniform Ni nanoparticles exsolved at low temperatures, whereas the exsolution of ruthenium required higher reduction temperatures beyond 1000 °C. Within the reduction temperature range of 350-500 °C, a notable finding is the reconstruction of exsolved nanoparticles, implying that Ni particles exist in a thermodynamically metastable state. Electrochemical impedance spectroscopy (EIS) showed a decreased area specific resistance (ASR) during the progress of exsolution. The increase in current density of a full solid oxide cell (SOC) in electrolysis mode and the doubling of peak power density in fuel cell mode attributed to the exsolution of Ni nanoparticles highlight the potential application of metal exsolution in electrode materials for SOCs.
Collapse
Affiliation(s)
- Jia Guo
- Department of Materials, Imperial College London Exhibition Road London SW7 2AZ UK
| | - Andrey Berenov
- Department of Materials, Imperial College London Exhibition Road London SW7 2AZ UK
| | - Stephen J Skinner
- Department of Materials, Imperial College London Exhibition Road London SW7 2AZ UK
- International Institute for Carbon Neutral Energy Research, Kyushu University Fukuoka Japan
| |
Collapse
|
2
|
Kim MJ, Hassan MA, Lee C, Jung WG, Bae H, Jeon S, Jung W, Ha JS, Shim JH, Park JH, Ryu SW, Kim BJ. Maximizing Photoelectrochemical Performance in Metal-Oxide Hybrid Composites via Amorphous Exsolution-A New Exsolution Mechanism for Heterogeneous Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308934. [PMID: 38161260 DOI: 10.1002/smll.202308934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Exsolution generates metal nanoparticles anchored within crystalline oxide supports, ensuring efficient exposure, uniform dispersion, and strong nanoparticle-perovskite interactions. Increased doping level in the perovskite is essential for further enhancing performance in renewable energy applications; however, this is constrained by limited surface exsolution, structural instability, and sluggish charge transfer. Here, hybrid composites are fabricated by vacuum-annealing a solution containing SrTiO3 photoanode and Co cocatalyst precursors for photoelectrochemical water-splitting. In situ transmission electron microscopy identifies uniform, high-density Co particles exsolving from amorphous SrTiO3 films, followed by film-crystallization at elevated temperatures. This unique process extracts entire Co dopants with complete structural stability, even at Co doping levels exceeding 30%, and upon air exposure, the Co particles embedded in the film oxidize to CoO, forming a Schottky junction at the interface. These conditions maximize photoelectrochemical activity and stability, surpassing those achieved by Co post-deposition and Co exsolution from crystalline oxides. Theoretical calculations demonstrate in the amorphous state, dopant─O bonds become weaker while Ti─O bonds remain strong, promoting selective exsolution. As expected from the calculations, nearly all of the 30% Fe dopants exsolve from SrTiO3 in an H2 environment, despite the strong Fe─O bond's low exsolution tendency. These analyses unravel the mechanisms driving the amorphous exsolution.
Collapse
Affiliation(s)
- Myeong-Jin Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Soth Korea
| | - Mostafa Afifi Hassan
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Soth Korea
- Department of Physics, Faculty of Science, New Valley University, El- Kharja, 72511, Egypt
| | - Changhoon Lee
- Max Planck POSTECH Center for Complex Phase of Materials, Pohang University of Science and Technology, Pohang, 37673, South Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Wan-Gil Jung
- Korea Basic Science Institute, Gwangju, 61186, South Korea
| | - Hyojung Bae
- Korea Photonics Technology Institute (KOPTI), Cheomdanbencheo-ro 108 beon-gil 9, Buk-gu, Gwangju, 61007, South Korea
| | - SungHyun Jeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jun-Seok Ha
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Ji Hoon Shim
- Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang, 37673, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Jae-Hoon Park
- Max Planck POSTECH Center for Complex Phase of Materials, Pohang University of Science and Technology, Pohang, 37673, South Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Sang-Wan Ryu
- Department of Physics, Chonnam National University, Gwangju, 61186, South Korea
| | - Bong-Joong Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Soth Korea
| |
Collapse
|
3
|
Kang S, Kim JK, Kim H, Son YH, Chang J, Kim J, Kim DW, Lee JM, Kwon HJ. Local Structures of Ex-Solved Nanoparticles Identified by Machine-Learned Potentials. NANO LETTERS 2024; 24:4224-4232. [PMID: 38557115 DOI: 10.1021/acs.nanolett.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this study, we identify the local structures of ex-solved nanoparticles using machine-learned potentials (MLPs). We develop a method for training machine-learned potentials by sampling local structures of heterointerface configurations as a training set with its efficacy tested on the Ni/MgO system, illustrating that the error in interface energy is only 0.004 eV/Å2. Using the developed scheme, we train an MLP for the Ni/La0.5Ca0.5TiO3 ex-solution system and identify the local structures for both exo- and endo-type particles. The established model aligns well with the experimental observations, accurately predicting a nucleation size of 0.45 nm. Lastly, the density functional theory calculations on the established atomistic model verify that the kinetic barrier for the dry reforming of methane are substantially reduced by 0.49 eV on the ex-solved catalysts compared to that on the impregnated catalysts. Our findings offer insights into the local structures, growth mechanisms, and underlying origin of the catalytic properties of ex-solved nanoparticles.
Collapse
Affiliation(s)
- Sungwoo Kang
- Air Science Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Company, Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Jun Kyu Kim
- Air Science Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Company, Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Hyunah Kim
- Air Science Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Company, Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - You-Hwan Son
- Air Science Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Company, Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Jaehee Chang
- Air Science Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Company, Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Jinwoo Kim
- Air Science Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Company, Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Dong-Wook Kim
- Air Science Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Company, Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Jong-Min Lee
- Air Science Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Company, Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Hyuk Jae Kwon
- Air Science Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Company, Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| |
Collapse
|
4
|
Vera E, Trillaud V, Metaouaa J, Aouine M, Boreave A, Burel L, Roiban IL, Steyer P, Vernoux P. Comparative Study of Exsolved and Impregnated Ni Nanoparticles Supported on Nanoporous Perovskites for Low-Temperature CO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7219-7231. [PMID: 38308580 DOI: 10.1021/acsami.3c17300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
This study investigated the redox exsolution of Ni nanoparticles from a nanoporous La0.52Sr0.28Ti0.94Ni0.06O3 perovskite. The characteristics of exsolved Ni nanoparticles including their size, population, and surface concentration were deeply analyzed by environmental scanning electron microscopy (ESEM), transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX) mapping, and hydrogen temperature-programmed reduction (H2-TPR). Ni exsolution was triggered in hydrogen as early as 400 °C, with the highest catalytic activity for low-temperature CO oxidation achieved after a reduction step at 500 °C, despite only a 10% fraction of Ni exsolved. The activity and stability of exsolved nanoparticles were compared with their impregnated counterparts on a perovskite material with a similar chemical composition (La0.65Sr0.35TiO3) and a comparable specific surface area and Ni loading. After an aging step at 800 °C, the catalytic activity of exsolved Ni nanoparticles at 300 °C was found to be 10 times higher than that of impregnated ones, emphasizing the thermal stability of Ni nanoparticles prepared by redox exsolution.
Collapse
Affiliation(s)
- Elizabeth Vera
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5256, IRCELYON, 2 avenue A. Einstein, 69626 Villeurbanne Cedex, France
| | - Victor Trillaud
- Univ. Lyon, INSA - Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5510, Mateis, 7 av Jean Capelle, 69621 Villeurbanne Cedex, France
| | - Jamila Metaouaa
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5256, IRCELYON, 2 avenue A. Einstein, 69626 Villeurbanne Cedex, France
| | - Mimoun Aouine
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5256, IRCELYON, 2 avenue A. Einstein, 69626 Villeurbanne Cedex, France
| | - Antoinette Boreave
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5256, IRCELYON, 2 avenue A. Einstein, 69626 Villeurbanne Cedex, France
| | - Laurence Burel
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5256, IRCELYON, 2 avenue A. Einstein, 69626 Villeurbanne Cedex, France
| | - Ioan-Lucian Roiban
- Univ. Lyon, INSA - Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5510, Mateis, 7 av Jean Capelle, 69621 Villeurbanne Cedex, France
| | - Philippe Steyer
- Univ. Lyon, INSA - Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5510, Mateis, 7 av Jean Capelle, 69621 Villeurbanne Cedex, France
| | - Philippe Vernoux
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5256, IRCELYON, 2 avenue A. Einstein, 69626 Villeurbanne Cedex, France
| |
Collapse
|
5
|
Zhu S, Fan J, Li Z, Wu J, Xiao M, Du P, Wang X, Jia L. Metal exsolution from perovskite-based anodes in solid oxide fuel cells. Chem Commun (Camb) 2024; 60:1062-1071. [PMID: 38167745 DOI: 10.1039/d3cc05688k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Solid oxide fuel cells (SOFCs) are highly efficient and environmentally friendly devices for converting fuel into electrical energy. In this regard, metal nanoparticles (NPs) loaded onto the anode oxide play a crucial role due to their exceptional catalytic activity. NPs synthesized through exsolution exhibit excellent dispersion and stability, garnering significant attention for comprehending the exsolution process mechanism and consequently improving synthesis effectiveness. This review presents recent advancements in the exsolution process, focusing on the influence of oxygen vacancies, A-site defects, lattice strain, and phase transformation on the variation of the octahedral crystal field in perovskites. Moreover, we offer insights into future research directions to further enhance our understanding of the mechanism and achieve significant exsolution of NPs on perovskites.
Collapse
Affiliation(s)
- Shasha Zhu
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Junde Fan
- Yueyang Yumeikang Biotechnology Co., Ltd., Yueyang, 414100, P. R. China
| | - Zongbao Li
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Jun Wu
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Mengqin Xiao
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Pengxuan Du
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Xin Wang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Lichao Jia
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
6
|
Kim YH, Jeong H, Won BR, Jeon H, Park CH, Park D, Kim Y, Lee S, Myung JH. Nanoparticle Exsolution on Perovskite Oxides: Insights into Mechanism, Characteristics and Novel Strategies. NANO-MICRO LETTERS 2023; 16:33. [PMID: 38015283 PMCID: PMC10684483 DOI: 10.1007/s40820-023-01258-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023]
Abstract
Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications, including fuel cells, chemical conversion, and batteries. Nanocatalysts demonstrate high activity by expanding the number of active sites, but they also intensify deactivation issues, such as agglomeration and poisoning, simultaneously. Exsolution for bottom-up synthesis of supported nanoparticles has emerged as a breakthrough technique to overcome limitations associated with conventional nanomaterials. Nanoparticles are uniformly exsolved from perovskite oxide supports and socketed into the oxide support by a one-step reduction process. Their uniformity and stability, resulting from the socketed structure, play a crucial role in the development of novel nanocatalysts. Recently, tremendous research efforts have been dedicated to further controlling exsolution particles. To effectively address exsolution at a more precise level, understanding the underlying mechanism is essential. This review presents a comprehensive overview of the exsolution mechanism, with a focus on its driving force, processes, properties, and synergetic strategies, as well as new pathways for optimizing nanocatalysts in diverse applications.
Collapse
Affiliation(s)
- Yo Han Kim
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hyeongwon Jeong
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Bo-Ram Won
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hyejin Jeon
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Chan-Ho Park
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Dayoung Park
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yeeun Kim
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Somi Lee
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jae-Ha Myung
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
7
|
Liu J, Qi J, Yu W, Hu X, Qiao S, Shang J, Liu L, Zhao Z, Tang L, Zhang W. Nonreducing Ambient Atmosphere: Pulsed Electric Current Treatment of Co/Ni Doped Perovskite Oxides to Achieve Exsolution Enhanced Electrochemical Performance. J Phys Chem Lett 2023; 14:9690-9697. [PMID: 37874672 DOI: 10.1021/acs.jpclett.3c02413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Exsolution of metal nanoparticles (NPs) on the surface of perovskite oxides is a promising approach for developing advanced catalytic materials through a "bottom-up" design strategy. Under a nonreducing ambient atmosphere utilizing pulsed electric current (PEC) treatment to promote the exsolution of perovskite oxides effectively overcomes the limitations inherent in conventional high-temperature vapor phase reduction (HTVPR) in situ exsolution methods. This paper presents the successful synthesis of (La0.7Sr0.3)0.8Ti0.93Ni0.07O3 (LSTN) perovskite oxide and (La0.7Sr0.3)0.8Ti0.93Co0.07O3 (LSTC) perovskite oxide using the sol-gel method, followed by PEC treatment at 600 V, 3 Hz, and 90 s. Utilizing various characterization techniques to confirm that PEC treatment can promote the exsolution of Co and Ni NPs under a nonreducing ambient atmosphere, the results indicated that the exsolved perovskite oxides exhibited significantly improved electrochemical properties. Furthermore, compared to the LSTN-PEC, LSTC-PEC demonstrates a lower onset potential of 1.504 V, a Tafel slope of 87.16 mV dec-1, lower impedance, higher capacitance, superior catalytic activity, and long-term stability.
Collapse
Affiliation(s)
- Juntao Liu
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Jingang Qi
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Wenwen Yu
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Xin Hu
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Sifan Qiao
- School of Materials Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Jian Shang
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Liang Liu
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Zuofu Zhao
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Lidan Tang
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Wei Zhang
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
- School of Materials Science and Engineering, and Electror Microscopy Center, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
8
|
Lu Y, Huang Y, Xu Z, Yang K, Bao W, Lu Q. Quantifying Electrochemical Driving Force for Exsolution in Perovskite Oxides by Designing Graded Oxygen Chemical Potential. ACS NANO 2023. [PMID: 37390393 DOI: 10.1021/acsnano.3c04008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Metal nanoparticles exsolved and anchored at the parent perovskite oxide surfaces can greatly enhance the activity and antisintering stability for high-temperature (electro-) chemical catalytic reactions. While exsolution of nanoparticles triggered by using conventional high-temperature thermal reduction suffers from slow kinetics, using an electrochemical driving force can promote the exsolution rate. However, a quantitative correlation between the applied electrochemical driving force and the spatial density of exsolved nanoparticles remains unknown. In this work, we use a specially designed electrochemical device to induce a spatially graded voltage in a La0.43Ca0.37Ti0.94Ni0.06O3-δ electrode, in order to systematically investigate the effect of electrochemical switching on exsolution. With increasing driving force, which leads to decreasing oxygen chemical potential, the density of nanoparticles was observed to increase dramatically, while the average particle size remained roughly constant. We further identified oxygen vacancy pairs or clusters as the preferential nucleation sites for exsolution. Our work provided a high-throughput platform for the systematic study of exsolution of perovskite oxides targeted for fuel electrode materials with improved electrocatalytic performance and stability.
Collapse
Affiliation(s)
- Ying Lu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Yiwei Huang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Zihan Xu
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Kaichuang Yang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Weichao Bao
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| | - Qiyang Lu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
9
|
O'Leary W, Giordano L, Park J, Nonnenmann SS, Shao-Horn Y, Rupp JLM. Influence of Sr-Site Deficiency, Ca/Ba/La Doping on the Exsolution of Ni from SrTiO 3. J Am Chem Soc 2023. [PMID: 37318138 DOI: 10.1021/jacs.2c12011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cermet catalysts formed via exsolution of metal nanoparticles from perovskites promise to perform better in electro- and thermochemical applications than those synthesized by conventional wet-chemical approaches. However, a shortage of robust material design principles still stands in the way of widespread commercial adoption of exsolution. Working with Ni-doped SrTiO3 solid solutions, we investigated how the introduction of Sr deficiency as well as Ca, Ba, and La doping on the Sr site changed the size and surface density of exsolved Ni nanoparticles. We carried out exsolution on 11 different compositions under fixed conditions. We elucidated the effect of A-site defect size/valence on nanoparticle density and size as well as the effect of composition on nanoparticle immersion and ceramic microstructure. Based on our experimental results, we developed a model that quantitatively predicted a composition's exsolution properties using density functional theory calculations. The model and calculations provide insights into the exsolution mechanism and can be used to find new compositions with high exsolution nanoparticle density.
Collapse
Affiliation(s)
- Willis O'Leary
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Livia Giordano
- Department of Materials Science, University of Milano-Bicocca, Milan 20125, Italy
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jieun Park
- Department of Mechanical and Industrial Engineering, University of Massachusetts─Amherst, Amherst, Massachusetts 01002, United States
| | - Stephen S Nonnenmann
- Department of Mechanical and Industrial Engineering, University of Massachusetts─Amherst, Amherst, Massachusetts 01002, United States
| | - Yang Shao-Horn
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jennifer L M Rupp
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Technical University of Munich, Garching 85748, Germany
| |
Collapse
|
10
|
Kim YH, Jeong H, Won BR, Myung JH. Exsolution Modeling and Control to Improve the Catalytic Activity of Nanostructured Electrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208984. [PMID: 36691762 DOI: 10.1002/adma.202208984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/17/2023] [Indexed: 06/17/2023]
Abstract
In situ exsolution for nanoscale electrode design has attracted considerable attention because of its promising activity and high stability. However, fundamental research on the mechanisms underlying particle growth remains insufficient. Herein, cation-diffusion-determined exsolution is presented using an analytical model based on classical nucleation and diffusion. In the designed perovskite system, the exsolution trend for particle growth is consistent with this diffusion model, which strongly depends on the initial cation concentration and reduction conditions. Based on the experimental and theoretical results, a highly Ni-doped anode and an electrochemical switching technique are employed to promote exsolution and overcome growth limitations. The optimal cell exhibits an outstanding maximum power density of 1.7 W cm-2 at 900 °C and shows no evident degradation when operating at 800 °C for 240 h under wet H2 . This study provides crucial insights into the developing and tuning of heterogeneous catalysts for energy-conversion applications.
Collapse
Affiliation(s)
- Yo Han Kim
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hyeongwon Jeong
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Bo-Ram Won
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jae-Ha Myung
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| |
Collapse
|
11
|
Kim YB, Kim S, Kim J, Kim JK, Jeong SJ, Oh D, Jung W. Synthesis of Highly Tunable Alloy Nanocatalyst through Heterogeneous Doping Method. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204693. [PMID: 36509675 PMCID: PMC9929244 DOI: 10.1002/advs.202204693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The combination of supported metal nanoparticles and functional host oxides catalyze many major industrial reactions. However, uniform dispersion and ideal chemical configuration of such nanoparticles, which determines the catalytic activity, are often difficult to achieve. In this study, a unique combination is proposed of heterogeneous doping and ex-solution for the fabrication of Pt-Ni alloy nanoparticles on CeO2 . By manipulating the reducing conditions, both the particle size and composition are precisely controlled, thereby achieving a highly dispersed and stable alloy nanocatalyst. The unique behavior of controlled alloy composition is elucidated through classical diffusion and precipitation kinetics with elemental analysis of the grain boundaries. Finally, Pt-Ni alloy nanocatalysts are successfully tuned showcasing a breakthrough performance compared to single element catalyst in reverse water gas shift reaction with superior stability and reproducibility.
Collapse
Affiliation(s)
- Yong Beom Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Seunghyun Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jinwook Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jun Kyu Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
- Present address:
Samsung Advanced Institute of Technology (SAIT)130 Samsung‐ro, YeongtongguSuwon16678Republic of Korea
| | - Seung Jin Jeong
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
- Present address:
Samsung Electronics129, Samsung‐ro, Yeongtong‐guSuwon16677Republic of Korea
| | - DongHwan Oh
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - WooChul Jung
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
12
|
Mekkering MJ, Biemolt J, de Graaf J, Lin YA, van Leest NP, Troglia A, Bliem R, de Bruin B, Rothenberg G, Yan N. Dry reforming of methane over single-atom Rh/Al 2O 3 catalysts prepared by exsolution. Catal Sci Technol 2023; 13:2255-2260. [PMID: 37025647 PMCID: PMC10069472 DOI: 10.1039/d2cy02126a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/18/2023] [Indexed: 03/17/2023]
Abstract
Single-atom catalysts often show exceptionally high performance per metal loading.
Collapse
Affiliation(s)
- Martijn J. Mekkering
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands
| | - Jasper Biemolt
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands
| | - Jeen de Graaf
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands
| | - Yi-An Lin
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands
| | - Nicolaas P. van Leest
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands
| | - Alessandro Troglia
- Advanced Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Roland Bliem
- Advanced Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
- Van der Waals–Zeeman Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands
| | - Gadi Rothenberg
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands
| | - Ning Yan
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
13
|
Guo J, Cai R, Cali E, Wilson GE, Kerherve G, Haigh SJ, Skinner SJ. Low-Temperature Exsolution of Ni-Ru Bimetallic Nanoparticles from A-Site Deficient Double Perovskites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107020. [PMID: 35182013 DOI: 10.1002/smll.202107020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Exsolution of stable metallic nanoparticles for use as efficient electrocatalysts has been of increasing interest for a range of energy technologies. Typically, exsolved nanoparticles show higher thermal and coarsening stability compared to conventionally deposited catalysts. Here, A-site deficient double perovskite oxides, La2- x NiRuO6- δ (x = 0.1 and 0.15), are designed and subjected to low-temperature reduction leading to exsolution. The reduced double perovskite materials are shown to exsolve nanoparticles of 2-6 nm diameter during the reduction in the low-temperature range of 350-450 °C. The nanoparticle sizes are found to increase after reduction at the higher temperature (450 °C), suggesting diffusion-limited particle growth. Interestingly, both nickel and ruthenium are co-exsolved during the reduction process. The formation of bimetallic nanoparticles at such low temperatures is rare. From the in situ impedance spectroscopy measurements of the double perovskite electrode layers, the onset of the exsolution process is found to be within the first few minutes of the reduction reaction. In addition, the area-specific resistance of the electrode layers is found to decrease by 90% from 291 to 29 Ω cm2 , suggesting encouraging prospects for these low-temperature rapidly exsolved Ni/Ru alloy nanoparticles in a range of catalytic applications.
Collapse
Affiliation(s)
- Jia Guo
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Rongsheng Cai
- Department of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Eleonora Cali
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - George E Wilson
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Gwilherm Kerherve
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Sarah J Haigh
- Department of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Stephen J Skinner
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| |
Collapse
|
14
|
Lv H, Lin L, Zhang X, Song Y, Li R, Li J, Matsumoto H, Ta N, Zeng C, Gong H, Fu Q, Wang G, Bao X. Redox-manipulated RhO nanoclusters uniformly anchored on Sr2Fe1.45Rh0.05Mo0.5O6–δ perovskite for CO2 electrolysis. FUNDAMENTAL RESEARCH 2022. [DOI: 10.1016/j.fmre.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Chen H, Lim C, Zhou M, He Z, Sun X, Li X, Ye Y, Tan T, Zhang H, Yang C, Han JW, Chen Y. Activating Lattice Oxygen in Perovskite Oxide by B-Site Cation Doping for Modulated Stability and Activity at Elevated Temperatures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102713. [PMID: 34658158 PMCID: PMC8596113 DOI: 10.1002/advs.202102713] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/02/2021] [Indexed: 05/07/2023]
Abstract
Doping perovskite oxide with different cations is used to improve its electro-catalytic performance for various energy and environment devices. In this work, an activated lattice oxygen activity in Pr0.4 Sr0.6 Cox Fe0.9- x Nb0.1 O3- δ (PSCxFN, x = 0, 0.2, 0.7) thin film model system by B-site cation doping is reported. As Co doping level increases, PSCxFN thin films exhibit higher concentration of oxygen vacancies ( V o • • ) as revealed by X-ray diffraction and synchrotron-based X-ray photoelectron spectroscopy. Density functional theory calculation results suggest that Co doping leads to more distortion in FeO octahedra and weaker metaloxygen bonds caused by the increase of antibonding state, thereby lowering V o • • formation energy. As a consequence, PSCxFN thin film with higher Co-doping level presents larger amount of exsolved particles on the surface. Both the facilitated V o • • formation and B-site cation exsolution lead to the enhanced hydrogen oxidation reaction (HOR) activity. Excessive Co doping until 70%, nevertheless, results in partial decomposition of thin film and degrades the stability. Pr0.4 Sr0.6 (Co0.2 Fe0.7 Nb0.1 )O3 with moderate Co doping level displays both good HOR activity and stability. This work clarifies the critical role of B-site cation doping in determining the V o • • formation process, the surface activity, and structure stability of perovskite oxides.
Collapse
Affiliation(s)
- Huijun Chen
- School of Environment and EnergyState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Chaesung Lim
- Department of Chemical EngineeringPohang University of Science and TechnologyPohangGyeongbuk37673Republic of Korea
| | - Mengzhen Zhou
- School of Environment and EnergyState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Zuyun He
- School of Environment and EnergyState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Xiang Sun
- School of Environment and EnergyState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Xiaobao Li
- State Key Laboratory of Functional Materials for InformaticsShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Yongjian Ye
- School of Environment and EnergyState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Ting Tan
- School of Environment and EnergyState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Hui Zhang
- State Key Laboratory of Functional Materials for InformaticsShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Chenghao Yang
- School of Environment and EnergyState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Jeong Woo Han
- Department of Chemical EngineeringPohang University of Science and TechnologyPohangGyeongbuk37673Republic of Korea
| | - Yan Chen
- School of Environment and EnergyState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouGuangdong510006China
| |
Collapse
|
16
|
Kakar MU, Khan K, Akram M, Sami R, Khojah E, Iqbal I, Helal M, Hakeem A, Deng Y, Dai R. Synthesis of bimetallic nanoparticles loaded on to PNIPAM hybrid microgel and their catalytic activity. Sci Rep 2021; 11:14759. [PMID: 34285274 PMCID: PMC8292321 DOI: 10.1038/s41598-021-94177-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
This study was designed to preparecarboxyl-functionalized poly (N-isopropylacrylamide) PNIPAM microgels having excellent catalytic properties.Recently, researchers are trying to fabricate cost effective and efficient hybrid catalytic materials for the synthesis of nitrogenous compounds along with enhanced optical properties. For the same motive, synthesis of carboxyl-functionalized PNIPAM microgels was performed by using polymerization of soap-free emulsion of N-isopropyl acrylamide, which is NIPAM along with acrylic acid (AA). The thiol group was introduced through the imide bond mediated by carbodiimide, between carboxyl-functionalized microgels through carboxyl group and aminoethanethiol (AET). Copper, Palladium and Cu/Pd nanoparticles were incorporated successfully into thiol-functionalized PNIPAM microgels through metals thiol linkage. The synthesized microgels and hybrid encompassing metallic nanoparticles were characterized in detail by using Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron (XPS) and Fourier transformed infrared spectroscopy for structural interpretation. The thermal properties of the pure and hybrid microgels were inspected by TG analysis. The prepared nanocomposites PNIPAM-Cu, PNIPAM-Pd and PNIPAM-Cu/Pd exhibited decent catalytic properties for the degradation of 4-Nitrophenol and methylene blue, but the bimetallic Cu/Pd have remarkable catalytic properties. The catalytic reaction followed pseudo-first-order reaction with rate constants 0.223 min-1, 0.173 min-1 for 4-Nitrophenol and methylene blue in that order. In this study,we were able to establish that Cu/Pd hybrid is an efficient catalyst for 4-Nitrophenol and methylene blue as compared to its atomic analogue.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, People's Republic of China
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences (LUAWMS), Uthal, Balochistan, Pakistan
| | - Khakemin Khan
- Department of Chemistry, Hazara University, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Akram
- Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif, 21944, Saudi Arabia.
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif, 21944, Saudi Arabia
| | - Imran Iqbal
- Department of Information and Computational Sciences, School of Mathematical Sciences and LMAM, Peking University, Beijing, 100871, People's Republic of China
| | - Mahmoud Helal
- Department of Mechanical Engineering, Faculty of Engineering, Taif University, Taif, Saudi Arabia
| | - Abdul Hakeem
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences (LUAWMS), Uthal, Balochistan, Pakistan
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, People's Republic of China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, People's Republic of China.
| |
Collapse
|
17
|
Exploring the Stability of Fe–Ni Alloy Nanoparticles Exsolved from Double-Layered Perovskites for Dry Reforming of Methane. Catalysts 2021. [DOI: 10.3390/catal11060741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Exsolution is emerging as a promising route for the creation of nanoparticles that remain anchored to the oxide support, imparting remarkable stability in high temperature chemical processes such as dry reforming of methane. This process takes place at temperatures around 850 °C, which causes sintering-related issues in catalysts prepared using conventional impregnation methods, which could be overcome by using exsolution functionalized oxides. In this work, FeNi3 alloy nanoparticles exsolved from Sr2FexNi1-xMoO6-δ double-layered perovskites were evaluated as a dry reforming catalyst, paying special attention to structure–activity relationships. Our results indicate that increasing the Ni content favors the nanoparticle dispersion, eventually leading to increased CO2 and CH4 conversions. The exsolved nanoparticles presented remarkable nanoparticle size (ca. 30 nm) stability after the 10 h treatment, although the formation of some phase segregations over the course of the reaction caused a minor decrease in the nanoparticle population. Overall, the results presented here serve as materials processing guidelines that could find further potential use in the design of more efficient (electro)catalysts in other fuel production or energy conversion technologies.
Collapse
|
18
|
Improved Catalytic Activity of the High-Temperature Water Gas Shift Reaction on Metal-Exsolved La0.9Ni0.05Fe0.95O3 by Controlling Reduction Time. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5020028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The catalyst exsolved from nickel-doped perovskite oxide, La0.9Ni0.05Fe0.95O3, has been proven to be effective for gas-phase reactions. To obtain the optimum amount of exsolved nanoparticles from the parent perovskite oxide, control of the reduction treatment condition is vital. Here, the effect of reduction time on the exsolved nanoparticle distribution, and thus the catalytic activity of the high-temperature water gas shift reaction (WGSR), was investigated. Upon conducting a wide range of characterizations, we assumed that the exsolution process might be a two-step process. Firstly, the surface oxygen is extracted. Secondly, due to the unstable perovskite structure, the Ni ions in the bulk La0.9Ni0.05Fe0.95O3 continuously diffuse toward the surface and, as the reduction progresses, more nuclei are generated to form a greater number of nanoparticles. This assumption is proven by the fact that, with an increase in the exsolution treatment time, the population of exsolution nanoparticles increases. Moreover, as the reduction time increases, the high-temperature WGSR activity also increases. The temperature-programmed measurements suggest that the exsolved nanoparticles are the active reaction sites. We believe that this study is helpful for understanding exsolution behavior during reduction treatment and, thus, developing a perovskite exsolution catalyst for the WGSR.
Collapse
|
19
|
Kousi K, Tang C, Metcalfe IS, Neagu D. Emergence and Future of Exsolved Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006479. [PMID: 33787009 DOI: 10.1002/smll.202006479] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Supported nanoparticle systems have received increased attention over the last decades because of their potential for high activity levels when applied to chemical conversions, although, because of their nanoscale nature, they tend to exhibit problems with long-term durability. Over the last decade, the discovery of the so-called exsolution concept has addressed many of these challenges and opened many other opportunities to material design by providing a relatively simple, single-step, synthetic pathway to produce supported nanoparticles that combine high stability against agglomeration and poisoning with high activity across multiple areas of application. Here, the trends that define the development of the exsolution concept are reviewed in terms of design, functionality, tunability, and applicability. To support this, the number of studies dedicated to both fundamental and application-related studies, as well as the types of metallic nanoparticles and host or support lattices employed, are examined. Exciting future directions of research are also highlighted.
Collapse
Affiliation(s)
- Kalliopi Kousi
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Chenyang Tang
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Ian S Metcalfe
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Dragos Neagu
- Department of Process and Chemical Engineering, University of Strathclyde, Glasgow, G1 1XL, UK
| |
Collapse
|
20
|
Sun X, Chen H, Yin Y, Curnan MT, Han JW, Chen Y, Ma Z. Progress of Exsolved Metal Nanoparticles on Oxides as High Performance (Electro)Catalysts for the Conversion of Small Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005383. [PMID: 33538089 DOI: 10.1002/smll.202005383] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Indexed: 06/12/2023]
Abstract
Utilizing electricity and heat from renewable energy to convert small molecules into value-added chemicals through electro/thermal catalytic processes has enormous socioeconomic and environmental benefits. However, the lack of catalysts with high activity, good long-term stability, and low cost strongly inhibits the practical implementation of these processes. Oxides with exsolved metal nanoparticles have recently been emerging as promising catalysts with outstanding activity and stability for the conversion of small molecules, which provides new possibilities for application of the processes. In this review, it starts with an introduction on the mechanism of exsolution, discussing representative exsolution materials, the impacts of intrinsic material properties and external environmental conditions on the exsolution behavior, and the driving forces for exsolution. The performances of exsolution materials in various reactions, such as alkane reforming reaction, carbon monoxide oxidation, carbon dioxide utilization, high temperature steam electrolysis, and low temperature electrocatalysis, are then summarized. Finally, the challenges and future perspectives for the development of exsolution materials as high-performance catalysts are discussed.
Collapse
Affiliation(s)
- Xiang Sun
- School of Environment and Energy, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Huijun Chen
- School of Environment and Energy, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yimei Yin
- Institute of Electrochemical & Energy Technology, Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Matthew T Curnan
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Yan Chen
- School of Environment and Energy, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Zifeng Ma
- Institute of Electrochemical & Energy Technology, Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
21
|
Kim JH, Kim JK, Liu J, Curcio A, Jang JS, Kim ID, Ciucci F, Jung W. Nanoparticle Ex-solution for Supported Catalysts: Materials Design, Mechanism and Future Perspectives. ACS NANO 2021; 15:81-110. [PMID: 33370099 DOI: 10.1021/acsnano.0c07105] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Supported metal catalysts represent one of the major milestones in heterogeneous catalysis. Such catalytic systems are feasible for use in a broad range of applications, including renewable energy devices, sensors, automotive emission control systems, and chemical reformers. The lifetimes of these catalytic platforms depend strongly on the stability of the supported nanoparticles. With this regard, nanoparticles synthesized via ex-solution process emphasize exceptional robustness as they are socketed in the host oxide. Ex-solution refers to a phenomenon which yields selective growth of fine and uniformly distributed metal nanocatalysts on oxide supports upon partial reduction. This type of advanced structural engineering is a game-changer in the field of heterogeneous catalysis with numerous studies showing the benefits of ex-solution process. In this review, we highlight the latest research efforts regarding the origin of the ex-solution phenomenon and the mechanism underpinning particle formation. We also propose research directions to expand the utility and functionality of the current ex-solution techniques.
Collapse
Affiliation(s)
- Jun Hyuk Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jun Kyu Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jiapeng Liu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Antonino Curcio
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Ji-Soo Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Francesco Ciucci
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
22
|
Calì E, Kerherve G, Naufal F, Kousi K, Neagu D, Papaioannou EI, Thomas MP, Guiton BS, Metcalfe IS, Irvine JTS, Payne DJ. Exsolution of Catalytically Active Iridium Nanoparticles from Strontium Titanate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37444-37453. [PMID: 32698571 DOI: 10.1021/acsami.0c08928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The search for new functional materials that combine high stability and efficiency with reasonable cost and ease of synthesis is critical for their use in renewable energy applications. Specifically in catalysis, nanoparticles, with their high surface-to-volume ratio, can overcome the cost implications associated with otherwise having to use large amounts of noble metals. However, commercialized materials, that is, catalytic nanoparticles deposited on oxide supports, often suffer from loss of activity because of coarsening and carbon deposition during operation. Exsolution has proven to be an interesting strategy to overcome such issues. Here, the controlled emergence, or exsolution, of faceted iridium nanoparticles from a doped SrTiO3 perovskite is reported and their growth preliminary probed by in situ electron microscopy. Upon reduction of SrIr0.005Ti0.995O3, the generated nanoparticles show embedding into the oxide support, therefore preventing agglomeration and subsequent catalyst degradation. The advantages of this approach are the extremely low noble metal amount employed (∼0.5% weight) and the catalytic activity reported during CO oxidation tests, where the performance of the exsolved SrIr0.005Ti0.995O3 is compared to the activity of a commercial catalyst with 1% loading (1% Ir/Al2O3). The high activity obtained with such low doping shows the possibility of scaling up this new catalyst, reducing the high cost associated with iridium-based materials.
Collapse
Affiliation(s)
- Eleonora Calì
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - Gwilherm Kerherve
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - Faris Naufal
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - Kalliopi Kousi
- School of Engineering, Newcastle University, Merz Court, Newcastle upon Tyne NE1 7RU, U.K
| | - Dragos Neagu
- School of Engineering, Newcastle University, Merz Court, Newcastle upon Tyne NE1 7RU, U.K
| | | | - Melonie P Thomas
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, United States
| | - Beth S Guiton
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, United States
| | - Ian S Metcalfe
- School of Engineering, Newcastle University, Merz Court, Newcastle upon Tyne NE1 7RU, U.K
| | - John T S Irvine
- School of Chemistry, University of St Andrews, St. Andrews KY16 9ST, U.K
| | - David J Payne
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| |
Collapse
|
23
|
Combining Exsolution and Infiltration for Redox, Low Temperature CH4 Conversion to Syngas. Catalysts 2020. [DOI: 10.3390/catal10050468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exsolution of surface and bulk nanoparticles in perovskites has been recently employed in chemical looping methane partial oxidation because of the emergent materials’ properties such as oxygen capacity, redox stability, durability, coke resistance and enhanced activity. Here we attempt to further lower the temperature of methane conversion by complementing exsolution with infiltration. We prepare an endo/exo-particle system using exsolution and infiltrate it with minimal amount of Rh (0.1 wt%) in order to functionalize the surface and induce low temperature activity. We achieve a temperature decrease by almost 220 °C and an increase of the activity up to 40%. We also show that the initial microstructure of the perovskite plays a key role in controlling nanoparticle anchorage and carbon deposition. Our results demonstrate that microstructure tuning and surface functionalization are important aspects to consider when designing materials for redox cycling applications.
Collapse
|