1
|
Corrêa LM, Fairclough SM, Scher KMR, Atta S, Dos Santos DP, Ducati C, Fabris L, Ugarte D. Atomic Structure and 3D Shape of a Multibranched Plasmonic Nanostar from a Single Spatially Resolved Electron Diffraction Map. ACS NANO 2024; 18:26655-26665. [PMID: 39305260 PMCID: PMC11447907 DOI: 10.1021/acsnano.4c05201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Despite the interest in improving the sensitivity of optical sensors using plasmonic nanoparticles (NPs) (rods, wires, and stars), the full structural characterization of complex shape nanostructures is challenging. Here, we derive from a single scanning transmission electron microscope diffraction map (4D-STEM) a detailed determination of both the 3D shape and atomic arrangement of an individual 6-branched AuAg nanostar (NS) with high-aspect-ratio legs. The NS core displays an icosahedral structure, and legs are decahedral rods attached along the 5-fold axes at the core apexes. The NS legs show an anomalous anisotropic spatial distribution (all close to a plane) due to an interplay between the icosahedral symmetry and the unzipping of the surfactant layer on the core. The results significantly improve our understanding of the star growth mechanism. This low dose diffraction mapping is promising for the atomic structure study of individual multidomain, multibranched, or multiphase NPs, even when constituted of beam-sensitive materials.
Collapse
Affiliation(s)
- Leonardo M Corrêa
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas 13083-859, Brazil
| | - Simon M Fairclough
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K
| | - Kaleigh M R Scher
- Department of Materials Science and Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Supriya Atta
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | | | - Caterina Ducati
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino, Turin 10129, Italy
| | - Daniel Ugarte
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas 13083-859, Brazil
| |
Collapse
|
2
|
Atta S, Canning AJ, Vo-Dinh T. A simple low-cost flexible plasmonic patch based on spiky gold nanostars for ultra-sensitive SERS sensing. Analyst 2024; 149:2084-2096. [PMID: 38415724 DOI: 10.1039/d3an02246c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Recently, transparent and flexible surface-enhanced Raman scattering (SERS) substrates have received great interest for direct point-of-care detection of analytes on irregular nonplanar surfaces. In this study, we proposed a simple cost-effective strategy to develop a flexible SERS patch utilizing multibranched sharp spiked gold nanostars (GNS) decorated on a commercially available adhesive Scotch Tape for achieving ultra-high SERS sensitivity. The experimental SERS measurements were correlated with theoretical finite element modeling (FEM), which indicates that the GNS having a 2.5 nm branch tip diameter (GNS-4) exhibits the strongest SERS enhancement. Using rhodamine 6G (R6G) as a model analyte, the SERS performance of the flexible SERS patch exhibited a minimum detection limit of R6G as low as 1 pM. The enhancement factor of the SERS patch with GNS-4 was calculated as 6.2 × 108, which indicates that our flexible SERS substrate has the potential to achieve ultra-high sensitivity. The reproducibility was tested with 30 different spots showing a relative standard deviation (RSD) of SERS intensity of about 5.4%, indicating good reproducibility of the SERS platform. To illustrate the usefulness of the flexible SERS sensor patch, we investigated the detection of a carcinogenic compound crystal violet (CV) on fish scales, which is often used as an effective antifungal agent in the aquaculture industry. The results realized the trace detection of CV with the minimum detection limit as low as 1 pM. We believe that our transparent, and flexible SERS patch based on GNS-4 has potential as a versatile, low-cost platform for real-world SERS sensing applications on nonplanar surfaces.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Aidan J Canning
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
3
|
Munyayi TA, Mulder DW, Conradie EH, Johannes Smit F, Vorster BC. Quantitative Galactose Colorimetric Competitive Assay Based on Galactose Dehydrogenase and Plasmonic Gold Nanostars. BIOSENSORS 2023; 13:965. [PMID: 37998140 PMCID: PMC10669336 DOI: 10.3390/bios13110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
We describe a competitive colorimetric assay that enables rapid and sensitive detection of galactose and reduced nicotinamide adenine dinucleotide (NADH) via colorimetric readouts and demonstrate its usefulness for monitoring NAD+-driven enzymatic reactions. We present a sensitive plasmonic sensing approach for assessing galactose concentration and the presence of NADH using galactose dehydrogenase-immobilized gold nanostars (AuNS-PVP-GalDH). The AuNS-PVP-GalDH assay remains turquoise blue in the absence of galactose and NADH; however, as galactose and NADH concentrations grow, the reaction well color changes to a characteristic red color in the presence of an alkaline environment and a metal ion catalyst (detection solution). As a result, when galactose is sensed in the presence of H2O2, the colored response of the AuNS-PVP-GalDH assay transforms from turquoise blue to light pink, and then to wine red in a concentration-dependent manner discernible to the human eye. This competitive AuNS-PVP-GalDH assay could be a viable analytical tool for rapid and convenient galactose quantification in resource-limited areas.
Collapse
Affiliation(s)
| | - Danielle Wingrove Mulder
- Center for Human Metabolomics, North-West University Potchefstroom Campus, Potchefstroom 2531, South Africa; (D.W.M.); (E.H.C.); (B.C.V.)
| | - Engela Helena Conradie
- Center for Human Metabolomics, North-West University Potchefstroom Campus, Potchefstroom 2531, South Africa; (D.W.M.); (E.H.C.); (B.C.V.)
| | - Frans Johannes Smit
- Research Focus Area for Chemical Resource Beneficiation, North-West University, Potchefstroom 2520, South Africa;
| | - Barend Christiaan Vorster
- Center for Human Metabolomics, North-West University Potchefstroom Campus, Potchefstroom 2531, South Africa; (D.W.M.); (E.H.C.); (B.C.V.)
| |
Collapse
|
4
|
Tarantino S, Capomolla C, Carlà A, Giotta L, Cascione M, Ingrosso C, Scarpa E, Rizzello L, Caricato AP, Rinaldi R, De Matteis V. Shape-Driven Response of Gold Nanoparticles to X-rays. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2719. [PMID: 37836360 PMCID: PMC10574111 DOI: 10.3390/nano13192719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Radiotherapy (RT) involves delivering X-ray beams to the tumor site to trigger DNA damage. In this approach, it is fundamental to preserve healthy cells and to confine the X-ray beam only to the malignant cells. The integration of gold nanoparticles (AuNPs) in the X-ray methodology could be considered a powerful tool to improve the efficacy of RT. Indeed, AuNPs have proven to be excellent allies in contrasting tumor pathology upon RT due to their high photoelectric absorption coefficient and unique physiochemical properties. However, an analysis of their physical and morphological reaction to X-ray exposure is necessary to fully understand the AuNPs' behavior upon irradiation before treating the cells, since there are currently no studies on the evaluation of potential NP morphological changes upon specific irradiations. In this work, we synthesized two differently shaped AuNPs adopting two different techniques to achieve either spherical or star-shaped AuNPs. The spherical AuNPs were obtained with the Turkevich-Frens method, while the star-shaped AuNPs (AuNSs) involved a seed-mediated approach. We then characterized all AuNPs with Transmission Electron Microscopy (TEM), Uv-Vis spectroscopy, Dynamic Light Scattering (DLS), zeta potential and Fourier Transform Infrared (FTIR) spectroscopy. The next step involved the treatment of AuNPs with two different doses of X-radiation commonly used in RT, namely 1.8 Gy and 2 Gy, respectively. Following the X-rays' exposure, the AuNPs were further characterized to investigate their possible physicochemical and morphological alterations induced with the X-rays. We found that AuNPs do not undergo any alteration, concluding that they can be safely used in RT treatments. Lastly, the actin rearrangements of THP-1 monocytes treated with AuNPs were also assessed in terms of coherency. This is a key proof to evaluate the possible activation of an immune response, which still represents a big limitation for the clinical translation of NPs.
Collapse
Affiliation(s)
- Simona Tarantino
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Monteroni, 73100 Lecce, Italy; (S.T.); (M.C.); (A.P.C.)
| | - Caterina Capomolla
- Oncological Center, “Vito Fazzi” Hospital of Lecce, Piazza Filippo Muratore 1, 73100 Lecce, Italy; (C.C.)
| | - Alessandra Carlà
- Oncological Center, “Vito Fazzi” Hospital of Lecce, Piazza Filippo Muratore 1, 73100 Lecce, Italy; (C.C.)
| | - Livia Giotta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Monteroni, 73100 Lecce, Italy; (S.T.); (M.C.); (A.P.C.)
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy
| | - Chiara Ingrosso
- CNR-IPCF S.S. Bari, c/o Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy;
| | - Edoardo Scarpa
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (E.S.); (L.R.)
- The National Institute of Molecular Genetics (INGM), 20133 Milan, Italy
| | - Loris Rizzello
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (E.S.); (L.R.)
- The National Institute of Molecular Genetics (INGM), 20133 Milan, Italy
| | - Anna Paola Caricato
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Monteroni, 73100 Lecce, Italy; (S.T.); (M.C.); (A.P.C.)
- National Institute of Nuclear Physics (INFN), Section of Lecce, Via Monteroni, 73100 Lecce, Italy
| | - Rosaria Rinaldi
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Monteroni, 73100 Lecce, Italy; (S.T.); (M.C.); (A.P.C.)
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy
| | - Valeria De Matteis
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Monteroni, 73100 Lecce, Italy; (S.T.); (M.C.); (A.P.C.)
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
5
|
Atta S, Li JQ, Vo-Dinh T. Multiplex SERS detection of polycyclic aromatic hydrocarbon (PAH) pollutants in water samples using gold nanostars and machine learning analysis. Analyst 2023; 148:5105-5116. [PMID: 37671999 DOI: 10.1039/d3an00636k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have attracted a lot of environmental concern because of their carcinogenic and mutagenic properties, and the fact they can easily contaminate natural resources such as drinking water and river water. This study presents a simple and sensitive point-of-care SERS detection of PAHs combined with machine learning algorithms to predict the PAH content more precisely and accurately in real-life samples such as drinking water and river water. We first synthesized multibranched sharp-spiked surfactant-free gold nanostars (GNSs) that can generate strong surface-enhanced Raman scattering (SERS) signals, which were further coated with cetyltrimethylammonium bromide (CTAB) for long-term stability of the GNSs as well as to trap PAHs. We utilized CTAB-capped GNSs for solution-based 'mix and detect' SERS sensing of various PAHs including pyrene (PY), nitro-pyrene (NP), anthracene (ANT), benzo[a]pyrene (BAP), and triphenylene (TP) spiked in drinking water and river water using a portable Raman module. Very low limits of detection (LOD) were achieved in the nanomolar range for the PAHs investigated. More importantly, the detected SERS signal was reproducible for over 90 days after synthesis. Furthermore, we analyzed the SERS data using artificial intelligence (AI) with machine learning algorithms based on the convolutional neural network (CNN) model in order to discriminate the PAHs in samples more precisely and accurately. Using a CNN classification model, we achieved a high prediction accuracy of 90% in the nanomolar detection range and an f1 score (harmonic mean of precision and recall) of 94%, and using a CNN regression model, achieved an RMSEconc = 1.07 × 10-1 μM. Overall, our SERS platform can be effectively and efficiently used for the accurate detection of PAHs in real-life samples, thus opening up a new, sensitive, selective, and practical approach for point-of-need SERS diagnosis of small molecules in complex practical environments.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Joy Qiaoyi Li
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
6
|
Ultra-trace SERS detection of cocaine and heroin using bimetallic gold-silver nanostars (BGNS-Ag). Anal Chim Acta 2023; 1251:340956. [PMID: 36925275 DOI: 10.1016/j.aca.2023.340956] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
A rapid, in-field, and reliable method for the detection of illegal drugs of abuse in biological fluids without any sample pretreatment would potentially be helpful for law enforcement, drug control officials, and public healthcare. In this study, we presented a cost-effective and highly reproducible solution-based surface-enhanced Raman scattering (SERS) platform utilizing a portable Raman instrument for fast sensitive SERS detection of illegal drugs, such as cocaine, and heroin in human urine without any sample preprocessing. The SERS platform was constructed for the first time by combining the superior SERS enhancement properties of bimetallic silver-coated gold nanostars (BGNS-Ag) and the advantages of suitable alkaline metal salts such as NaI for SERS signal amplification. The effects of the silver thickness of BGNS-Ag and alkaline salts on the SERS performance were investigated in detail; we observed that the maximum SERS enhancement was obtained for BGNS-Ag with the maximum silver thickness (54 ± 5 nm) in presence of NaI salt. Our SERS platform shows ultra-high sensitivity of cocaine and heroin with a limit of detection (LOD) as low as 10 pg/mL for cocaine and 100 pg/mL for heroin, which was 100 times lower than that of the traditional silver nanoparticle-based illegal drug detection. As a demonstration, the platform was further applied to detect cocaine and heroin spiked in human urine without any sample preprocessing achieving a LOD of 100 pg/mL for cocaine and 1 ng/mL for heroin. Overall, our SERS detection platform shows potential for rapid, onsite, ultra-low-cost portable applications for trace detection of illegal drugs and biomarkers.
Collapse
|
7
|
Atta S, Vo-Dinh T. A hybrid plasmonic nanoprobe using polyvinylpyrrolidone-capped bimetallic silver-gold nanostars for highly sensitive and reproducible solution-based SERS sensing. Analyst 2023; 148:1786-1796. [PMID: 36920068 PMCID: PMC11000622 DOI: 10.1039/d2an01876d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Practical solution-based assays using surface-enhanced Raman spectroscopy (SERS) with portable instrumentation are currently of particular interest for rapid, efficient, and low-cost detection of analytes. However, current assays still have limited applicability due to their poor sensitivity and reproducibility. Herein, we demonstrate highly stable polyvinylpyrrolidone (PVP)-capped bimetallic silver-coated gold nanostars (BGNS-Ag-PVP) as a solution-based SERS nanoprobe that is capable of producing a strong, uniform, and reproducible SERS signal using a portable Raman instrument. The developed hybrid BGNS-Ag-PVP nanostructure shows tunable optical properties with improved SERS sensitivity and reproducibility as compared to gold nanostars. We have synthesized bimetallic nanoprobes BGNS-Ag-PVP having three different silvers, referred to as BGNS-Ag-PVP-1, BGNS-Ag-PVP-2, and BGNS-Ag-PVP-3. The SERS performance of BGNS-Ag-PVP was studied using methylene blue (Meb) as a probe molecule, and we achieved a detection limit of up to 10 nM indicating the high sensitivity of the solution-based SERS platform. The application of such bimetallic nanoparticles is demonstrated via the sensitive detection of the antithyroid drug methimazole (Mz) used as a model analyte system. We have achieved a detection limit of 1 nM for Mz spiked with human urine indicating three orders of magnitude lower than previously reported solution-based SERS detection methods. Furthermore, the SERS performance was reproducible over 3 months indicating excellent stability and repeatability. The result illustrates the potential of this solution-based SERS detection platform as a promising sensing tool for analytes such as illicit drugs, and biomarkers that have affinity to bind on nanoprobes.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
8
|
Khanadeev VA, Simonenko AV, Grishin OV, Khlebtsov NG. One-Shot Laser-Pulse Modification of Bare and Silica-Coated Gold Nanoparticles of Various Morphologies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1312. [PMID: 37110897 PMCID: PMC10143654 DOI: 10.3390/nano13081312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Gold nanoparticles are widely used in laser biomedical applications due to their favorable properties, mainly localized plasmon resonance. However, laser radiation can cause a change in the shape and size of plasmonic nanoparticles, thus resulting in an unwanted reduction of their photothermal and photodynamic efficiency due to a drastic alteration of optical properties. Most previously reported experiments were carried out with bulk colloids where different particles were irradiated by different numbers of laser pulses, thus making it difficult to accurately evaluate the laser power photomodification (PM) threshold. Here, we examine the one-shot nanosecond laser-pulse PM of bare and silica-coated gold nanoparticles moving in a capillary flow. Four types of gold nanoparticles, including nanostars, nanoantennas, nanorods, and SiO2@Au nanoshells, were fabricated for PM experiments. To evaluate the changes in the particle morphology under laser irradiation, we combine measurements of extinction spectra with electron microscopy. A quantitative spectral approach is developed to characterize the laser power PM threshold in terms of normalized extinction parameters. The experimentally determined PM threshold increases in series were as follows: nanorods, nanoantennas, nanoshells, and nanostars. An important observation is that even a thin silica shell significantly increases the photostability of gold nanorods. The developed methods and reported findings can be useful for the optimal design of plasmonic particles and laser irradiation parameters in various biomedical applications of functionalized hybrid nanostructures.
Collapse
Affiliation(s)
- Vitaly A. Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
- Department of Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering Named after N. I. Vavilov, 1 Teatralnaya pl., Saratov 410012, Russia
| | - Andrey V. Simonenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
- Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| | - Oleg V. Grishin
- Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| | - Nikolai G. Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
- Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| |
Collapse
|
9
|
Atta S, Vo-Dinh T. Solution-Based Ultra-Sensitive Surface-Enhanced Raman Scattering Detection of the Toxin Bacterial Biomarker Pyocyanin in Biological Fluids Using Sharp-Branched Gold Nanostars. Anal Chem 2023; 95:2690-2697. [PMID: 36693215 PMCID: PMC9909734 DOI: 10.1021/acs.analchem.2c03210] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
There is a critical need for sensitive rapid point-of-care detection of bacterial infection biomarkers in complex biological fluids with minimal sample preparation, which can improve early-stage diagnosis and prevent several bacterial infections and fatal diseases. A solution-based surface-enhanced Raman scattering (SERS) detection platform has long been sought after for low cost, rapid, and on-site detection of analyte molecules, but current methods still exhibit poor sensitivity. In this study, we have tuned the morphology of the surfactant-free gold nanostars (GNSs) to achieve sharp protruding spikes for maximum SERS enhancement. We have controlled the GNS spike morphologies and optimized SERS performance in the solution phase using para-mercaptobenzoic acid as an SERS probe. To illustrate the potential for point-of-care applications, we have utilized a portable Raman instrument for measurements. For pathogenic agent sensing applications, we demonstrated rapid and sensitive detection of the toxin biomarker pyocyanin (PYO) used as the bacterial biomarker model system. Pyocyanin is a toxic compound produced and secreted by the common water-borne Gram-negative bacterium Pseudomonas aeruginosa, a pathogen known for advanced antibiotic resistance and association with serious diseases such as ventilator-associated pneumonia and cystic fibrosis. The limit of detection (LOD) achieved for PYO was 0.05 nM using sharp branched GNSs. Furthermore, as a proof of strategy, this SERS detection of PYO was performed directly in drinking water, human saliva, and human urine without any sample treatment pre-purification, achieving an LOD of 0.05 nM for drinking water and 0.4 nM for human saliva and urine. This work provides a proof-of-principle demonstration for the high sensitivity detection of the bacterial toxin biomarker with minimal sample preparation: the "mix and detect" detection of the GNS platform is simple, robust, and rapid, taking only 1-2 min for each measurement. Overall, our SERS detection platform shows great potential for point-of-need sensing and point-of-care diagnostics in biological fluids.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
10
|
Parmigiani M, Albini B, Pellegrini G, Genovesi M, De Vita L, Pallavicini P, Dacarro G, Galinetto P, Taglietti A. Surface-Enhanced Raman Spectroscopy Chips Based on Silver Coated Gold Nanostars. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203609. [PMID: 36296798 PMCID: PMC9609606 DOI: 10.3390/nano12203609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/12/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is becoming widely used as an analytical tool, and the search for stable and highly responsive SERS substrates able to give ultralow detection of pollutants is a current challenge. In this paper we boosted the SERS response of Gold nanostars (GNS) demonstrating that their coating with a layer of silver having a proper thickness produces a 7-fold increase in SERS signals. Glass supported monolayers of these GNS@Ag were then prepared using simple alcoxyliane chemistry, yielding efficient and reproducible SERS chips, which were tested for the detection of molecules representative of different classes of pollutants. Among them, norfloxacin was detected down to 3 ppb, which is one of the lowest limits of detection obtained with this technique for the analyte.
Collapse
Affiliation(s)
- Miriam Parmigiani
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Benedetta Albini
- Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | | | - Marco Genovesi
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Lorenzo De Vita
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | | | - Giacomo Dacarro
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Pietro Galinetto
- Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Angelo Taglietti
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
11
|
Atta S, Watcharawittayakul T, Vo-Dinh T. Ultra-high SERS detection of consumable coloring agents using plasmonic gold nanostars with high aspect-ratio spikes. Analyst 2022; 147:3340-3349. [PMID: 35762677 PMCID: PMC9725038 DOI: 10.1039/d2an00794k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Solution-based SERS detection by using a portable Raman instrument has emerged as an important tool due to its simplicity, and flexibility for rapid and on-site screening of analyte molecules. However, this method has several shortcomings, including poor sensitivity especially for weak-affinity analyte molecules, where there is no close contact between the plasmonic metal surface and analyte molecule. Examples of weak-affinity molecules include pigment molecules that are commonly used as a consumable coloring agent, such as allura red (AR), and sunset yellow (SY). As high consumption of colorant agents has been shown to cause adverse effects on human health, there is a strong need to develop a simple and practical sensing system with high sensitivity for these agents. Here we present a novel, highly sensitive solution-based SERS detection method for AR, and SY by using CTAC capped gold nanostars (GNS) having different aspect ratios (GNS-2, GNS-4, and GNS-5) without utilizing any aggregating agents which can enhance SERS signal however it reduces batch to batch reproducibility. The influence of the aspect ratio of GNS on SERS properties was investigated. We have achieved a limit of detection (LOD) of AR and SY as low as 0.5 and 1 ppb, respectively by using GNS-5 with the advantages of minimal sample preparation by just mixing the analyte solution into a well plate containing GNS solution. In addition, excellent colloidal stability and reproducibility have further enhanced the applicability in real-world samples. Overall, our results evidence that the solution-based SERS detection platform using high aspect-ratio GNS can be applied for practical application to detect pigment molecules in real samples with satisfactory results.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick Institute for Photonics, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Durham, NC 27708, USA
| | - Tongchatra Watcharawittayakul
- Fitzpatrick Institute for Photonics, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Durham, NC 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
12
|
Ko RHH, Shayegannia M, Farid S, Kherani NP. Protein capture and SERS detection on multiwavelength rainbow-trapping width-graded nano-gratings. NANOTECHNOLOGY 2021; 32:505207. [PMID: 34544057 DOI: 10.1088/1361-6528/ac2842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Surface-enhanced Raman scattering (SERS) substrates with multiwavelength rainbow-trapping properties hold the potential for a one-size-fits-all platform for rapid and multiplexed disease detection. We present the first report on the utilization of rainbow-trapping width-graded nano-gratings, a new class of chirped metamaterials, to detect protein biomarkers. Using cytochrome c (Cc), a charged analyte with inherent difficulty in adsorbing onto sputtered silver films, we investigated methods of binding Cc on the silver nano-grating in order to improve the SERS signal strength at both 532 and 638 nm excitation. Cc was not detectable on the Ag nano-gratings without surface functionalization at 1μM concentration. Upon charge reversal functionalization of the Ag nano-gratings, 1μM Cc was detectable albeit not reliably. By further crosslinking 1μM Cc to the functionalized Ag nano-gratings, the analyte-capture detection scheme greatly improved the SERS signal strength and reliability at both excitation wavelengths and allowed for quantification of their coefficients of variation with values down to 27%.
Collapse
Affiliation(s)
- Remy H H Ko
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON Canada M5S 3G4, Canada
| | - Moein Shayegannia
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON Canada M5S 3G4, Canada
| | - Sidra Farid
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON Canada M5S 3G4, Canada
| | - Nazir P Kherani
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON Canada M5S 3G4, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON Canada M5S 3E4, Canada
| |
Collapse
|
13
|
Siegel AL, Baker GA. Bespoke nanostars: synthetic strategies, tactics, and uses of tailored branched gold nanoparticles. NANOSCALE ADVANCES 2021; 3:3980-4004. [PMID: 36132836 PMCID: PMC9417963 DOI: 10.1039/d0na01057j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/20/2021] [Indexed: 05/05/2023]
Abstract
Interest in branched colloidal gold nanosystems has gained increased traction due to the structures' outstanding optical and plasmonic properties, resulting in utilization in techniques such as surface-enhanced spectroscopy and bioimaging, as well as plasmon photocatalysis and photothermal therapy. The unique morphologies of nanostars, multipods, urchins, and other highly branched nanomaterials exhibit selective optical and crystallographic features accessible by alterations in the respective wet-chemical syntheses, opening a vast array of useful applications. Examination of discriminatory reaction conditions, such as seeded growth (e.g., single-crystalline vs. multiply twinned seeds), underpotential deposition of Ag(i), galvanic replacement, and the dual use of competing reducing and capping agents, is shown to reveal conditions necessary for the genesis of assorted branched nanoscale gold frameworks. By observing diverse approaches, including template-directed, microwave-mediated, and aggregation-based methods, among others, a schema of synthetic pathways can be constructed to provide a guiding roadmap for obtaining the full range of desired branched gold nanocrystals. This review presents a comprehensive summary of such advances and these nuances of the underlying procedures, as well as offering mechanistic insights into the directed nanoscale growth. We conclude the review by discussing various applications for these fascinating nanomaterials, particularly surface-enhanced Raman spectroscopy, photothermal and photodynamic therapy, catalysis, drug delivery, and biosensing.
Collapse
Affiliation(s)
- Asher L Siegel
- Department of Chemistry, University of Missouri-Columbia Columbia MO 65211 USA
| | - Gary A Baker
- Department of Chemistry, University of Missouri-Columbia Columbia MO 65211 USA
| |
Collapse
|
14
|
Zhu D, Liu Y, Liu M, Liu X, Prasad PN, Swihart MT. Galvanic replacement synthesis of multi-branched gold nanocrystals for photothermal cancer therapy. J Mater Chem B 2021; 8:5491-5499. [PMID: 32478780 DOI: 10.1039/d0tb00748j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We present a facile organic phase synthesis method for producing multi-branched gold nanocrystals (nanostars) with a broad localized surface plasmon resonance (LSPR) across near-infrared (NIR) to short-wave infrared (SWIR) wavelengths. In this approach, galvanic replacement of copper by gold, in seed particles produced in situ, initiates growth of multi-branched structures. The method enables broad tuning of the LSPR energy by manipulating the branch length, with peak LSPR absorbance tuned from 850 to 1880 nm, reaching SWIR wavelengths covering the second and third optical transparency windows in biological media, rarely achieved with noble metal plasmonic nanostructures. After a ligand-exchange process, the gold nanostars readily disperse in water while retaining their LSPR absorbance. The multi-branched Au nanocrystals (NCs) exhibit exceptionally high photothermal transduction efficiency, exceeding that of Au nanorods and nanoparticles, to which we make direct comparisons here. At the same time, their synthesis is much more straightforward than hollow structures like nanocages, nanoshells, and nanomatryoshkas that can also exhibit high photothermal efficiency at NIR wavelengths. In vitro photothermal heating of multi-branched Au NCs in the presence of human cervical cancer cells causes effective cell ablation after 10 min laser irradiation. Cell viability assays demonstrate that the NCs are biocompatible at doses required for photothermal therapy. These results suggest that the multi-branched Au NCs can serve as a new type of photothermal therapy agent and in other applications in which strong NIR to SWIR absorbers are needed.
Collapse
Affiliation(s)
- Dewei Zhu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA.
| | - Yang Liu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA.
| | - Maixian Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China and National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Xin Liu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA.
| | - Paras N Prasad
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA. and Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA. and Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA and RENEW Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
15
|
Yakunin AN, Zarkov SV, Avetisyan YA, Akchurin GG, Aban’shin NP, Tuchin VV. Modeling of Laser-Induced Plasmon Effects in GNS-DLC-Based Material for Application in X-ray Source Array Sensors. SENSORS 2021; 21:s21041248. [PMID: 33578701 PMCID: PMC7916327 DOI: 10.3390/s21041248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 11/29/2022]
Abstract
An important direction in the development of X-ray computed tomography sensors in systems with increased scanning speed and spatial resolution is the creation of an array of miniature current sources. In this paper, we describe a new material based on gold nanostars (GNS) embedded in nanoscale diamond-like carbon (DLC) films (thickness of 20 nm) for constructing a pixel current source with photoinduced electron emission. The effect of localized surface plasmon resonance in GNS on optical properties in the wavelength range from UV to near IR, peculiarities of localization of field and thermal sources, generation of high-energy hot electrons, and mechanisms of their transportation in vacuum are investigated. The advantages of the proposed material and the prospects for using X-ray computed tomography in the matrix source are evaluated.
Collapse
Affiliation(s)
- Alexander N. Yakunin
- Laboratory of System Problems in Control and Automation in Mechanical Engineering, Institute of Precision Mechanics and Control, RAS, 410028 Saratov, Russia
- Correspondence: ; Tel.: +7-845-222-2376
| | - Sergey V. Zarkov
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, RAS, 410028 Saratov, Russia; (S.V.Z.); (Y.A.A.); (G.G.A.); (V.V.T.)
| | - Yuri A. Avetisyan
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, RAS, 410028 Saratov, Russia; (S.V.Z.); (Y.A.A.); (G.G.A.); (V.V.T.)
| | - Garif G. Akchurin
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, RAS, 410028 Saratov, Russia; (S.V.Z.); (Y.A.A.); (G.G.A.); (V.V.T.)
- Department of Optics and Biophotonics, Saratov State University, 410012 Saratov, Russia
| | | | - Valery V. Tuchin
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, RAS, 410028 Saratov, Russia; (S.V.Z.); (Y.A.A.); (G.G.A.); (V.V.T.)
- Department of Optics and Biophotonics, Saratov State University, 410012 Saratov, Russia
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
16
|
Khlebtsov NG, Zarkov SV, Khanadeev VA, Avetisyan YA. A novel concept of two-component dielectric function for gold nanostars: theoretical modelling and experimental verification. NANOSCALE 2020; 12:19963-19981. [PMID: 32996517 DOI: 10.1039/d0nr02531c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rational design of AuNST morphology requires adequate computational models. The bulk dielectric function is not applicable to sharp nanostar spikes. We suggest a two-component dielectric function in which the nanostar core is treated as a bulk material, whereas the size-corrected dielectric function of the spikes is treated by a modified Coronado-Schatz model. In addition to the strong broadening of plasmonic peaks, the simulated absorption and scattering spectra show unusual properties, which are not observed with bulk dielectric functions. The effect of NIR water absorption on nanostar spectra is small, and the absorption peak demonstrates the expected small decrease in the absorbing media. Surprisingly, however, water absorption increases the scattering peak by 30%. For the common surfactant-free Vo-Dinh AuNSTs, we report, for the first time, very intense SWIR plasmonic peaks around 1900 nm, in addition to the common strong peak in the UV-vis-NIR band (here, at 1100 nm). For bilayers of AuNSTs in air, we recorded two similarly intense peaks near 800 and 1500 nm. To simulate the experimental extinction spectra of colloids and bilayers on glass in air, we develop a statistical model that includes the major fraction of typical Vo-Dinh AuNSTs and two minor fractions of sea urchins and particles with protrusions. In contrast to the general belief, we show that the common UV-vis-NIR plasmonic peak of surfactant-free AuNSTs is related to short spikes on a spherical core, whereas long spikes produce an intense SWIR plasmonic mode. Such a structural assignment of vis-NIR and SWIR peaks does not seem to have been reported previously for surfactant-free nanostars. With our model, we demonstrate good agreement between simulated and measured spectra of colloids and bilayers on glass in air.
Collapse
Affiliation(s)
- Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia.
| | | | | | | |
Collapse
|
17
|
Marelli M, Bossola F, Spinetti G, Sangalli E, Santo VD, Psaro R, Polito L. Microfluidic Synthesis of Hybrid TiO 2-Anisotropic Gold Nanoparticles with Visible and Near-Infrared Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38522-38529. [PMID: 32805968 DOI: 10.1021/acsami.0c08241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anisotropic gold nanoparticles (AuNPs), with their unique physical and optical properties, are emerging as smart and key nanomaterials and are being exploited in many crucial fields. To further improve their range of action, anisotropic AuNPs have been coupled with semiconductors, mainly TiO2 (titania), receiving great interest as powerful platforms both in biomedicine and in catalytic applications. Such hybrid nanoparticles show new properties that arise from the synergic action of the components and rely on NP size, morphology, and arrangement. Therefore, continuous advances in design and fabrication of new hybrid titania@gold NPs (TiO2@AuNPs) are urgent and highly desirable. Here, we propose an effective protocol to produce multibranched AuNPs covered by a controlled TiO2 thin layer, exploiting a one-pot microfluidic process. The proposed method allows the in-flow and reliable synthesis of titania-functionalized-anisotropic gold nanoparticles by avoiding the use of toxic surfactants and controlling the titania shell formation. TiO2@AuNPs have been fully characterized in terms of morphology, stability, and biocompatibility, and their activity in photocatalysis has been tested and verified.
Collapse
Affiliation(s)
- Marcello Marelli
- National Research Council, CNR-SCITEC, Via G. Fantoli 16/15, Milan 20138, Italy
| | - Filippo Bossola
- National Research Council, CNR-SCITEC, Via C. Golgi 19, Milan 20133, Italy
| | - Gaia Spinetti
- IRCCS MultiMedica, Via G. Fantoli 16/15, Milan 20138, Italy
| | - Elena Sangalli
- IRCCS MultiMedica, Via G. Fantoli 16/15, Milan 20138, Italy
| | | | - Rinaldo Psaro
- National Research Council, CNR-SCITEC, Via C. Golgi 19, Milan 20133, Italy
| | - Laura Polito
- National Research Council, CNR-SCITEC, Via G. Fantoli 16/15, Milan 20138, Italy
| |
Collapse
|
18
|
Cristiano MN, Tsoulos TV, Fabris L. Quantifying and optimizing photocurrent via optical modeling of gold nanostar-, nanorod-, and dimer-decorated MoS2 and MoTe2. J Chem Phys 2020; 152:014705. [PMID: 31914755 DOI: 10.1063/1.5127279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michele N. Cristiano
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Ted V. Tsoulos
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, New Jersey 08854, USA
- STI IGM LNET, École Polytechnique Fédérale de Lausanne, Station 9, CH-1015 Lausanne, Switzerland
| | - Laura Fabris
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, New Jersey 08854, USA
| |
Collapse
|