1
|
Chittari SS, Dykeman-Bermingham PA, Bogen MP, Knight AS. Structure-Function Insights into Thermoresponsive Copolymers as Lanthanide Precipitants. J Am Chem Soc 2024; 146:33499-33508. [PMID: 39586773 DOI: 10.1021/jacs.4c10427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The synthetic toolbox for stimuli-responsive polymers has broadened to include many tunable variables, making these materials applicable in diverse technologies. However, unraveling the key composition-structure-function relationships to facilitate ground-up design remains a challenge due to the inherent dispersity in sequence and conformations for synthetic polymers. We here present a systematic study of these relationships using a model system of copolymers with a thermoresponsive (N-isopropylacrylamide) backbone in addition to metal-chelating (acrylic acid) and hydrophobic structural comonomers and evaluate their efficiency at isolating technologically critical lanthanide ions. The efficiency of lanthanide ion extraction by precipitation was quantitated with a metallochromic dye to reveal trends relating copolymer hydrophobicity to improved separations. Further, we examined the role of different hydrophobic comonomers in dictating the solution-phase conformation of the polymer in the presence and absence of lanthanide ions, and we correlated key features of the hydrophobic comonomer to extraction efficiency. Finally, we identified how the local proximity of thermoresponsive, chelating, and hydrophobic subunits facilitates metal extraction by manipulating the copolymer sequence with multiblock polymerization. Through mechanistic analysis, we propose a binding-then-assembly process through which metal ions are coprecipitated with macromolecular chelators.
Collapse
Affiliation(s)
- Supraja S Chittari
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Peter A Dykeman-Bermingham
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew P Bogen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Pérez-Isidoro R, Valdez-Lara AG, Díaz-Salazar AJ, Hoeppener S, Guerrero-Sánchez C, Quintana-Owen P, Ruiz-Suárez JC, Schubert US, Ayora-Talavera G, De Jesús-Téllez MA, Saldívar-Guerra E. Biophysical investigation of liposome systems decorated with bioconjugated copolymers in the presence of amantadine. J Mater Chem B 2024; 12:5823-5837. [PMID: 38757473 DOI: 10.1039/d4tb00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Liposome-based technologies derived from lipids and polymers (e.g., PEGylated liposomes) have been recognized because of their applications in nanomedicine. However, since such systems represent myriad challenges and may promote immune responses, investigation of new biomaterials is mandatory. Here, we report on a biophysical investigation of liposomes decorated with bioconjugated copolymers in the presence (or absence) of amantadine (an antiviral medication). First, copolymers of poly(N,N-dimethylacrylamide-co-fluoresceinacrylate-co-acrylic acid-N-succinimide ester)-block-poly(N-isopropylacrylamide) (PDMA-b-PNIPAM) containing a fluorescence label were biofunctionalized with short peptides that resemble the sequence of the loops 220 and 130 of the binding receptor of the hemagglutinin (HA) protein of the influenza A virus. Then, the bioconjugated copolymers were self-assembled along with liposomes composed of 1,2 dimyristoyl-sn-glycero-3-phosphocholine, sphingomyelin, and cholesterol (MSC). These biohybrid systems, with and without amantadine, were systematically characterized using differential scanning calorimetry (DSC), dynamic light scattering (DLS), and cryogenic transmission electron microscopy (cryoTEM). Finally, the systems were tested in an in vitro study to evaluate cytotoxicity and direct immunofluorescence in Madin Darbin Canine Kidney (MDCK) cells. The biohybrid systems displayed long-term stability, thermo-responsiveness, hydrophilic-hydrophobic features, and fluorescence properties and were presumable endowed with cell targeting properties intrinsically integrated into the amino acid sequences of the utilized peptides, which indeed turn them into promising nanodevices for biomedical applications.
Collapse
Affiliation(s)
- Rosendo Pérez-Isidoro
- Centro de Investigación en Química Aplicada (CIQA), Enrique Reyna, 140, 25294 Saltillo, Coahuila, Mexico.
| | | | - Alma Jessica Díaz-Salazar
- Laboratorio de Bio-fisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 México City, Mexico
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 97743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Carlos Guerrero-Sánchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 97743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Patricia Quintana-Owen
- Departamento de Física Aplicada, CINVESTAV-IPN, Unidad Mérida, A.P. 73, Cordemex, 97310 Mérida, Yucatán, Mexico
| | | | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 97743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Guadalupe Ayora-Talavera
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 97743 Jena, Germany.
| | | | - Enrique Saldívar-Guerra
- Centro de Investigación en Química Aplicada (CIQA), Enrique Reyna, 140, 25294 Saltillo, Coahuila, Mexico.
| |
Collapse
|
3
|
Farias-Mancilla B, Balestri A, Zhang J, Frielinghaus H, Berti D, Montis C, Destarac M, Schubert US, Guerrero-Sanchez C, Harrisson S, Lonetti B. Morphology and thermal transitions of self-assembled NIPAM-DMA copolymers in aqueous media depend on copolymer composition profile. J Colloid Interface Sci 2024; 662:99-108. [PMID: 38340518 DOI: 10.1016/j.jcis.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/18/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
HYPOTHESIS There is a lack of understanding of the interplay between the copolymer composition profile and thermal transition observed in aqueous solutions of N-isopropyl acrylamide (NIPAM) copolymers, as well as the correlation between this transition and the formation and structure of copolymer self-assemblies. EXPERIMENTS For this purpose, we investigated the response of five copolymers with the same molar mass and chemical composition, but with different composition profile in aqueous solution against temperature. Using complementary analytical techniques, we probed structural properties at different length scales, from the molecular scale with Nuclear Magnetic Resonance (NMR) to the colloidal scale with Dynamic Light Scattering (DLS) and Small Angle Neutron Scattering (SANS). FINDINGS NMR and SANS investigations strengthen each other and allow a clear picture of the change of copolymer solubility and related copolymer self-assembly as a function of temperature. At the molecular scale, dehydrating NIPAM units drag N,N-dimethyl acrylamide (DMA) moieties with them in a gradual collapse of the copolymer chain; this induces a morphological transition of the self-assemblies from star-like nanostructures to crew-cut micelles. Interestingly, the transition spans a temperature range which depends on the monomer distribution profile in the copolymer chain, with the asymmetric triblock copolymer specimen revealing the broadest one. We show that the broad morphological transitions associated with gradient copolymers can be mimicked and even surpassed by the use of stepwise gradient (asymmetric) copolymers, which can be more easily and reproducibly synthesized than linear gradient copolymers.
Collapse
Affiliation(s)
- Barbara Farias-Mancilla
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France
| | - Arianna Balestri
- Department of Chemistry "Ugo Schiff", University of Florence and CSGI, Florence, Italy
| | - Junliang Zhang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Henrich Frielinghaus
- Forschungszentrum Jülich GmbH, Jülich Center for Neutron Science at Heinz Maier-Leibnitz Zentrum, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Debora Berti
- Department of Chemistry "Ugo Schiff", University of Florence and CSGI, Florence, Italy
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff", University of Florence and CSGI, Florence, Italy
| | - Mathias Destarac
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Carlos Guerrero-Sanchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany.
| | - Simon Harrisson
- LCPO, CNRS/Bordeaux-INP/Université de Bordeaux, Pessac, France.
| | - Barbara Lonetti
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| |
Collapse
|
4
|
Barr KE, Ohnsorg ML, Liberman L, Corcoran LG, Sarode A, Nagapudi K, Feder CR, Bates FS, Reineke TM. Drug-Polymer Nanodroplet Formation and Morphology Drive Solubility Enhancement of GDC-0810. Bioconjug Chem 2024; 35:499-516. [PMID: 38546823 DOI: 10.1021/acs.bioconjchem.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Nanodroplet formation is important to achieve supersaturation of active pharmaceutical ingredients (APIs) in an amorphous solid dispersion. The aim of the current study was to explore how polymer composition, architecture, molar mass, and surfactant concentration affect polymer-drug nanodroplet morphology with the breast cancer API, GDC-0810. The impact of nanodroplet size and morphology on dissolution efficacy and drug loading capacity was explored using polarized light microscopy, dynamic light scattering, and cryogenic transmission electron microscopy. Poly(N-isopropylacrylamide-stat-N,N-dimethylacrylamide) (PND) was synthesized as two linear derivatives and two bottlebrush derivatives with carboxylated or PEGylated end-groups. Hydroxypropyl methylcellulose acetate succinate grade MF (HPMCAS-MF) and poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA) were included as commercial polymer controls. We report the first copolymerization synthesis of a PVPVA bottlebrush copolymer, which was the highest performing excipient in this study, maintaining 688 μg/mL GDC-0810 concentration at 60 wt % drug loading. This is likely due to strong polymer-drug noncovalent interactions and the compaction of GDC-0810 along the PVPVA bottlebrush backbone. Overall, it was observed that the most effective formulations had a hydrodynamic radius less than 25 nm with tightly compacted nanodroplet morphologies.
Collapse
Affiliation(s)
- Kaylee E Barr
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Monica L Ohnsorg
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lucy Liberman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Louis G Corcoran
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Apoorva Sarode
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Karthik Nagapudi
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Christina R Feder
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Zhou J, Shi D, Kaneko T, Dong W, Chen M. Regulating Electrostatic Interactions toward Thermoresponsive Hydrogels with Low Critical Solution Temperature. Macromol Rapid Commun 2024; 45:e2300488. [PMID: 37793367 DOI: 10.1002/marc.202300488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Low critical solution temperature (LCST) of commonly used thermoresponsive polymers in water is basically dominated by hydrophobic interactions. Herein, a novel thermoresponsive system based on electrostatic interactions is reported. By simply loading aluminum chloride (AlCl3 ) into non-responsive poly(2-hydroxyethyl acrylate) (PHEA) hydrogels, PHEA-Al gels turn to have reversible thermoresponsive behavior between transparent and opaque without any volume change. Further investigations by changing metal ion-polymer compositions unravel the necessity of specific electrostatic interactions, namely, cation-dipole bonding interactions between hydroxy groups and trivalent metal ions. The thermoresponsive hydrogel demonstrates high transparency (≈95%), excellent luminous modulation capability (>98%), and cyclic reliability, suggesting great potential as an energy-saving material. Although LCST control by salt addition is widely known, salt-induced expression of thermoresponsiveness has barely been discussed before. This design provides a new approach of easy fabrication, low cost, and scalability to develop stimuli-responsive materials.
Collapse
Affiliation(s)
- Jiahua Zhou
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Dongjian Shi
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Tatsuo Kaneko
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Mingqing Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
6
|
Tang Y, Shu X, He G, Zhang Y, Zhao Y, Yuan H, Yu J, Guo J, Chen Q. Vancomycin-loaded hydrogels with thermal-responsive, self-peeling, and sustainable antibacterial properties for wound dressing. J Mater Chem B 2024; 12:752-761. [PMID: 38165891 DOI: 10.1039/d3tb02084c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Wound dressings play an important role in wound healing. However, many wound dressings lack antibacterial properties and are difficult to remove from newly grown tissues, causing secondary wound injuries and repeated medical treatment. This study reports a new type of thermal-responsive hydrogel dressing consisting of vancomycin-loaded gelatin nanospheres (GNs) and poly((N-isopropylacrylamide)-co-N-(methylol acrylamide)) functional components that could impart self-peeling and sustainable antibacterial properties. SEM images showed that the prepared hydrogel possessed a porous microstructure and the homogeneous distribution of GNs in its network. Excellent swelling ratios and thermal-induced self-peeling characteristics were confirmed by qualitative analysis. The GNs not only enhanced the strain at break of the hydrogel, but also acted as drug carriers to slow down the drug release from the hydrogel, achieving sustainable antibacterial properties and balanced biocompatibility. Therefore, this vancomycin-loaded hydrogel with self-peeling characteristics provides an effective way of preventing wound infection and can be used as a novel platform for wide-ranging applications of wound dressings.
Collapse
Affiliation(s)
- Yun Tang
- School of Materials Science & Engineering, Xi'an University of Architecture & Technology, Xi'an, Shaanxi 710055, China
| | - Xinrui Shu
- School of Materials Science & Engineering, Xi'an University of Architecture & Technology, Xi'an, Shaanxi 710055, China
| | - Guandi He
- School of Queen Mary University of London Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuhan Zhang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Yonghe Zhao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Hudie Yuan
- School of Materials Science & Engineering, Xi'an University of Architecture & Technology, Xi'an, Shaanxi 710055, China
| | - Jingjie Yu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Jiabao Guo
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
7
|
Liao X, Sychev D, Rymsha K, Al‐Hussein M, Farinha JP, Fery A, Besford QA. Integrated FRET Polymers Spatially Reveal Micro- to Nanostructure and Irregularities in Electrospun Microfibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304488. [PMID: 37897318 PMCID: PMC10754101 DOI: 10.1002/advs.202304488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/08/2023] [Indexed: 10/30/2023]
Abstract
A spatial view of macroscopic polymer material properties, in terms of nanostructure and irregularities, can help to better understand engineering processes such as when materials may fail. However, bridging the gap between the molecular-scale arrangement of polymer chains and the spatially resolved macroscopic properties of a material poses numerous difficulties. Herein, an integrated messenger material that can report on the material micro- to nanostructure and its processes is introduced. It is based on polymer chains labeled with fluorescent dyes that feature Förster resonance energy transfer (FRET) dependent on chain conformation and concentration within a host polymer material. These FRET materials are integrated within electrospun polystyrene microfibers, and the FRET is analyzed by confocal laser scanning microscopy (CLSM). Importantly, the use of CLSM allows a spatial view of material nanostructure and irregularities within the microfibers, where changes in FRET are significant when differences in fiber geometries and regularities exist. Furthermore, changes in FRET observed in damaged regions of the fibers indicate changes in polymer conformation and/or concentration as the material changes during compression. The system promises high utility for applications where nano-to-macro communication is needed for a better understanding of material processes.
Collapse
Affiliation(s)
- Xiaojian Liao
- Macromolecular ChemistryBavarian Polymer InstituteUniversity of Bayreuth95440BayreuthGermany
| | - Dmitrii Sychev
- Technische Universität DresdenChair for Physical Chemistry of Polymeric MaterialsFaculty of Chemistry and Food Science01069DresdenGermany
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Str. 601069DresdenGermany
| | - Khrystyna Rymsha
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Str. 601069DresdenGermany
| | - Mahmoud Al‐Hussein
- Physics Department and Hamdi Mango Center for Scientific ResearchThe University of JordanAmman11942Jordan
| | - José Paulo Farinha
- Centro de Quimica EstruturalDepartment of Chemical EngineeringInstituto Superior TécnicoUniversidade de LisboaLisboa1049‐001Portugal
| | - Andreas Fery
- Technische Universität DresdenChair for Physical Chemistry of Polymeric MaterialsFaculty of Chemistry and Food Science01069DresdenGermany
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Str. 601069DresdenGermany
| | - Quinn A. Besford
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Str. 601069DresdenGermany
| |
Collapse
|
8
|
Hassler JF, Lawson M, Arroyo EC, Bates FS, Hackel BJ, Lodge TP. Discovery of Kinetic Trapping of Poloxamers inside Liposomes via Thermal Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14263-14274. [PMID: 37755825 PMCID: PMC10853007 DOI: 10.1021/acs.langmuir.3c01499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Poloxamers, a class of biocompatible, commercially available amphiphilic block polymers (ABPs) comprising poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) blocks, interact with phospholipid bilayers, resulting in altered mechanical and surface properties. These block copolymers are useful in a variety of applications including therapeutics for Duchenne muscular dystrophy, as cell membrane stabilizers, and for drug delivery, as liposome surface modifying agents. Hydrogen bonding between water and oxygen atoms in PEO and PPO units results in thermoresponsive behavior because the bound water shell around both blocks dehydrates as the temperature increases. This motivated an investigation of poloxamer-lipid bilayer interactions as a function of temperature and thermal history. In this study, we applied pulsed-field-gradient NMR spectroscopy to measure the fraction of chains bound to 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) liposomes between 10 and 50 °C. We measured an (11 ± 3)-fold increase in binding affinity at 37 °C relative to 27 °C. Moreover, following incubation at 37 °C, it takes weeks for the system to re-equilibrate at 25 °C. Such slow desorption kinetics suggests that at elevated temperatures polymer chains can pass through the bilayer and access the interior of the liposomes, a mechanism that is inaccessible at lower temperatures. We propose a molecular mechanism to explain this effect, which could have important ramifications on the cellular distribution of ABPs and could be exploited to modulate the mechanical and surface properties of liposomes and cell membranes.
Collapse
|
9
|
Suryavanshi P, Wang J, Duggal I, Maniruzzaman M, Banerjee S. Four-Dimensional Printed Construct from Temperature-Responsive Self-Folding Feedstock for Pharmaceutical Applications with Machine Learning Modeling. Pharmaceutics 2023; 15:pharmaceutics15041266. [PMID: 37111753 PMCID: PMC10146263 DOI: 10.3390/pharmaceutics15041266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Four-dimensional (4D) printing, as a newly evolving technology to formulate drug delivery devices, displays distinctive advantages that can autonomously monitor drug release according to the actual physiological circumstances. In this work, we reported our earlier synthesized novel thermo-responsive self-folding feedstock for possible SSE-mediated 3D printing to form a 4D printed construct deploying machine learning (ML) modeling to determine its shape recovery behavior followed by its potential drug delivery applications. Therefore, in the present study, we converted our earlier synthesized temperature-responsive self-folding (both placebo and drug-loaded) feedstock into 4D printed constructs using SSE-mediated 3D printing technology. Further, the shape memory programming of the printed 4D construct was achieved at 50 °C followed by shape fixation at 4 °C. The shape recovery was achieved at 37 °C, and the obtained data were used to train and ML algorithms for batch optimization. The optimized batch showed a shape recovery ratio of 97.41. Further, the optimized batch was used for the drug delivery application using paracetamol (PCM) as a model drug. The % entrapment efficiency of the PCM-loaded 4D construct was found to be 98.11 ± 1.5%. In addition, the in vitro release of PCM from this programmed 4D printed construct confirms temperature-responsive shrinkage/swelling properties via releasing almost 100% ± 4.19 of PCM within 4.0 h. at gastric pH medium. In summary, the proposed 4D printing strategy pioneers the paradigm that can independently control drug release with respect to the actual physiological environment.
Collapse
Affiliation(s)
- Purushottam Suryavanshi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari 781101, Assam, India
| | - Jiawei Wang
- Pharmaceutical Engineering and 3D Printing Lab (PharmE3D), Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ishaan Duggal
- Pharmaceutical Engineering and 3D Printing Lab (PharmE3D), Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing Lab (PharmE3D), Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari 781101, Assam, India
- Pharmaceutical Engineering and 3D Printing Lab (PharmE3D), Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
10
|
Belyaeva AA, Tretyakov IV, Kireynov AV, Nashchekina YA, Solodilov VI, Korzhikova-Vlakh EG, Morozova SM. Fibrillar biocompatible colloidal gels based on cellulose nanocrystals and poly(N-isopropylacrylamide) for direct ink writing. J Colloid Interface Sci 2023; 635:348-357. [PMID: 36592504 DOI: 10.1016/j.jcis.2022.12.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/03/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Hydrogels based on cellulose nanocrystals (CNC) have attracted great interest because of their sustainability, biocompatibility, mechanical strength and fibrillar structure. Gelation of colloidal particles can be induced by the introduction of polymers. Existing examples include gels based on CNC and derivatives of cellulose or poly(vinyl alcohol), however, gel structure and their application for extrusion printing were not shown. Hence, we rationalize formation of colloidal gels based on mixture of poly(N-isopropylacrylamide) (PNIPAM) and CNC and control their structure and mechanical properties by variation of components ratio. EXPERIMENTS State diagram for colloidal system based on mixture of PNIPAM and CNC were established at 25 and 37 °C. Biocompatibility, fiber diameter and rheological properties of the gels were studied for different PNIPAM/CNC ratio. FINDINGS We show that depending on the ratio between PNIPAM and CNC, colloidal system could be in sol or gel state at 25 °C and at gel state or phase separated at 37 °C. Physically crosslinked hydrogels were thermosensitive and could reversibly change it transparency from translucent to opaque in biologically relevant temperature range. These colloidal hydrogels were biocompatible, had fibrillar structure and demonstrate shear-thinning behavior, which makes them a promising material for bioapplications related to extrusion printing.
Collapse
Affiliation(s)
- Anastasia A Belyaeva
- N.E. Bauman Moscow State Technical University, 2nd Baumanskaya Str,.5/1, Moscow 105005, Russia; Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij Pr., Chernogolovka, 142432 Moscow, Russia
| | - Ilya V Tretyakov
- N.E. Bauman Moscow State Technical University, 2nd Baumanskaya Str,.5/1, Moscow 105005, Russia
| | - Alexey V Kireynov
- N.E. Bauman Moscow State Technical University, 2nd Baumanskaya Str,.5/1, Moscow 105005, Russia
| | - Yuliya A Nashchekina
- Institute of Cytology, Russian Academy of Sciences, Tikhoreckiy pr. 4, St. Petersburg 194064, Russia
| | - Vitaliy I Solodilov
- N.E. Bauman Moscow State Technical University, 2nd Baumanskaya Str,.5/1, Moscow 105005, Russia
| | - Evgenia G Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, St. Petersburg 199004, Russia
| | - Sofia M Morozova
- N.E. Bauman Moscow State Technical University, 2nd Baumanskaya Str,.5/1, Moscow 105005, Russia.
| |
Collapse
|
11
|
Huang Y, Morozova SM, Li T, Li S, Naguib HE, Kumacheva E. Stimulus-Responsive Transport Properties of Nanocolloidal Hydrogels. Biomacromolecules 2023; 24:1173-1183. [PMID: 36580573 DOI: 10.1021/acs.biomac.2c01222] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Applications of polymer hydrogels in separation technologies, environmental remediation, and drug delivery require control of hydrogel transport properties that are largely governed by the pore dimensions. Stimulus-responsive change in pore size offers the capability to change gel's transport properties "on demand". Here, we report a nanocolloidal hydrogel that exhibits temperature-controlled increase in pore size and, as a result, enhanced transport of encapsulated species from the gel. The hydrogel was formed by the covalent cross-linking of aldehyde-modified cellulose nanocrystals and chitosan carrying end-grafted poly(N-isopropylacrylamide) (pNIPAm) molecules. Owing to the temperature-mediated coil-to-globule transition of pNIPAm grafts, they acted as a temperature-responsive "gate" in the hydrogel. At elevated temperature, the size of the pores showed up to a 4-fold increase, with no significant changes in volume, in contrast with conventional pNIPAm-derived gels exhibiting a reduction in both pore size and volume in similar conditions. Temperature-mediated transport properties of the gel were explored by studying diffusion of nanoparticles with different dimensions from the gel, leading to the established correlation between the kinetics of diffusion-governed nanoparticle release and the ratio nanoparticle dimensions-to-pore size. The proposed approach to stimulus-responsive control of hydrogel transport properties has many applications, including their use in nanomedicine and tissue engineering.
Collapse
Affiliation(s)
- Yuhang Huang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| | - Sofia M Morozova
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, OntarioM5S 3H6, Canada
- N.E. Bauman Moscow State Technical University, 5/1 Second Baumanskaya Street, Moscow105005, Russian Federation
| | - Terek Li
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, OntarioM5S 3E4, Canada
| | - Shangyu Li
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, OntarioM5S 3H6, Canada
| | - Hani E Naguib
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, OntarioM5S 3E4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, OntarioM5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, OntarioM5S 3G9, Canada
| | - Eugenia Kumacheva
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, OntarioM5S 3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, OntarioM5S 3G9, Canada
| |
Collapse
|
12
|
Controlling the LCST-Phase Transition in Azobenzene-Functionalized Poly ( N-Isopropylacrlyamide) Hydrogels by Light. Gels 2023; 9:gels9020075. [PMID: 36826244 PMCID: PMC9956105 DOI: 10.3390/gels9020075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Poly(N-isopropylacrylamide) PNIPAAm hydrogels were modified with a new azobenzene-containing co-monomer. In this work, light responsiveness as an additional functionality, is conceptualized to induce two phase transitions in the same material, which can be controlled by light. For a hydrogel with merely 2.5 mol% of this co-monomer, the lower critical solution transition temperature (LCST) was lowered by 12 °C (to 20 °C) compared to PNIPAAm (LCST at 32 °C), as analyzed by differential scanning calorimetry (DSC). The untreated unimodal endotherm split into a bimodal peak upon irradiation with UV-light, giving a second onset due to the switched (Z) isomer-rich regions, LCST*H2.5%-(Z) = 26 °C. On irradiation with 450 nm, leading to the reverse (Z) to (E) isomerization, the endotherm was also reversible. Thus, a photo-switchable hydrogel whose LCST and structure are tunable with the hydrophobicity-hydrophilicity of the (E) and (Z) isomeric state of azobenzene was obtained. The influence of the increase in the mol% of azoacrylate on the LCST was evaluated via DSC, in combination with NMR studies, UV-vis spectroscopy and control experiments with linear polymers. The large light-driven modulation of the LCST adds bistability in thermoresponsive hydrogels, which may open diverse applications in the field of soft robotics actuators.
Collapse
|
13
|
Kozhunova EY, Plutalova AV, Sybachin AV, Chertovich AV, Chernikova EV. Double Stimuli-Responsive di- and Triblock Copolymers of Poly(N-isopropylacrylamide) and Poly(1-vinylimidazole): Synthesis and Self-Assembly. Int J Mol Sci 2023; 24:879. [PMID: 36614322 PMCID: PMC9820948 DOI: 10.3390/ijms24010879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
For the first time, double stimuli-responsive properties of poly(N-isopropylacrylamide) (PNIPA) and poly(1-vinylimidazole) (PVIM) block copolymers in aqueous solutions were studied. The synthesis of PNIPA60-b-PVIM90 and PNIPA28-b-PVIM62-b-PNIPA29 was performed using reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were characterized by size exclusion chromatography and 1H NMR spectroscopy. The conformational behavior of the polymers was studied using dynamic light scattering (DLS) and fluorescence spectroscopy (FS). It was found that PNIPA and block copolymers conformation and ability for self-assembly in aqueous medium below and above cloud point temperature depend on the locus of hydrophobic groups derived from the RAFT agent within the chain. Additionally, the length of PVIM block, its locus in the chain and charge perform an important role in the stabilization of macromolecular micelles and aggregates below and above cloud point temperature. At 25 °C the average hydrodynamic radius (Rh) of the block copolymer particles at pH 3 is lower than at pH 9 implying the self-assembling of macromolecules in the latter case. Cloud points of PNIPA60-b-PVIM90 are ~43 °C and ~37 °C at a pH of 3 and 9 and of PNIPA28-b-PVIM62-b-PNIPA29 they are ~35 °C and 31 °C at a pH of 3 and 9. Around cloud point independently of pH, the Rh value for triblock copolymer rises sharply, achieves the maximum value, then falls and reaches the constant value, while for diblock copolymer, it steadily grows after reaching cloud point. The information about polarity of microenvironment around polymer obtained by FS accords with DLS data.
Collapse
Affiliation(s)
- Elena Yu. Kozhunova
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 2, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 3, 119991 Moscow, Russia
| | - Anna V. Plutalova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 3, 119991 Moscow, Russia
| | - Andrey V. Sybachin
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 3, 119991 Moscow, Russia
| | - Alexander V. Chertovich
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 2, 119991 Moscow, Russia
- Semenov Federal Research Center for Chemical Physics, Kosygina, 4, 119991 Moscow, Russia
| | - Elena V. Chernikova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 3, 119991 Moscow, Russia
| |
Collapse
|
14
|
R. M. Metawea O, Teleb M, Haiba NS, Elzoghby AO, Khafaga AF, Noreldin AE, Khattab SN, Khalil HH. Folic acid-poly(N-isopropylacrylamide-maltodextrin) nanohydrogels a novel thermo-/pH-responsive polymer for resveratrol breast cancer targeted therapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Synthesis and Characterization of a Novel Dual-Responsive Nanogel for Anticancer Drug Delivery. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1548410. [PMID: 36193087 PMCID: PMC9526620 DOI: 10.1155/2022/1548410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
In this study, to reduce the side effects of anticancer drugs and also to increase the efficiency of current drug delivery systems, a pH and temperature-responsive polymeric nanogel was synthesized by copolymerization of N-vinylcaprolactam (VCL) and acrylic acid (AA) monomers (P(VCL-co-AA)) with a novel cross-linker, triethylene glycol dimethacrylate (TEGDMA), as a biocompatible and nontoxic component. The structural and physicochemical features of the P(VCL-co-AA) nanogel were characterized by FT-IR, DLS/Zeta potential, FE-SEM, and 1HNMR techniques. The results indicated that spherical polymeric nanogel was successfully synthesized with a 182 nm diameter. The results showed that the polymerization process continues with the opening of the carbon-carbon double bond of monomers, which was approved by C-C band removing located at 1600 cm-1. Doxorubicin (Dox) as a chemotherapeutic agent was loaded into the P(VCL-co-AA), whit a significant loading of Dox (83%), and the drug release profile was investigated in the physiological and cancerous site simulated conditions. P(VCL-co-AA) exhibited a pH and temperature-responsive behavior, with an enhanced release rate in the cancerous site condition. The biocompatibility and nontoxicity of P(VCL-co-AA) were approved by MTT assay on the normal human foreskin fibroblasts-2 (HFF-2) cell line. Also, Dox-loaded P(VCL-co-AA) had excellent toxic behavior on the Michigan Cancer Foundation-7 (MCF-7) cell line as model cancerous cells. Moreover, Dox-loaded P(VCL-co-AA) had higher toxicity in comparison with free Dox, which would be a vast advantage in reducing Dox side effects in the clinical cancer treatment applications.
Collapse
|
16
|
Umapathi R, Kumar K, Majid Ghoreishian S, Mohana Rani G, Young Park S, Suk Huh Y, Venkatesu P. Tunnelling the structural insights between poly(N-isopropylacrylamide) and imidazolium sulfate ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Ansari MJ, Rajendran RR, Mohanto S, Agarwal U, Panda K, Dhotre K, Manne R, Deepak A, Zafar A, Yasir M, Pramanik S. Poly( N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels 2022; 8:454. [PMID: 35877539 PMCID: PMC9323937 DOI: 10.3390/gels8070454] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/21/2022] Open
Abstract
A prominent research topic in contemporary advanced functional materials science is the production of smart materials based on polymers that may independently adjust their physical and/or chemical characteristics when subjected to external stimuli. Smart hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) demonstrate distinct thermoresponsive features close to a lower critical solution temperature (LCST) that enhance their capability in various biomedical applications such as drug delivery, tissue engineering, and wound dressings. Nevertheless, they have intrinsic shortcomings such as poor mechanical properties, limited loading capacity of actives, and poor biodegradability. Formulation of PNIPAM with diverse functional constituents to develop hydrogel composites is an efficient scheme to overcome these defects, which can significantly help for practicable application. This review reports on the latest developments in functional PNIPAM-based smart hydrogels for various biomedical applications. The first section describes the properties of PNIPAM-based hydrogels, followed by potential applications in diverse fields. Ultimately, this review summarizes the challenges and opportunities in this emerging area of research and development concerning this fascinating polymer-based system deep-rooted in chemistry and material science.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rahul R. Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015, USA;
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Unnati Agarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Road, Phagwara 144001, Punjab, India;
| | - Kingshuk Panda
- Department of Applied Microbiology, Vellore Institute of Technology, School of Bioscience and Technology, Vellore 632014, Tamilnadu, India;
| | - Kishore Dhotre
- I.C.M.R.—National Institute of Virology, Pune 411021, Maharashtra, India;
| | - Ravi Manne
- Chemtex Environmental Lab, Quality Control and Assurance Department, 3082 25th Street, Port Arthur, TX 77642, USA;
| | - A. Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600124, Tamil Nadu, India;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; or
| | - Mohd Yasir
- Department of Pharmacy, College of Health Science, Arsi University, Asella 396, Ethiopia;
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
18
|
Pan Z, Yang G, Liu J, Yuan J, Pan M, Li J, Tan H. Effects of oppositely charged moieties on the self-assembly and biophysicochemical properties of polyurethane micelles. J Mater Chem B 2022; 10:4431-4441. [PMID: 35593134 DOI: 10.1039/d2tb00631f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gemini quaternary ammonium (GQA), a type of cationic surfactant, exhibits excellent micellization ability and acts as a cell internalization promoter to increase the permeability of the cell membrane. GQA is sensitive to ionic solutions, which disturb its stabilization and leads to the rapid degradation of its polymer micelles due to its unique hydrophilic N+ structure. However, the effect of negatively charged moieties in the polymer chains of GQA on its action in polymer micelles, typically with regard to its micellization and biological performance, remains unclear. In this work, a series of polyurethane micelles containing various ratios of oppositely charged moieties was prepared. We found that the interchain electrostatic interaction severely undermines the function of the GQA surfactant and hinders the self-assembly and stabilization of polyurethane micelles. Specifically, a hydrophilic corona with a longer length cannot completely overcome this effect. By regulating the ratio of oppositely charged moieties, micelles exhibited tunable biological properties, such as biocompatibility, cytotoxicity, cell internalization, and phagocytosis by macrophages. Based on our results, a moderate molecular weight of mPEG (Mn = 1900) and a slight positive surface potential (∼10 mV) are the best surface parameters for the comprehensive performance of the studied nanoplatforms. This study provides a further understanding of the electrostatic interaction effect on the properties of the cationic GQA, offering rational guidance for the design and fabrication of GQA polymer micelles.
Collapse
Affiliation(s)
- Zhicheng Pan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Guangxuan Yang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jian Liu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jinfeng Yuan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Mingwang Pan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
19
|
Liang W, Lopez CG, Richtering W, Wöll D. Photo- and thermo-responsive microgels with supramolecular crosslinks for wavelength tunability of the volume phase transition temperature. Phys Chem Chem Phys 2022; 24:14408-14415. [PMID: 35642955 DOI: 10.1039/d2cp00532h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional microgels have powerful applications, especially due to their quick responsiveness to different external stimuli such as temperature, pH, ionic strength, solvent composition and light. Here, we describe the synthesis of novel dual-responsive poly(N-isopropylacrylamide) (PNIPAM) microgels and demonstrate that, in addition to temperature, light changes their properties. The crosslinks inside the microgels were achieved by the host-guest interactions between the trans azobenzene (transAzo) and β-cyclodextrin (βCD) units. transAzo can be photoisomerized to cisAzo which exhibits significant lower binding affinity to βCD. As a consequence, the crosslink density, and thus several microgel properties, can be controlled by light irradiation. Surprisingly, this irradiation with light can significantly change the volume phase transition temperature (VPTT) by several degrees centigrade, presumably due to the fact that the polar βCD shields the transAzo bound to it, whereas the unbound cisAzo is rather apolar. As a result, continuous irradiation with specific wavelengths until reaching the respective photostationary state allows for a full control over the VPTT within the physiologically relevant range between 32 °C and 38 °C.
Collapse
Affiliation(s)
- Wenjing Liang
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
| | - Carlos G Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
| |
Collapse
|
20
|
Wang R, Wang X, Mu X, Feng W, Lu Y, Yu W, Zhou X. Reducing thermal damage to adjacent normal tissue with dual thermo-responsive polymer via thermo-induced phase transition for precise photothermal theranosis. Acta Biomater 2022; 148:142-151. [PMID: 35690327 DOI: 10.1016/j.actbio.2022.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022]
Abstract
Photothermal therapy has been extensively studied to improve the light-to-heat efficiency for tumor ablation, but could cause severe damage to adjacent healthy tissue due to the thermal transfer, the random distribution of photothermal agents (PTAs), or combination hereof. Herein, we solve this dilemma with a material design strategy to develop a P(AAm-co-AN)-b-P(NIPAM-co-DMAa)-b-P(AAm-co-AN) ABA triblock copolymer by RAFT polymerization, which exhibits both UCST and LCST dual thermo-responsive behaviors in aqueous solution. The P(AAm-co-AN) block with appropriate AN content allows to finely tune its UCST to ∼ 43°C, which can effectively co-assemble with camptothecin (CPT) and Cy7-TCF, a near-infrared (NIR) PTA, realizing the photo-activated "on-demand" release of CPT and Cy7-TCF. The LCST of P(NIPAM-co-DMAa) segment is adjusted to ∼ 53°C by varying DMAa content, enabling an irreversible sol-to-gel transition. The heat transfer in hydrogel and heat dissipation at the interface of hydrogel-adjacent tissue are limited, resulting in selectively cell killing in tumor, with little hyperthermia in adjacent tissues. Moreover, the hydrogel continues to release CPT to enhance the synergistic efficacy of PTT with chemotherapy. These results suggest that dual thermo-responsive polymer can contribute PTT with high selectivity and negligible side effects for precise medicine. STATEMENT OF SIGNIFICANCE: Photothermal therapy exploits the susceptibility of tumor cells toward external light-induced hyperthermia, but can cause severe damage to adjacent healthy tissue due to thermal transfer, random distribution of photothermal agents (PTAs), or combination hereof. Here, we solve this dilemma by developing a P(AAm-co-AN)-b-P(NIPAM-co-DMAa)-b-P(AAm-co-AN) triblock copolymer with UCST and LCST dual thermo-responsive behaviors, realizing the sequential micelle-unimer-hydrogel phase transitions. The polymer can effectively encapsulate PTA/drug, achieve long systemic circulation, accumulate in tumor through EPR effect, regulate drug release by controlling tumor temperature above UCST via irradiation, and finally exhibit a sol-gel transition, eradicating the heat transfer to adjacent tissue. This represents a practicable strategy to guide the design of next-generation polymeric vector that can contribute PTT with negligible side effects.
Collapse
Affiliation(s)
- Rui Wang
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Xu Wang
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Xueluer Mu
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Wenbi Feng
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Yingxi Lu
- School of Material Science, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China.
| | - Weisong Yu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, P.R. China
| | - Xianfeng Zhou
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China.
| |
Collapse
|
21
|
Hechenbichler M, Prause A, Gradzielski M, Laschewsky A. Thermoresponsive Self-Assembly of Twofold Fluorescently Labeled Block Copolymers in Aqueous Solution and Microemulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5166-5182. [PMID: 34734729 DOI: 10.1021/acs.langmuir.1c02318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A nonionic double hydrophilic block copolymer with a long permanently hydrophilic and a small thermoresponsive block is synthesized by reversible addition-fragmentation chain-transfer polymerization (RAFT). By employing a specifically designed chain-transfer agent, the polymer is functionalized with complementary end groups which are suited for Förster resonance energy transfer (FRET). The end group attached to the permanently hydrophilic block of poly(N,N-dimethylacrylamide) pDMAm is designed as a permanently hydrophobic segment ("sticker") comprising a long alkyl chain and the 4-aminonaphthalimide fluorophore. The other end attached to the thermoresponsive block of poly(N-isopropylacrylamide) pNiPAm incorporates a coumarin fluorophore. The temperature-dependent self-assembly of the twofold fluorescently labeled copolymer is studied in pure aqueous solution as well as in an o/w microemulsion by several techniques including turbidimetry, dynamic light scattering (DLS), and fluorescence spectroscopy. It is compared to the behaviors of the analogous twofold-labeled pDMAm and pNiPAm homopolymer references. The findings indicate that the block copolymer behaves as a polymeric surfactant at low temperatures, with one relatively small hydrophobic end block and an extended hydrophilic chain forming "hairy micelles". At elevated temperatures above the LCST phase transition of the pNiPAm block, however, the copolymer behaves as an associative telechelic polymer with two nonsymmetrical hydrophobic end blocks, which do not mix. Thus, instead of a network of bridged "flower micelles", large dynamic aggregates are formed. These are connected alternatingly by the original micellar cores as well as by clusters of the collapsed pNiPAm blocks. This type of structure is even more favored in the o/w microemulsion than in pure aqueous solution, as the microemulsion droplets constitute an attractive anchoring point for the hydrophobic dodecyl sticker but not for the collapsed pNiPAm chains.
Collapse
Affiliation(s)
- Michelle Hechenbichler
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
| | - Albert Prause
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, FG Physical Chemistry/Molecular Material Science Institute of Chemistry, Technische Universität Berlin, Straße des 17 Juni 124, 10623 Berlin, Germany
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, FG Physical Chemistry/Molecular Material Science Institute of Chemistry, Technische Universität Berlin, Straße des 17 Juni 124, 10623 Berlin, Germany
| | - André Laschewsky
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
- Fraunhofer Institute of Applied Polymer Research IAP, Fraunhofer Institute, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
| |
Collapse
|
22
|
Xu J, Abetz V. Double thermoresponsive graft copolymers with different chain ends: feasible precursors for covalently crosslinked hydrogels. SOFT MATTER 2022; 18:2082-2091. [PMID: 35199817 DOI: 10.1039/d1sm01692j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The tailored synthesis of graft copolymers from acrylic and methacrylic monomers can be accomplished solely through photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization. Samples with poly[oligo(ethylene glycol) methacrylate] (POEGMA) backbones synthesized under green light irradiation and poly(N-isopropylacrylamide) (PNIPAM) side chains growing under blue light irradiation are presented. As monitored by temperature-dependent dynamic light scattering (DLS) measurements and temperature-variable nuclear magnetic resonance (NMR) spectroscopy, the architecture of the graft copolymers allows unique two-step lower critical solution temperature (LCST) transitions in aqueous solutions. Meanwhile, different end-groups introduced by the corresponding RAFT agents affect the detailed thermoresponsive behavior remarkably. This RAFT strategy shows more advantages when the multiple trithiocarbonate groups are converted into thiol reactive pyridyl disulfide (PDS) groups via a facile post-polymerization modification. The PDS-terminated graft copolymer can then be regarded as a usable precursor for various applications, such as thermoresponsive hydrogels.
Collapse
Affiliation(s)
- Jingcong Xu
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Volker Abetz
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| |
Collapse
|
23
|
Zhou D, Zhu LW, Wu BH, Xu ZK, Wan LS. End-functionalized polymers by controlled/living radical polymerizations: synthesis and applications. Polym Chem 2022. [DOI: 10.1039/d1py01252e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on end-functionalized polymers synthesized by controlled/living radical polymerizations and the applications in fields including bioconjugate formation, surface modification, topology construction, and self-assembly.
Collapse
Affiliation(s)
- Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang-Wei Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bai-Heng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling-Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
24
|
Jaik TG, Ciubini B, Frascella F, Jonas U. Thermal Response and Thermochromism of Methyl Red-Based Copolymer Systems - Coupled Responsiveness in Critical Solution Behaviour and Optical Absorption Properties. Polym Chem 2022. [DOI: 10.1039/d1py01361k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Until now, only limited experimental knowledge and sparse theoretical treatment about the mechanisms of thermochromism of azo dyes in solution has been available. Especially the coupling of thermoresponsiveness of polymers...
Collapse
|
25
|
Narumi A, Sato SI, Shen X, Kakuchi T. Precision synthesis for well-defined linear and/or architecturally controlled thermoresponsive poly(N-substituted acrylamide)s. Polym Chem 2022. [DOI: 10.1039/d1py01449h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the progress in precision polymerizations of specific kinds of N-alkylacrylamides and N,N-dialkylacrylamides to produce polymers showing thermoresponsive properties in aqueous media, which representatively include the reversible-deactivation radical polymerizations...
Collapse
|
26
|
Pu L, Zhu M, Shen X, Wu S, Wei W, Li S. Stomata-inspired smart bilayer catalyst with the dual-responsive ability, capable of single/tandem catalysis. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Rasch D, Göstl R. Gated Photoreactivity of Pyrene Copolymers in Multiresponsive Cross-Linked starPEG-Hydrogels. ACS POLYMERS AU 2021; 1:59-66. [PMID: 36855553 PMCID: PMC9954279 DOI: 10.1021/acspolymersau.1c00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and manufacturing of multiresponsive polymer hydrogels using simple components is a notable challenge. Pyrene is an excimer-forming fluorophore mostly used as microenvironmental probe and for the localization of molecules in close proximity in artificial and biomaterials. Here we make use of the solvophobic preaggregation and photolysis properties of pyrene to construct multiresponsive hydrogels. We synthesize poly(ethylene glycol) (PEG) hydrogels from well-defined pyrene-substituted macro-cross-linkers and elucidate their intricate intra- and intermolecular excimer formation pathways. We find that controlling the water content of the hydrogels through the degree of swelling acts as a gating stimulus governing the photoinduced solvolysis of pyrenylmethyl esters from their poly(methacrylate) backbone. This allows the implementation of a simple transient photolithography process. We thus demonstrate that multiresponsive soft materials with complex optical and mechanical responses can be obtained with comparatively little synthetic effort.
Collapse
Affiliation(s)
- Dustin Rasch
- DWI−Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, 52056 Aachen, Germany,Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Robert Göstl
- DWI−Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, 52056 Aachen, Germany,
| |
Collapse
|
28
|
Wu D, Xu Z, Li Z, Yuan W, Wang HQ, Xie X. Reduction and temperature dually-triggered size-shrinkage and drug release of micelles for synergistic photothermal-chemotherapy of cancer. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Constantinou AP, Georgiou TK. Pre‐clinical and clinical applications of thermoreversible hydrogels in biomedical engineering: a review. POLYM INT 2021. [DOI: 10.1002/pi.6266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anna P Constantinou
- Department of Materials Imperial College London, South Kensington Campus, Royal School of Mines London UK
| | - Theoni K Georgiou
- Department of Materials Imperial College London, South Kensington Campus, Royal School of Mines London UK
| |
Collapse
|
30
|
Constantinou AP, Zhang K, Somuncuoğlu B, Feng B, Georgiou TK. PEG-Based Methacrylate Tetrablock Terpolymers: How Does the Architecture Control the Gelation? Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anna P. Constantinou
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Kaiwen Zhang
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Birsen Somuncuoğlu
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Bailin Feng
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Theoni K. Georgiou
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| |
Collapse
|
31
|
Aldakkan BS, Hammami MA, Qi G, Kanj MY, Giannelis EP. Stimuli-Responsive, Hydrolyzable Poly(Vinyl Laurate- co-vinyl Acetate) Nanoparticle Platform for In Situ Release of Surfactants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25553-25562. [PMID: 34006101 DOI: 10.1021/acsami.1c04977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A stimuli-responsive, sub-100 nm nanoparticle (NP) platform with a hydrolyzable ester side chain for in situ generation of surfactants is demonstrated. The NPs were synthesized via copolymerization of vinyl-laurate and vinyl-acetate [p-(VL-co-VA), 3:1 molar ratio] and stabilized with a protective poly(ethylene-glycol) shell. The NPs are ∼55 nm in diameter with a zeta potential of -54 mV. Hydrolysis kinetics in an accelerated, base-catalyzed reaction show release of about 11 and 30% of the available surfactant at 25 and 80 °C, respectively. The corresponding values in seawater are 22 and 76%. The efficiency of the released surfactant in reducing the interfacial tension, altering wettability, and stabilizing oil-water emulsion was investigated through contact angle measurements and laser confocal scanning microscopy and benchmarked to sodium laurate, a commercially available surfactant. All these measurements demonstrate both the efficacy of the NP system for surfactant delivery and the ability of the released surfactant to alter wettability and stabilize an oil-water emulsion.
Collapse
Affiliation(s)
- Bashayer S Aldakkan
- Department of Materials Science and Engineering, Cornell University, Ithaca 14850, New York, United States
| | - Mohamed A Hammami
- Department of Materials Science and Engineering, Cornell University, Ithaca 14850, New York, United States
| | - Genggeng Qi
- Department of Materials Science and Engineering, Cornell University, Ithaca 14850, New York, United States
| | - Mazen Y Kanj
- College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca 14850, New York, United States
| |
Collapse
|
32
|
A novel 'smart' PNIPAM-based copolymer for breast cancer targeted therapy: Synthesis, and characterization of dual pH/temperature-responsive lactoferrin-targeted PNIPAM-co-AA. Colloids Surf B Biointerfaces 2021; 202:111694. [PMID: 33740633 DOI: 10.1016/j.colsurfb.2021.111694] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Despite the active research towards introducing novel anticancer agents, the long-term sequelae and side effects of chemotherapy remain the major obstacle to achieving clinical success. Recent cancer research is now utilizing the medicinal chemistry toolbox to tailor novel 'smart' carrier systems that can reduce the major limitations of chemotherapy ranging from non-specificity and ubiquitous biodistribution to systemic toxicity. In this aspect, various stimuli-responsive polymers have gained considerable interest due to their intrinsic tumor targeting properties. Among these polymers, poly(N-isopropylacrylamide (PNIPAM) has been chemically modified to tune its thermoresponsivity or even copolymerized to endow new stimulus responsiveness for enhancing tumor targeting. Herein, we set our design rationale to impart additional active targeting entity to pH/temperature-responsive PNIPAM-based polymer for more efficient controlled payloads accumulation at the tumor through cellular internalization via synthesizing novel "super intelligent" lactoferrin conjugated PNIPAM-acrylic acid (LF-PNIPAM-co-AA) copolymer. The synthesized copolymer was physicochemically characterized and evaluated as a smart nanocarrier for targeting breast cancer. In this regard, Honokiol (HK) was utilized as a model anticancer drug and encapsulated in the nanoparticles to overcome its lipophilic nature and allow its parenteral administration, for achieving sustainable drug release with targeting action. Results showed that the developed HK-loaded LF-PNIPAM-co-AA nanohydrogels displayed high drug loading capacity reaching to 18.65 wt.% with excellent physical and serum stability. Moreover, the prepared HK-loaded nanohydrogels exhibited efficient in vitro and in vivo antitumor activities. In vivo, HK-loaded nanohydrogels demonstrated suppression of VEGF-1 and Ki-67 expression levels, besides inducing apoptosis through upregulating the expression level of active caspase-3 in breast cancer-bearing mice. Overall, the developed nanohydrogels (NGs) with pH and temperature responsivity provide a promising nanocarrier for anticancer treatment.
Collapse
|
33
|
Rohleder D, Vana P. Near-Infrared-Triggered Photothermal Aggregation of Polymer-Grafted Gold Nanorods in a Simulated Blood Fluid. Biomacromolecules 2021; 22:1614-1624. [PMID: 33689319 DOI: 10.1021/acs.biomac.1c00077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gold nanorods were decorated with thermoresponsive copolymers of tailored architecture and constructed from N-isopropyl acrylamide and acrylamide. The copolymers were prepared via reversible addition-fragmentation chain transfer polymerization (RAFT) and immobilized on the gold nanorod surface taking advantage of the aurophilicity of its inherently formed trithiocarbonate groups. The topology as well as the average molecular weight of the copolymers was altered using either a monofunctional or 3-arm star RAFT agent. Two-dimensional arrays of the self-assembled core-shell nanostructures were fabricated by drop-casting showing tunable interparticle spacings. In a simulated blood fluid, the lower critical solution temperature of the nanohybrids could be modified over a significant temperature range around body temperature by adjusting the copolymer composition, the architecture, and/or the size of the polymer. The intrinsic photothermal properties of the gold nanorods were utilized to trigger particle aggregation by irradiation at 808 nm in the optical window of human tissues. In effect, a new nanohybrid system with remotely controllable aggregation via an external NIR-light stimulus for nanomedical applications was developed.
Collapse
Affiliation(s)
- Darius Rohleder
- Institute of Physical Chemistry, Georg-August-University Göttingen, Tammannstr. 6, Göttingen 37077, Germany
| | - Philipp Vana
- Institute of Physical Chemistry, Georg-August-University Göttingen, Tammannstr. 6, Göttingen 37077, Germany
| |
Collapse
|
34
|
Vdovchenko A, Pearce AK, Freeley M, O'Reilly RK, Resmini M. Effect of heterogeneous and homogeneous polymerisation on the structure of pNIPAm nanogels. Polym Chem 2021. [DOI: 10.1039/d1py01333e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The choice of the polymerisation temperature and initiator in the synthesis of poly(N-isopropylacrylamide)-based nanogels can significantly influence their structure, morphology and thermoresponsive properties.
Collapse
Affiliation(s)
- Alena Vdovchenko
- School of Physical and Chemical Science, Queen Mary University of London, London E1 4NS, UK
| | - Amanda K. Pearce
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Mark Freeley
- School of Physical and Chemical Science, Queen Mary University of London, London E1 4NS, UK
| | | | - Marina Resmini
- School of Physical and Chemical Science, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
35
|
Otulakowski Ł, Kasprów M, Strzelecka A, Dworak A, Trzebicka B. Thermal Behaviour of Common Thermoresponsive Polymers in Phosphate Buffer and in Its Salt Solutions. Polymers (Basel) 2020; 13:E90. [PMID: 33379398 PMCID: PMC7795651 DOI: 10.3390/polym13010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Thermoresponsive polymers are a promising material for drug nanocarrier preparation, which makes the study of their aggregation in physiological conditions very important. In this paper, the thermal behaviour of the thermoresponsive polymers poly(N-isopropylacrylamide), poly(2-isopropyl-2-oxazoline-co-2-n-propyl-2-oxazoline) and poly[(2-hydroxyethyl methacrylate)-co-oligo(ethylene glycol) methyl ether methacrylate] were studied in phosphate buffer (PBS) and solutions of its salts in concentration as in PBS. The thermal response of the polymers was measured using UV-Vis and dynamic light scattering (DLS). The salts shifted the cloud point temperature (TCP) of the (co)polymers to higher values compared to the TCP of aqueous polymer solutions. In PBS and NaCl solutions, all polymers exhibited an unexpected and previously unreported transmittance profile. During heating, an additional aggregation of polymers appeared above the TCP accompanied by the formation of a precipitate. In monosodium phosphate solutions and pure water, the studied polymers showed lower critical solution temperature (LCST-type) behaviour. DLS measurements showed that a salt influenced the size of the resulting polymer particles. The sizes and stability of particles depended on the heating rate. In PBS and NaCl solutions, the size of particles in the dispersion decreased above 60 °C, and the precipitate appeared on the bottom of the cuvette. The additional aggregation of polymer and its falling out of solution may hinder the removal of carriers from the body and has to be taken into account when preparing nanocarriers.
Collapse
Affiliation(s)
| | | | | | | | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (Ł.O.); (M.K.); (A.S.); (A.D.)
| |
Collapse
|
36
|
Huang GR, Tung CH, Chang D, Lam CN, Do C, Shinohara Y, Chang SY, Wang Y, Hong K, Chen WR. Determining population densities in bimodal micellar solutions using contrast-variation small angle neutron scattering. J Chem Phys 2020; 153:184902. [PMID: 33187411 DOI: 10.1063/5.0024410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Self-assembly of amphiphilic polymers in water is of fundamental and practical importance. Significant amounts of free unimers and associated micellar aggregates often coexist over a wide range of phase regions. The thermodynamic and kinetic properties of the microphase separation are closely related to the relative population density of unimers and micelles. Although the scattering technique has been employed to identify the structure of micellar aggregates as well as their time-evolution, the determination of the population ratio of micelles to unimers remains a challenging problem due to their difference in scattering power. Here, using small-angle neutron scattering (SANS), we present a comprehensive structural study of amphiphilic n-dodecyl-PNIPAm polymers, which shows a bimodal size distribution in water. By adjusting the deuterium/hydrogen ratio of water, the intra-micellar polymer and water distributions are obtained from the SANS spectra. The micellar size and number density are further determined, and the population densities of micelles and unimers are calculated to quantitatively address the degree of micellization at different temperatures. Our method can be used to provide an in-depth insight into the solution properties of microphase separation, which are present in many amphiphilic systems.
Collapse
Affiliation(s)
- Guan-Rong Huang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Chi-Huan Tung
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Dongsook Chang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Christopher N Lam
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Yuya Shinohara
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Shou-Yi Chang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
37
|
Influence of Buffers, Ionic Strength, and pH on the Volume Phase Transition Behavior of Acrylamide-Based Nanogels. Polymers (Basel) 2020; 12:polym12112590. [PMID: 33158221 PMCID: PMC7694245 DOI: 10.3390/polym12112590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 01/08/2023] Open
Abstract
The use of covalently crosslinked nanogels for applications in biology and medicine is dependent on their properties and characteristics, which often change because of the biological media involved. Understanding the role of salts, ionic strength and pH in altering specific properties is key to progress in this area. We studied the effect of both chemical structure and media environment on the thermoresponsive behavior of nanogels. A small library of methylenebisacrylamide (MBA) crosslinked nanogels were prepared using N-isopropylacrylamide (NIPAM) or N-n-propylacrylamide (NPAM), in combination with functional monomers N-hydroxyethylacrylamide (HEAM) and N-acryloyl-l-proline (APrOH). The thermoresponsive properties of nanogels were evaluated in phosphate buffer, tris-acetate buffer and Ringer HEPES, with varying concentrations and ionic strengths. The presence of ions facilitates the phase separation of nanogels, and this “salting-out” effect strongly depends on the electrolyte concentration as well as the specificity of individual anions, e.g., their positions in the Hofmeister series. A subtle change in the chemical structure of the side chain of the monomer from NIPAM to NPAM leads to a reduction of the volume phase transition temperature (VPTT) value by ~10 °C. The addition of hydrophilic comonomers such as HEAM, on the other hand, causes a ~20 °C shift in VPTT to higher values. The data highlight the significant role played by the chemical structure of the monomers used, with hydrophobicity and rigidity closely interlinked in determining thermoresponsive behavior. Furthermore, the volume phase transition temperature (VPTT) of nanogels copolymerized with ionizable APrOH comonomer can be tailored by changes in the pH of buffer solutions. This temperature-controlled phase transition is driven by intricate interplay involving the entropy of mixing, electrostatic interactions, conformational transitions, and structural rigidity. These results highlight the importance of understanding the physiochemical properties and behavior of covalently crosslinked nanogels in a biological environment prior to their applications in life-science, such as temperature/pH-triggered drug delivery systems.
Collapse
|
38
|
Lee JY, Song Y, Wessels MG, Jayaraman A, Wooley KL, Pochan DJ. Hierarchical Self-Assembly of Poly(d-glucose carbonate) Amphiphilic Block Copolymers in Mixed Solvents. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jee Young Lee
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yue Song
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University, College Station, Texas 77842, United States
| | - Michiel G. Wessels
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Karen L. Wooley
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University, College Station, Texas 77842, United States
| | - Darrin J. Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
39
|
Zhang Y, Uthaman S, Song W, Eom KH, Jeon SH, Huh KM, Babu A, Park IK, Kim I. Multistimuli-Responsive Polymeric Vesicles for Accelerated Drug Release in Chemo-photothermal Therapy. ACS Biomater Sci Eng 2020; 6:5012-5023. [DOI: 10.1021/acsbiomaterials.0c00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yu Zhang
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Wenliang Song
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Kuen Hee Eom
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Su Hyeon Jeon
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Amal Babu
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 58128, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 58128, Republic of Korea
| | - Il Kim
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
40
|
Poly(N,N-bis(2-methoxyethyl)acrylamide), a thermoresponsive non-ionic polymer combining the amide and the ethyleneglycolether motifs. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04701-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractPoly(N,N-bis(2-methoxyethyl)acrylamide) (PbMOEAm) featuring two classical chemical motifs from non-ionic water-soluble polymers, namely, the amide and ethyleneglycolether moieties, was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. This tertiary polyacrylamide is thermoresponsive exhibiting a lower critical solution temperature (LCST)–type phase transition. A series of homo- and block copolymers with varying molar masses but low dispersities and different end groups were prepared. Their thermoresponsive behavior in aqueous solution was analyzed via turbidimetry and dynamic light scattering (DLS). The cloud points (CP) increased with increasing molar masses, converging to 46 °C for 1 wt% solutions. This rise is attributed to the polymers’ hydrophobic end groups incorporated via the RAFT agents. When a surfactant-like strongly hydrophobic end group was attached using a functional RAFT agent, CP was lowered to 42 °C, i.e., closer to human body temperature. Also, the effect of added salts, in particular, the role of the Hofmeister series, on the phase transition of PbMOEAm was investigated, exemplified for the kosmotropic fluoride, intermediate chloride, and chaotropic thiocyanate anions. A pronounced shift of the cloud point of about 10 °C to lower or higher temperatures was observed for 0.2 M fluoride and thiocyanate, respectively. When PbMOEAm was attached to a long hydrophilic block of poly(N,N-dimethylacrylamide) (PDMAm), the cloud points of these block copolymers were strongly shifted towards higher temperatures. While no phase transition was observed for PDMAm-b-pbMOEAm with short thermoresponsive blocks, block copolymers with about equally sized PbMOEAm and PDMAm blocks underwent the coil-to-globule transition around 60 °C.
Collapse
|
41
|
He C, Li M, Zhang J, Yan B, Zhao W, Sun S, Zhao C. Amides and Heparin-Like Polymer Co-Functionalized Graphene Oxide Based Core @ Polyethersulfone Based Shell Beads for Bilirubin Adsorption. Macromol Biosci 2020; 20:e2000153. [PMID: 32583960 DOI: 10.1002/mabi.202000153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Indexed: 11/10/2022]
Abstract
Excessive bilirubin in the body of patient with liver dysfunction or metabolic obstruction may cause jaundice with irreversible brain damage, and new type of adsorbent for bilirubin is under frequent investigation. Herein, graphene oxide based core @ polyethersulfone-based shell beads are fabricated by phase inversion method, amides and heparin-like polymer are introduced to functionalize the core-shell beads. The beads are successfully prepared with obvious core-shell structure, adequate thermostability and porous shell. Clotting times and protein adsorption are investigated to inspect the hemocompatibility property of the beads. The adsorption of bilirubin is systematically investigated by evaluating the effects of contacting time, initial concentration and temperature on the adsorption, which exhibits improved bilirubin adsorption amount for the beads with amides contained cores or/and shells. It is worth believing that the amides and heparin-like polymer co-functionalized core-shell beads may be utilized in the field of hemoperfusion for bilirubin adsorption.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingyuan Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Bingqing Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
42
|
Ren H, Qiu XP, Shi Y, Yang P, Winnik FM. The Two Phase Transitions of Hydrophobically End-Capped Poly( N-isopropylacrylamide)s in Water. Macromolecules 2020; 53:5105-5115. [PMID: 32952216 PMCID: PMC7497654 DOI: 10.1021/acs.macromol.0c00487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/25/2020] [Indexed: 01/03/2023]
Abstract
![]()
High-sensitivity
differential scanning calorimetry (HS-DSC) thermograms of aqueous
poly(N-isopropylacrylamide) (PNIPAM) solutions present
a sharp unimodal endotherm that signals the heat-induced dehydration/collapse
of the PNIPAM chain. Similarly, α,ω-di-n-octadecyl-PNIPAM (C18-PN-C18) aqueous solutions exhibit a unimodal
endotherm. In contrast, aqueous solutions of α,ω-hydrophobically
modified PNIPAMs with polycyclic terminal groups, such as pyrenylbutyl
(Py-PN-Py), adamantylethyl (Ad-PN-Ad), and azopyridine- (C12-PN-AzPy)
moieties, exhibit bimodal thermograms. The origin of the two transitions
was probed using microcalorimetry measurements, turbidity tests, variable
temperature 1H NMR (VT-NMR) spectroscopy, and 2-dimensional
NOESY experiments with solutions of polymers of molar mass (Mn) from 5 to 20 kDa and polymer concentrations
of 0.1 to 3.0 mg/mL. The analysis outcome led us to conclude that
the difference of the thermograms reflects the distinct self-assembly
structures of the polymers. C18-PN-C18 assembles in water in the form
of flower micelles held together by a core of tightly packed n-C18 chains. In contrast, polymers end-tagged with azopyridine,
pyrenylbutyl, or adamantylethyl form a loose core that allows chain
ends to escape from the micelles, to reinsert in them, or to dangle
in surrounding water. The predominant low temperature (T1) endotherm, which is insensitive to polymer concentration,
corresponds to the dehydration/collapse of PNIPAM chains within the
micelles, while the higher temperature (T2) endotherm is attributed to the dehydration of dangling chains and
intermicellar bridges. This study of the two phase transitions of
telechelic PNIPAM homopolymer highlights the rich variety of morphologies
attainable via responsive hydrophobically modified aqueous polymers
and may open the way to a variety of practical applications.
Collapse
Affiliation(s)
- Hao Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xing-Ping Qiu
- Department of Chemistry, University of Montreal, CP 6128 Succursale Centre Ville, Montreal, Quebec H3C 3J7, Canada
| | - Yan Shi
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Françoise M Winnik
- Laboratory of Polymer Chemistry, Department of Chemistry, PB 55, University of Helsinki, Helsinki, FI00140 Finland.,International Center for Materials Nanoarchitectonics, National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan.,Department of Macromolecular Science, School of Graduate Studies, University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
43
|
Song S, Yu Q, Zhou H, Hicks G, Zhu H, Rastogi CK, Manners I, Winnik MA. Solvent effects leading to a variety of different 2D structures in the self-assembly of a crystalline-coil block copolymer with an amphiphilic corona-forming block. Chem Sci 2020; 11:4631-4643. [PMID: 34122918 PMCID: PMC8159233 DOI: 10.1039/d0sc01453b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
We describe a polyferrocenyldimethylsilane (PFS) block copolymer (BCP), PFS27-b-P(TDMA65-ran-OEGMA69) (the subscripts refer to the mean degrees of polymerization), in which the corona-forming block is a random brush copolymer of hydrophobic tetradecyl methacrylate (TDMA) and hydrophilic oligo(ethylene glycol) methyl ether methacrylate (OEGMA). Thus, the corona is amphiphilic. This BCP generates a remarkable series of different structures when subjected to crystallization-driven self-assembly (CDSA) in solvents of different polarity. Long ribbon-like micelles formed in isopropanol, and their lengths could be controlled using both self-seeding and seeded growth protocols. In hexanol, the BCP formed more complex structures. These objects consisted of oval platelets connected to long fiber-like micelles that were uniform in width but polydisperse in length. In octane, relatively uniform rectangular platelets formed. Finally, a distinct morphology formed in a mixture of octane/hexanol, namely uniform oval structures, whose height corresponded to the fully extended PFS block. Both long and short axes of these ovals increased with the initial annealing temperature and with the BCP concentration. The self-seeding protocol also afforded uniform two-dimensional structures. Seeded growth experiments, in which a solution of the BCP in THF was added to a colloidal solution of the oval micelles led to a linear increase in area while maintaining the aspect ratio of the ovals. These experiments demonstrate the powerful effect of the amphiphilic corona chains on the CDSA of a core crystalline BCP in solvents of different hydrophilicity.
Collapse
Affiliation(s)
- Shaofei Song
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
| | - Qing Yu
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
| | - Hang Zhou
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
| | - Garion Hicks
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
| | - Hu Zhu
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
| | | | - Ian Manners
- Department of Chemistry, University of Victoria Victoria British Columbia V8W 3V6 Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto ON M5S 3E2 Canada
| |
Collapse
|
44
|
Ricarte RG, Van Zee NJ, Li Z, Johnson LM, Lodge TP, Hillmyer MA. Recent Advances in Understanding the Micro- and Nanoscale Phenomena of Amorphous Solid Dispersions. Mol Pharm 2019; 16:4089-4103. [PMID: 31487183 DOI: 10.1021/acs.molpharmaceut.9b00601] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many pharmaceutical drugs in the marketplace and discovery pipeline suffer from poor aqueous solubility, thereby limiting their effectiveness for oral delivery. The use of an amorphous solid dispersion (ASD), a mixture of an active pharmaceutical ingredient and a polymer excipient, greatly enhances the aqueous dissolution performance of a drug without the need for chemical modification. Although this method is versatile and scalable, deficient understanding of the interactions between drugs and polymers inhibits ASD rational design. This current Review details recent progress in understanding the mechanisms that control ASD performance. In the solid-state, the use of high-resolution theoretical, computational, and experimental tools resolved the influence of drug/polymer phase behavior and dynamics on stability during storage. During dissolution in aqueous media, novel characterization methods revealed that ASDs can form complex nanostructures, which maintain and improve supersaturation of the drug. The studies discussed here illustrate that nanoscale phenomena, which have been directly observed and quantified, strongly affect the stability and bioavailability of ASD systems, and provide a promising direction for optimizing drug/polymer formulations.
Collapse
Affiliation(s)
- Ralm G Ricarte
- Molecular, Macromolecular Chemistry, and Materials Laboratory, CNRS, ESPCI-Paris , PSL Research University , 10 Rue Vauquelin , 75005 Paris , France
| | | | | | | | | | | |
Collapse
|
45
|
Qian S, Li S, Xiong W, Khan H, Huang J, Zhang W. A new visible light and temperature responsive diblock copolymer. Polym Chem 2019. [DOI: 10.1039/c9py01050e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A visible light and temperature responsive diblock copolymer of poly[6-(2,6,2′,6′-tetramethoxy-4′-oxyazobenzene) hexyl methacrylate]-block-poly(N-isopropylacrylamide) (PmAzo-b-PNIPAM) was synthesized via RAFT polymerization by carefully tuning the polymerization conditions.
Collapse
Affiliation(s)
- Sijia Qian
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Shenzhen Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Weifeng Xiong
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - Habib Khan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Jing Huang
- Sinopec Research Institute of Petroleum Engineering
- Beijing
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|