1
|
Cui F, García-López V, Wang Z, Luo Z, He D, Feng X, Dong R, Wang X. Two-Dimensional Organic-Inorganic van der Waals Hybrids. Chem Rev 2025; 125:445-520. [PMID: 39692750 DOI: 10.1021/acs.chemrev.4c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Two-dimensional organic-inorganic (2DOI) van der Waals hybrids (vdWhs) have emerged as a groundbreaking subclass of layer-stacked (opto-)electronic materials. The development of 2DOI-vdWhs via systematically integrating inorganic 2D layers with organic 2D crystals at the molecular/atomic scale extends the capabilities of traditional 2D inorganic vdWhs, thanks to their high synthetic flexibility and structural tunability. Constructing an organic-inorganic hybrid interface with atomic precision will unlock new opportunities for generating unique interfacial (opto-)electronic transport properties by combining the strengths of organic and inorganic layers, thus allowing us to satisfy the growing demand for multifunctional applications. Here, this review provides a comprehensive overview of the latest advancements in the chemical synthesis, structural characterization, and numerous applications of 2DOI-vdWhs. Firstly, we introduce the chemistry and the physical properties of the recently rising organic 2D crystals (O2DCs), which feature crystalline 2D nanostructures comprising carbon-rich repeated units linked by covalent/noncovalent bonds and exhibit strong in-plane extended π-conjugation and weak interlayer vdWs interaction. Simultaneously, representative inorganic 2D crystals (I2DCs) are briefly summarized. After that, the synthetic strategies will be systematically summarized, including synthesizing single-component O2DCs with dimensional control and their vdWhs with I2DCs. With these synthetic approaches, the control in the dimension, the stacking modes, and the composition of the 2DOI-vdWhs will be highlighted. Subsequently, a special focus will be given on the discussion of the optical and electronic properties of the single-component 2D materials and their vdWhs, which will be closely relevant to their structures, so that we can establish a general structure-property relationship of 2DOI-vdWhs. In addition to these physical properties, the (opto-)electronic devices such as transistors, photodetectors, sensors, spintronics, and neuromorphic devices as well as energy devices will be discussed. Finally, we provide an outlook to discuss the key challenges for the 2DOI-vdWhs and their future development. This review aims to provide a foundational understanding and inspire further innovation in the development of next-generation 2DOI-vdWhs with transformative technological potential.
Collapse
Affiliation(s)
- Fucai Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Víctor García-López
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Zhiyong Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
| | - Zhongzhong Luo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Daowei He
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
| | - Renhao Dong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518000, China
| | - Xinran Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- School of Integrated Circuits, Nanjing University, Suzhou 215163, China
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Interdisciplinary Research Center for Future Intelligent Chips (Chip-X), Nanjing University, Suzhou 215163, China
- Suzhou Laboratory, Suzhou 215163, China
| |
Collapse
|
2
|
Ren Y, Xu Y. Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chem Soc Rev 2024; 53:1823-1869. [PMID: 38192222 DOI: 10.1039/d3cs00782k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Two-dimensional polymers (2DPs) are a class of 2D crystalline polymer materials with definite structures, which have outstanding physical-chemical and electronic properties. They cleverly link organic building units through strong covalent bonds and can construct functional 2DPs through reasonable design and selection of different monomer units to meet various application requirements. As promising energy materials, 2DPs have developed rapidly in recent years. This review first introduces the basic overview of 2DPs, such as their historical development, inherent 2D characteristics and diversified topological advantages, followed by the summary of the typical 2DP synthesis methods recently (including "top-down" and "bottom-up" methods). The latest research progress in assembly and processing of 2DPs and the energy-related applications in energy storage and conversion are also discussed. Finally, we summarize and prospect the current research status, existing challenges, and future research directions of 2DPs.
Collapse
Affiliation(s)
- Yumei Ren
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
3
|
Prasoon A, Yang H, Hambsch M, Nguyen NN, Chung S, Müller A, Wang Z, Lan T, Fontaine P, Kühne TD, Cho K, Nia AS, Mannsfeld SCB, Dong R, Feng X. On-water surface synthesis of electronically coupled 2D polyimide-MoS 2 van der Waals heterostructure. Commun Chem 2023; 6:280. [PMID: 38104228 PMCID: PMC10725426 DOI: 10.1038/s42004-023-01081-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
The water surface provides a highly effective platform for the synthesis of two-dimensional polymers (2DP). In this study, we present an efficient on-water surface synthesis of crystalline monolayer 2D polyimide (2DPI) through the imidization reaction between tetra (4-aminophenyl) porphyrin (M1) and perylenetracarboxylic dianhydride (M2), resulting in excellent stability and coverage over a large area (tens of cm2). We further fabricate innovative organic-inorganic hybrid van der Waals heterostructures (vdWHs) by combining with exfoliated few-layer molybdenum sulfide (MoS2). High-resolution transmission electron microscopy (HRTEM) reveals face-to-face stacking between MoS2 and 2DPI within the vdWH. This stacking configuration facilitates remarkable charge transfer and noticeable n-type doping effects from monolayer 2DPI to MoS2, as corroborated by Raman spectroscopy, photoluminescence measurements, and field-effect transistor (FET) characterizations. Notably, the 2DPI-MoS2 vdWH exhibits an impressive electron mobility of 50 cm2/V·s, signifying a substantial improvement over pristine MoS2 (8 cm2/V·s). This study unveils the immense potential of integrating 2D polymers to enhance semiconductor device functionality through tailored vdWHs, thereby opening up exciting new avenues for exploring unique interfacial physical phenomena.
Collapse
Affiliation(s)
- Anupam Prasoon
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, D-06120, Germany
| | - Hyejung Yang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Mike Hambsch
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062, Dresden, Germany
| | - Nguyen Ngan Nguyen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, D-06120, Germany
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Alina Müller
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Zhiyong Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, D-06120, Germany
| | - Tianshu Lan
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, D-06120, Germany
| | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190, Saint-Aubin, France
| | - Thomas D Kühne
- Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden-Rossendorf, 02826, Görlitz, Germany
- Institute of Artificial Intelligence, Chair of Computational System Sciences, Technische Universität Dresden, 01187, Dresden, Germany
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Ali Shaygan Nia
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Stefan C B Mannsfeld
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062, Dresden, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 27 Shandanan Road, Jinan, 250100, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, D-06120, Germany.
| |
Collapse
|
4
|
Zhou X, Yu G. Preparation Engineering of Two-Dimensional Heterostructures via Bottom-Up Growth for Device Applications. ACS NANO 2021; 15:11040-11065. [PMID: 34264631 DOI: 10.1021/acsnano.1c02985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional heterostructures with tremendous electronic and optoelectronic properties hold great promise for nanodevice integrations and applications owing to the wide tunable characteristics. Toward this end, developing construction strategies in allusion to large-scale production of high-quality heterostructures is critical. The mainstream preparation routes are representatively classified into two categories of top-down and bottom-up approaches. Nonetheless, the relatively low reproductivity and the limitation for lateral heterostructure formations of top-down methods at the present stage inherently impeded their further developments. To surmount these obstacles, assembling heterostructures via miscellaneous bottom-up preparation protocols has emerged as a potential solution, attributed to the controllability and clean interface. Three typical approaches of chemical/physical vapor deposition, solution synthesis, and growth under ultrahigh vacuum conditions have shown promise due to the possibilities for preparing heterostructures with predesigned structures, clean interfaces, and the like. Therefore, bottom-up preparation engineering of heterostructures in two dimensions for further device applications is of vital importance. Moreover, heterostructure integrations by these methods have experienced a period of flourishing development in the past few years. In this review, the classical bottom-up growth routes, characterization methods, and latest progress of diverse heterostructures and further device applications are overviewed. Finally, the challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Xiahong Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
5
|
Liu K, Li J, Qi H, Hambsch M, Rawle J, Vázquez AR, Nia AS, Pashkin A, Schneider H, Polozij M, Heine T, Helm M, Mannsfeld SCB, Kaiser U, Dong R, Feng X. A Two‐Dimensional Polyimide‐Graphene Heterostructure with Ultra‐fast Interlayer Charge Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kejun Liu
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden Technische Universität Dresden 01062 Dresden Germany
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF) 01069 Dresden Germany
| | - Jiang Li
- Institute of Ion Beam Physics and Materials Research Helmholtz-Zentrum Dresden-Rossendorf 01328 Dresden Germany
| | - Haoyuan Qi
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden Technische Universität Dresden 01062 Dresden Germany
- Central Facility of Electron Microscopy Electron Microscopy Group of Materials Science Universität Ulm 89081 Ulm Germany
| | - Mike Hambsch
- Center for Advancing Electronics Dresden and Faculty of Electrical and Computer Engineering Technische Universität Dresden 01062 Dresden Germany
| | | | - Adrián Romaní Vázquez
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden Technische Universität Dresden 01062 Dresden Germany
| | - Ali Shaygan Nia
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden Technische Universität Dresden 01062 Dresden Germany
| | - Alexej Pashkin
- Institute of Ion Beam Physics and Materials Research Helmholtz-Zentrum Dresden-Rossendorf 01328 Dresden Germany
| | - Harald Schneider
- Institute of Ion Beam Physics and Materials Research Helmholtz-Zentrum Dresden-Rossendorf 01328 Dresden Germany
| | - Mirosllav Polozij
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden Technische Universität Dresden 01062 Dresden Germany
| | - Thomas Heine
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden Technische Universität Dresden 01062 Dresden Germany
| | - Manfred Helm
- Institute of Ion Beam Physics and Materials Research Helmholtz-Zentrum Dresden-Rossendorf 01328 Dresden Germany
| | - Stefan C. B. Mannsfeld
- Center for Advancing Electronics Dresden and Faculty of Electrical and Computer Engineering Technische Universität Dresden 01062 Dresden Germany
| | - Ute Kaiser
- Central Facility of Electron Microscopy Electron Microscopy Group of Materials Science Universität Ulm 89081 Ulm Germany
| | - Renhao Dong
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden Technische Universität Dresden 01062 Dresden Germany
| | - Xinliang Feng
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden Technische Universität Dresden 01062 Dresden Germany
| |
Collapse
|
6
|
Liu K, Li J, Qi H, Hambsch M, Rawle J, Vázquez AR, Nia AS, Pashkin A, Schneider H, Polozij M, Heine T, Helm M, Mannsfeld SCB, Kaiser U, Dong R, Feng X. A Two-Dimensional Polyimide-Graphene Heterostructure with Ultra-fast Interlayer Charge Transfer. Angew Chem Int Ed Engl 2021; 60:13859-13864. [PMID: 33835643 PMCID: PMC8252803 DOI: 10.1002/anie.202102984] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/22/2022]
Abstract
Two-dimensional polymers (2DPs) are a class of atomically/molecularly thin crystalline organic 2D materials. They are intriguing candidates for the development of unprecedented organic-inorganic 2D van der Waals heterostructures (vdWHs) with exotic physicochemical properties. In this work, we demonstrate the on-water surface synthesis of large-area (cm2 ), monolayer 2D polyimide (2DPI) with 3.1-nm lattice. Such 2DPI comprises metal-free porphyrin and perylene units linked by imide bonds. We further achieve a scalable synthesis of 2DPI-graphene (2DPI-G) vdWHs via a face-to-face co-assembly of graphene and 2DPI on the water surface. Remarkably, femtosecond transient absorption spectroscopy reveals an ultra-fast interlayer charge transfer (ca. 60 fs) in the resultant 2DPI-G vdWH upon protonation by acid, which is equivalent to that of the fastest reports among inorganic 2D vdWHs. Such large interlayer electronic coupling is ascribed to the interlayer cation-π interaction between 2DP and graphene.
Collapse
Affiliation(s)
- Kejun Liu
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF)01069DresdenGermany
| | - Jiang Li
- Institute of Ion Beam Physics and Materials ResearchHelmholtz-Zentrum Dresden-Rossendorf01328DresdenGermany
| | - Haoyuan Qi
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
- Central Facility of Electron MicroscopyElectron Microscopy Group of Materials ScienceUniversität Ulm89081UlmGermany
| | - Mike Hambsch
- Center for Advancing Electronics Dresden and Faculty of Electrical and Computer EngineeringTechnische Universität Dresden01062DresdenGermany
| | | | - Adrián Romaní Vázquez
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
| | - Ali Shaygan Nia
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
| | - Alexej Pashkin
- Institute of Ion Beam Physics and Materials ResearchHelmholtz-Zentrum Dresden-Rossendorf01328DresdenGermany
| | - Harald Schneider
- Institute of Ion Beam Physics and Materials ResearchHelmholtz-Zentrum Dresden-Rossendorf01328DresdenGermany
| | - Mirosllav Polozij
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
| | - Thomas Heine
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
| | - Manfred Helm
- Institute of Ion Beam Physics and Materials ResearchHelmholtz-Zentrum Dresden-Rossendorf01328DresdenGermany
| | - Stefan C. B. Mannsfeld
- Center for Advancing Electronics Dresden and Faculty of Electrical and Computer EngineeringTechnische Universität Dresden01062DresdenGermany
| | - Ute Kaiser
- Central Facility of Electron MicroscopyElectron Microscopy Group of Materials ScienceUniversität Ulm89081UlmGermany
| | - Renhao Dong
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
| | - Xinliang Feng
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
| |
Collapse
|