1
|
Li X, Zhao W, Jin Y, Huang J, Chen D. Phase Behaviors and Photoresponsive Thin Films of Syndiotactic Side-Chain Liquid Crystalline Polymers with High Densely Substituted Azobenzene Mesogens. Chemphyschem 2024; 25:e202400421. [PMID: 38825850 DOI: 10.1002/cphc.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Azobenzene-containing polymers (azopolymers) are a kind of fascinating stimuli-responsive materials with broad and versatile applications. In this work, a series of syndiotactic C1 type azopolymers of Pm-Azo-Cn with side-chain azobenzene mesogens of varied length alkoxy tails (n=1, 4, 8, 10) and different length alkyl spacers (m=6, 10) have been prepared via Rh-catalyzed carbene polymerization. The thermal properties and ordered assembly structures of thus synthesized side chain liquid crystalline polymers (SCLCPs) have been systematically investigated with differential scanning calorimetry (DSC), polarized optical microscopy (POM) and variable-temperature small/wide-angle X-ray scattering (SAXS/WAXS) analyses. P10-Azo-C1 and P10-Azo-C4 with shorter alkoxy tails exhibited hierarchical structures SmB/Colob and transformed into SmA/Colob at a higher temperature, while P10-Azo-C8 and P10-Azo-C10 with longer alkoxy tails only displayed side group dominated layered SmB phase and transformed into SmA phase at higher temperatures. For P6-Azo-C4 with a shorter spacer only showed a less ordered SmA phase owing to interference by partly coupling between the side chain azobenzene mesogens and the helical backbone. More importantly, the series high densely substituted syndiotactic C1 azopolymer thin films, exhibited evidently and smoothly reversible photoresponsive properties, which demonstrated promising photoresponsive device applications.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
- School of Information Technology, Suzhou Institute of Trade & Commerce, 215009, Suzhou, China
| | - Weiguang Zhao
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Ye Jin
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Jianjia Huang
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Dongzhong Chen
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
2
|
Zhou Y, Xu M, Shen W, Xu Y, Shao A, Xu P, Yao K, Han H, Ye J. Recent Advances in Nanomedicine for Ocular Fundus Neovascularization Disease Management. Adv Healthc Mater 2024; 13:e2304626. [PMID: 38406994 PMCID: PMC11468720 DOI: 10.1002/adhm.202304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
As an indispensable part of the human sensory system, visual acuity may be impaired and even develop into irreversible blindness due to various ocular pathologies. Among ocular diseases, fundus neovascularization diseases (FNDs) are prominent etiologies of visual impairment worldwide. Intravitreal injection of anti-vascular endothelial growth factor drugs remains the primary therapy but is hurdled by common complications and incomplete potency. To renovate the current therapeutic modalities, nanomedicine emerged as the times required, which is endowed with advanced capabilities, able to fulfill the effective ocular fundus drug delivery and achieve precise drug release control, thus further improving the therapeutic effect. This review provides a comprehensive summary of advances in nanomedicine for FND management from state-of-the-art studies. First, the current therapeutic modalities for FNDs are thoroughly introduced, focusing on the key challenges of ocular fundus drug delivery. Second, nanocarriers are comprehensively reviewed for ocular posterior drug delivery based on the nanostructures: polymer-based nanocarriers, lipid-based nanocarriers, and inorganic nanoparticles. Thirdly, the characteristics of the fundus microenvironment, their pathological changes during FNDs, and corresponding strategies for constructing smart nanocarriers are elaborated. Furthermore, the challenges and prospects of nanomedicine for FND management are thoroughly discussed.
Collapse
Affiliation(s)
- Yifan Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Wenyue Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Yufeng Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Peifang Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| |
Collapse
|
3
|
Ma Z, Wu J, Tan Y, Tan C. Azobenzene-Based Conjugated Polymers: Synthesis, Properties, and Biological Applications. Macromol Rapid Commun 2024; 45:e2400048. [PMID: 38521990 DOI: 10.1002/marc.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Conjugated polymers (CPs) have been developed quickly as an emerging functional material with applications in optical and electronic devices, owing to their highly electron-delocalized backbones and versatile side groups for facile processibility, high mechanical strength, and environmental stability. CPs exhibit multistimuli responsive behavior and fluorescence quenching properties by incorporating azobenzene functionality into their molecular structures. Over the past few decades, significant progress has been made in developing functional azobenzene-based conjugated polymers (azo-CPs), utilizing diverse molecular design strategies and synthetic pathways. This article comprehensively reviews the rapidly evolving research field of azo-CPs, focusing on the structural characteristics and synthesis methods of general azo-CPs, as well as the applications of charged azo-CPs, specifically azobenzene-based conjugated polyelectrolytes (azo-CPEs). Based on their molecular structures, azo-CPs can be broadly categorized into three primary types: linear CPs with azobenzene incorporated into the side chain, linear CPs with azobenzene integrated into the main chain, and branched CPs containing azobenzene moieties. These systems are promising for biomedical applications in biosensing, bioimaging, targeted protein degradation, and cellular apoptosis.
Collapse
Affiliation(s)
- Zhuang Ma
- The State Key Laboratory of Chemical Oncogenomics, International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jiatao Wu
- College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ying Tan
- The State Key Laboratory of Chemical Oncogenomics, International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Chunyan Tan
- The State Key Laboratory of Chemical Oncogenomics, International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
4
|
Di Martino M, Sessa L, Panunzi B, Diana R, Piotto S, Concilio S. Cationic Azobenzenes as Light-Responsive Crosslinkers for Alginate-Based Supramolecular Hydrogels. Polymers (Basel) 2024; 16:1233. [PMID: 38732700 PMCID: PMC11085219 DOI: 10.3390/polym16091233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Azobenzene photoswitches are fundamental components in contemporary approaches aimed at light-driven control of intelligent materials. Significant endeavors are directed towards enhancing the light-triggered reactivity of azobenzenes for such applications and obtaining water-soluble molecules able to act as crosslinkers in a hydrogel. Here, we report the rational design and the synthesis of azobenzene/alginate photoresponsive hydrogels endowed with fast reversible sol-gel transition. We started with the synthesis of three cationic azobenzenes (AZOs A, B, and C) and then incorporated them in sodium alginate (SA) to obtain photoresponsive supramolecular hydrogels (SMHGs). The photoresponsive properties of the azobenzenes were investigated by UV-Vis and 1H NMR spectroscopy. Upon irradiation with 365 nm UV light, the azobenzenes demonstrated efficient trans-to-cis isomerization, with complete isomerization occurring within seconds. The return to the trans form took several hours, with AZO C exhibiting the fastest return, possibly due to higher trans isomer stability. In the photoresponsive SMHGs, the minimum gelation concentration (MGC) of azobenzenes was determined for different compositions, indicating that small amounts of azobenzenes could induce gel formation, particularly in 5 wt% SA. Upon exposure to 365 nm UV light, the SMHGs exhibited reversible gel-sol transitions, underscoring their photoresponsive nature. This research offers valuable insights into the synthesis and photoresponsive properties of cationic, water-soluble azobenzenes, as well as their potential application in the development of photoresponsive hydrogels.
Collapse
Affiliation(s)
- Miriam Di Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.D.M.); (S.P.)
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.D.M.); (S.P.)
- BIONAM Research Center for Biomaterials, University of Salerno, 84084 Fisciano, Italy
| | - Barbara Panunzi
- Department of Agriculture, University of Napoli Federico II, Via Università 100, 80055 Portici, Italy; (B.P.); (R.D.)
| | - Rosita Diana
- Department of Agriculture, University of Napoli Federico II, Via Università 100, 80055 Portici, Italy; (B.P.); (R.D.)
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.D.M.); (S.P.)
- BIONAM Research Center for Biomaterials, University of Salerno, 84084 Fisciano, Italy
| | - Simona Concilio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.D.M.); (S.P.)
- BIONAM Research Center for Biomaterials, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
5
|
Konieczkowska J, Neugebauer D, Kozanecka-Szmigiel A, Mazur A, Kotowicz S, Schab-Balcerzak E. Photoresponse of new azo pyridine functionalized poly(2-hydroxyethyl methacrylate-co-methyl methacrylate). Sci Rep 2024; 14:9078. [PMID: 38643277 PMCID: PMC11032328 DOI: 10.1038/s41598-024-59704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024] Open
Abstract
A new azo polymer containing photoisomerizable azo pyridine functionalities was synthesized via Mitsunobu reaction of 4-(4-hydroxyphenylazo)pyridine with poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (p(HEMA-co-MMA)) for creating new photochromic materials. The resulting polymer with azo pyridine side groups was characterized for structural, thermal, and optical properties. UV-vis, 1H NMR and IR spectroscopies confirmed that all hydroxyl groups in p(HEMA-co-MMA) were substituted with azo dye. The obtained azo copolymer exhibited high thermal stability (around 240 °C) and a glass transition temperature (113 °C), promising for applications. The trans-to-cis isomerization upon UV irradiation and the thermal back reaction of the azo chromophore in the copolymer in the solid state was studied. A photostationary state with 50% content of cis-isomers upon 6 min of UV irradiation was reached, and during 48 h dark relaxation at ambient temperature, all cis-isomers converted to the trans form. Additionally, the possibility of efficient photogeneration of surface relief gratings with high amplitude of azo copolymer surface modulation was demonstrated.
Collapse
Affiliation(s)
- Jolanta Konieczkowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland.
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Ks. Marcina Strzody 9, 44-100, Gliwice, Poland
| | - Anna Kozanecka-Szmigiel
- Faculty of Physics, Warsaw University of Technology, 75 Koszykowa Str., 00-662, Warsaw, Poland
| | - Aleksy Mazur
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Ks. Marcina Strzody 9, 44-100, Gliwice, Poland
| | - Sonia Kotowicz
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006, Katowice, Poland
| | - Ewa Schab-Balcerzak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland.
| |
Collapse
|
6
|
Herold D, Kind J, Frieß F, Thiele CM. Extraction of pure component spectra from ex situ illumination UV/Vis and NMR spectroscopy. Photochem Photobiol Sci 2023; 22:2599-2606. [PMID: 37751073 DOI: 10.1007/s43630-023-00475-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023]
Abstract
Obtaining understanding of a photochemical reaction relies on the observation, identification and quantification of the compounds involved. The photochemical properties of the individual components are of particular importance, and their determination, however, is not always trivial. This is also true for the quantitative measure on the ability to absorb light, the extinction coefficient εi if more than one species i is present and two or more species absorb light of the same wavelength. In this work, it is demonstrated how pure component spectra can be obtained with a simple combination of successive and repeated ex situ illumination, UV/Vis and NMR spectroscopy. From the complementary information accessible, the wavelength-dependent extinction coefficients of all species can be calculated yielding the pure component spectra. A comparison with published data shows excellent agreement and thus proves that this approach is highly reliable.
Collapse
Affiliation(s)
- Dominik Herold
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Jonas Kind
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Florian Frieß
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany.
| |
Collapse
|
7
|
Shan Y, Zhang Q, Sheng J, Stuart MCA, Qu DH, Feringa BL. Motorized Photomodulator: Making A Non-photoresponsive Supramolecular Gel Switchable by Light. Angew Chem Int Ed Engl 2023; 62:e202310582. [PMID: 37681477 DOI: 10.1002/anie.202310582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
Introducing photo-responsive molecules offers an attractive approach for remote and selective control and dynamic manipulation of material properties. However, it remains highly challenging how to use a minimal amount of photo-responsive units to optically modulate materials that are inherently inert to light irradiation. Here we show the application of a light-driven rotary molecular motor as a "motorized photo-modulator" to endow a typical H-bond-based gel system with the ability to respond to light irradiation and create a reversible sol-gel transition. The key molecular design feature is the introduction of a minimal amount (2 mol %) of molecular motors into the supramolecular network as photo-switchable non-covalent crosslinkers. Advantage is taken of the subtle interplay of the large geometry change during photo-isomerization of the molecular motor guest and the dynamic nature of a supramolecular gel host system. As a result, a tiny amount of molecular motors is enough to switch the mechanical modulus of the entire supramolecular systems. This study proves the concept of designing photo-responsive materials with minimum use of non-covalent light-absorbing units.
Collapse
Affiliation(s)
- Yahan Shan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Qi Zhang
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jinyu Sheng
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Marc C A Stuart
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ben L Feringa
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
8
|
Sørensen J, Hansen EL, Larsen D, Elmquist MA, Buchleithner A, Florean L, Beeren SR. Light-controlled enzymatic synthesis of γ-CD using a recyclable azobenzene template. Chem Sci 2023; 14:7725-7732. [PMID: 37476725 PMCID: PMC10355107 DOI: 10.1039/d3sc01997g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Cyclodextrins (CDs) are important molecular hosts for hydrophobic guests in water and extensively employed in the pharmaceutical, food and cosmetic industries to encapsulate drugs, flavours and aromas. Compared with α- and β-CD, the wide-scale use of γ-CD is currently limited due to costly production processes. We show how the yield of γ-CD in the enzymatic synthesis of CDs can be increased 5-fold by adding a tetra-ortho-isopropoxy-substituted azobenzene template irradiated at 625 nm (to obtain the cis-(Z)-isomer) to direct the synthesis. Following the enzymatic reaction, the template can then be readily recovered from the product mixture for use in subsequent reaction cycles. Heating induces thermal cis-(Z) to trans-(E) relaxation and consequent dissociation from γ-CD whereupon the template can then be precipitated by acidification. For this study we designed and synthesised a set of three water-soluble azobenzene templates with different ortho-substituents and characterised their photoswitching behaviour using UV/vis and NMR spectroscopy. The templates were tested in cyclodextrin glucanotransferase-mediated dynamic combinatorial libraries (DCLs) of cyclodextrins while irradiating at different wavelengths to control the cis/trans ratios. To rationalise the behaviour of the DCLs, NMR titrations were carried out to investigate the binding interactions between α-, β- and γ-CD and the cis and trans isomers of each template.
Collapse
Affiliation(s)
- Juliane Sørensen
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| | - Emilie Ljungberg Hansen
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| | - Dennis Larsen
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| | - Mathias Albert Elmquist
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| | - Andreas Buchleithner
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| | - Luca Florean
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| | - Sophie R Beeren
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| |
Collapse
|
9
|
Ju R, Xu G, Xu L, Qi M, Wang D, Cao PC, Xi R, Shou Y, Chen H, Qiu CW, Li Y. Convective Thermal Metamaterials: Exploring High-Efficiency, Directional, and Wave-Like Heat Transfer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209123. [PMID: 36621882 DOI: 10.1002/adma.202209123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/02/2022] [Indexed: 06/09/2023]
Abstract
Convective thermal metamaterials are artificial structures where convection dominates in the thermal process. Due to the field coupling between velocity and temperature, convection provides a new knob for controlling heat transfer beyond pure conduction, thus allowing active and robust thermal modulations. With the introduced convective effects, the original parabolic Fourier heat equation for pure conduction can be transformed to hyperbolic. Therefore, the hybrid diffusive system can be interpreted in a wave-like fashion, reviving many wave phenomena in dissipative diffusion. Here, recent advancements in convective thermal metamaterials are reviewed and the state-of-the-art discoveries are classified into the following four aspects, enhancing heat transfer, porous-media-based thermal effects, nonreciprocal heat transfer, and non-Hermitian phenomena. Finally, a prospect is cast on convective thermal metamaterials from two aspects. One is to utilize the convective parameter space to explore topological thermal effects. The other is to further broaden the convective parameter space with spatiotemporal modulation and multi-physical effects.
Collapse
Affiliation(s)
- Ran Ju
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Guoqiang Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Liujun Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Graduate School of China Academy of Engineering Physics, Beijing, 100193, China
| | - Minghong Qi
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Dong Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Pei-Chao Cao
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Rui Xi
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Yifan Shou
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Ying Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| |
Collapse
|
10
|
Nainggolan F. Theoretical study of cis-trans isomer of 2-hydroxy-5-methyl-2'-nitroazobenzene: DFT insight. J Mol Model 2023; 29:177. [PMID: 37188843 DOI: 10.1007/s00894-023-05583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
CONTEXT The synthesis of azobenzene materials is an important aspect of the research in the field of photo-switch materials. It is currently thought that azobenzene molecules exist in the cis and trans form of molecular structure configuration. However, the reaction process allowing for reversible energy switches from trans to cis form is still challenging. Therefore, it is crucial to understand the molecular properties of the azobenzene compounds in order to provide reference for future synthesis and application. Affirmation supporting this perspective has been substantially derived from theoretical results in the isomerization process and whether these molecular structures may affect the electronic properties entirely needs to be confirmed. In this study, I give my effort to understand the molecular structure properties of the cis and trans form of azobenzene molecule from 2-hydroxy-5-methyl-2'-nitroazobenzene (HMNA). Their chemistry phenomena are investigated using the density functional theory (DFT) method. This study shows that the trans-HMNA has a molecular size of 9.0 Å and the cis-HMNA has a molecular size of 6.6 Å. The trans-HMNA exhibits an electronic transition of π → π* type driven by an azo bond, whereas the cis-HMNA exhibits an electronic transition of n → π* type with respect to the non-bonding electrons of oxygen and nitrogen atoms. Therefore, the HMNA mechanism pathway from trans to cis form is feasible to undergo at the inversion pathway in the ground state. METHODS All DFT calculations were performed using the Gaussian Software Packages (Gaussian 09 Revision-A.02 and GaussView 5.0.8). Gaussum 3.0 software was selected to visualize the molecular orbital levels in the density of states diagram. The optimized molecular geometrical parameter was calculated using B3LYP/cc-pVTZ level in the gas phase. TD-DFT with M06-2X/cc-pVTZ level was used as a method for the precise interpretation of excited states in molecular systems.
Collapse
Affiliation(s)
- Fernando Nainggolan
- Department of Chemical Engineering, Politeknik Teknologi Kimia Industri, Medan, Indonesia.
| |
Collapse
|
11
|
Varela-Domínguez N, López-Bueno C, López-Moreno A, Claro MS, Rama G, Leborán V, Giménez-López MDC, Rivadulla F. Light-induced bi-directional switching of thermal conductivity in azobenzene-doped liquid crystal mesophases. JOURNAL OF MATERIALS CHEMISTRY. C 2023; 11:4588-4594. [PMID: 37033203 PMCID: PMC10077501 DOI: 10.1039/d3tc00099k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
The development of systems that can be switched between states with different thermal conductivities is one of the current challenges in materials science. Despite their enormous diversity and chemical richness, molecular materials have been only scarcely explored in this regard. Here, we report a reversible, light-triggered thermal conductivity switching of ≈30-40% in mesophases of pure 4,4'-dialkyloxy-3-methylazobenzene. By doping a liquid crystal matrix with the azobenzene molecules, reversible and bidirectional switching of the thermal conductivity can be achieved by UV/Vis-light irradiation. Given the enormous variety of photoactive molecules and chemically compatible liquid crystal mesophases, this approach opens unforeseen possibilities for developing effective thermal switches based on molecular materials.
Collapse
Affiliation(s)
- Noa Varela-Domínguez
- CiQUS, Centro Singular de Investigacion en Quimica Bioloxica e Materiais Moleculares, Departamento de Quimica-Fisica, Universidade de Santiago de Compostela 15782-Santiago de Compostela Spain
| | - Carlos López-Bueno
- CiQUS, Centro Singular de Investigacion en Quimica Bioloxica e Materiais Moleculares, Departamento de Quimica-Fisica, Universidade de Santiago de Compostela 15782-Santiago de Compostela Spain
| | - Alejandro López-Moreno
- CiQUS, Centro Singular de Investigacion en Quimica Bioloxica e Materiais Moleculares, Departamento de Quimica-Inorganica, Universidade de Santiago de Compostela 15782-Santiago de Compostela Spain
| | - Marcel S Claro
- CiQUS, Centro Singular de Investigacion en Quimica Bioloxica e Materiais Moleculares, Departamento de Quimica-Fisica, Universidade de Santiago de Compostela 15782-Santiago de Compostela Spain
| | - Gustavo Rama
- CiQUS, Centro Singular de Investigacion en Quimica Bioloxica e Materiais Moleculares, Departamento de Quimica-Inorganica, Universidade de Santiago de Compostela 15782-Santiago de Compostela Spain
| | - Víctor Leborán
- CiQUS, Centro Singular de Investigacion en Quimica Bioloxica e Materiais Moleculares, Universidade de Santiago de Compostela 15782-Santiago de Compostela Spain
| | - María Del Carmen Giménez-López
- CiQUS, Centro Singular de Investigacion en Quimica Bioloxica e Materiais Moleculares, Departamento de Quimica-Inorganica, Universidade de Santiago de Compostela 15782-Santiago de Compostela Spain
| | - Francisco Rivadulla
- CiQUS, Centro Singular de Investigacion en Quimica Bioloxica e Materiais Moleculares, Departamento de Quimica-Fisica, Universidade de Santiago de Compostela 15782-Santiago de Compostela Spain
| |
Collapse
|
12
|
Sagadevan S, Rahman MZ, Léonard E, Losic D, Hessel V. Sensor to Electronics Applications of Graphene Oxide through AZO Grafting. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:846. [PMID: 36903724 PMCID: PMC10005793 DOI: 10.3390/nano13050846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Graphene is a two-dimensional (2D) material with a single atomic crystal structure of carbon that has the potential to create next-generation devices for photonic, optoelectronic, thermoelectric, sensing, wearable electronics, etc., owing to its excellent electron mobility, large surface-to-volume ratio, adjustable optics, and high mechanical strength. In contrast, owing to their light-induced conformations, fast response, photochemical stability, and surface-relief structures, azobenzene (AZO) polymers have been used as temperature sensors and photo-switchable molecules and are recognized as excellent candidates for a new generation of light-controllable molecular electronics. They can withstand trans-cis isomerization by conducting light irradiation or heating but have poor photon lifetime and energy density and are prone to agglomeration even at mild doping levels, reducing their optical sensitivity. Graphene derivatives, including graphene oxide (GO) and reduced graphene oxide (RGO), are an excellent platform that, combined with AZO-based polymers, could generate a new type of hybrid structure with interesting properties of ordered molecules. AZO derivatives may modify the energy density, optical responsiveness, and photon storage capacity, potentially preventing aggregation and strengthening the AZO complexes. They are potential candidates for sensors, photocatalysts, photodetectors, photocurrent switching, and other optical applications. This review aimed to provide an overview of the recent progress in graphene-related 2D materials (Gr2MS) and AZO polymer AZO-GO/RGO hybrid structures and their synthesis and applications. The review concludes with remarks based on the findings of this study.
Collapse
Affiliation(s)
- Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Md Zillur Rahman
- Department of Mechanical Engineering, Ahsanullah University of Science and Technology, Dhaka 1208, Bangladesh
| | - Estelle Léonard
- Research Center Royallieu, TIMR (Integrated Transformations of Renewable Matter), ESCOM, University de Technologie de Compiegne, CS 60 319, CEDEX, 60 203 Compiegne, France
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
- The ARC Graphene Research Hub, School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Volker Hessel
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
- School of Engineering, University of Warwick, Library Rd, Coventry CV4 7AL, UK
| |
Collapse
|
13
|
Edwards KEK, Mermut O, Pietro WJ, Barrett CJ. Optical and computational study of the trans ↔ cis reversible isomerization of the commercial bis-azo dye Bismarck Brown Y. Phys Chem Chem Phys 2023; 25:5673-5684. [PMID: 36734510 DOI: 10.1039/d2cp05010b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The trans-cis-trans isomerization behaviour of Bismarck Brown Y (BBY) during and after irradiation with visible light, was characterized in detail for the first time by means of optical pump-probe experiments, to study the geometric inter-conversion of bis-azobenzene both in solution and embedded in multi-layered polymeric thin films. The rate constants observed for the thermal cis-trans back isomerization permit a determination of how the thermal isomerization is influenced by its local environment. In both solution and when incorporated into multi-layered thin films, the thermal relaxation observed for the commercial azo dye BBY showed a highly unusual biexponential decay, which clearly demonstrates two distinct isomerization processes. The cis decay showed an anomalous fast isomerization process on the timescale of milliseconds, followed by a slower isomerization process with a cis lifetime on the order of seconds. It was further observed that the faster isomerization process was influenced more by its local environment than was the slower process. The faster isomerization process also displayed a higher rate constant in aprotic solvents such as THF and DMF compared to that observed in protic solvents such as ethanol and water. Additionally, a higher rate constant was observed in solution compared to the multi-layered thin films where motion of the azo molecules was likely more restricted. Following recrystallization of the BBY azo dye, the more expected monoexponential decay was observed for the cis isomer in solution, with a single cis lifetime calculated on the timescale of seconds. This timescale corresponded well to values predicted by density functional theory calculations.
Collapse
Affiliation(s)
| | - Ozzy Mermut
- Department of Physics and Astronomy, York University, Toronto, ON, Canada
| | | | - Christopher J Barrett
- Department of Chemistry, McGill University, Montreal, QC, Canada. .,Department of Physics and Astronomy, York University, Toronto, ON, Canada
| |
Collapse
|
14
|
Courtine C, Brient PL, Hamouda I, Pataluch N, Lavedan P, Putaux JL, Chatard C, Galès C, Mingotaud AF, Lauth de Viguerie N, Nicol E. Tetrafluorinated versus hydrogenated azobenzene polymers in water: access to visible-light stimulus at the expense of responsiveness. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
15
|
Xiao H, Shi QX, Su M, Sun XL, Bao H, Wan WM. One-Pot Synthesis of Stimuli-Responsive Fluorescent Polymers through Polymerization-Induced Emission. ACS Macro Lett 2023; 12:40-47. [PMID: 36546477 DOI: 10.1021/acsmacrolett.2c00653] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stimuli-responsive opposite emission (A)/absorption (B) polymer material (A∪B = Ω and A∩B = Ø) represents a novel polymer material that is difficult to prepare. Here, we demonstrate a one-pot strategy for the molecular design of stimuli-responsive opposite emission/absorption polymer material with intriguing properties of opposite emission/absorption and aggregation-induced emission (AIE) type nontraditional intrinsic luminescence (NTIL) in the visible region, through reversible addition-fragmentation chain transfer polymerization-induced emission (PIE) of the N,N-dimethyl-triphenylmethanol moiety. Investigations reveal that NTIL is due to the through-space conjugation effect caused by polymer chain entanglement, when increasing the repeating unit number. The corresponding stimuli-responsive opposite emission/absorption properties are derived from the carbocation-quinoid mechanism, which enables the fluorescence encryption capability. This work therefore demonstrates the proof of concept of a novel opposite emission/absorption polymer material that might cause inspiration in different fields.
Collapse
Affiliation(s)
- Hang Xiao
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China.,Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Quan-Xi Shi
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Min Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Xiao-Li Sun
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Wen-Ming Wan
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China.,Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
16
|
Li C, Wang Y, Wang Z, Li X. β-Cyclodextrin/Azobenzene Microspheres Loaded with Paraquat Are Safe and Effective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:638-646. [PMID: 36542801 DOI: 10.1021/acs.langmuir.2c03004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although paraquat is a widely used herbicide, it is toxic to humans if ingested or absorbed through an open wound. To improve the safety of paraquat, a new formulation of paraquat based on photoresponsive polymers was exploited. Photoresponsive β-cyclodextrin polymer microspheres (AZO-CD) were synthesized via a host-guest interaction between β-cyclodextrin and azobenzene. AZO-CD were characterized by Fourier transform infrared spectrometry, circular dichroism, ultraviolet (UV) spectrophotometry, and thermogravimetric analysis, and their photoresponsiveness was also evaluated. AZO-CD were used to load paraquat, which yielded photoresponsive paraquat-loaded microspheres. For the paraquat-loaded microspheres, irradiation with UV light or sunlight induced the isomerization of azobenzene into the cis form. Then, the cis-azobenzene was liberated from the cavities of the β-cyclodextrin. The paraquat-loaded microspheres released paraquat continuously over time. Furthermore, under UV light, the herbicidal capacity of the paraquat-loaded microspheres against barnyard grass was comparable to that of free paraquat at the same dose. Our findings show that loading paraquat into AZO-CD provides a safe and environmentally friendly herbicide formulation.
Collapse
Affiliation(s)
- Chaonan Li
- Engineering & Technology Research Center for Bio Pesticide and Formulating Processing, College of Plant Protection, Hunan Agricultural University, Changsha410128, China
| | - Ya Wang
- Engineering & Technology Research Center for Bio Pesticide and Formulating Processing, College of Plant Protection, Hunan Agricultural University, Changsha410128, China
| | - Zihao Wang
- Engineering & Technology Research Center for Bio Pesticide and Formulating Processing, College of Plant Protection, Hunan Agricultural University, Changsha410128, China
| | - Xiaogang Li
- Engineering & Technology Research Center for Bio Pesticide and Formulating Processing, College of Plant Protection, Hunan Agricultural University, Changsha410128, China
| |
Collapse
|
17
|
Korbut A, Ortyl E, Zielinska S, Barillé R. Large photo-actuated surface change of an electrospun nanofibrous membrane. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
De Smet D, Verjans J, Vanneste M. Selective Solvolysis of Bio-Based PU-Coated Fabric. Polymers (Basel) 2022; 14:polym14245452. [PMID: 36559819 PMCID: PMC9788366 DOI: 10.3390/polym14245452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Polyurethane (PU) coatings are widely applied on high performing textiles due to their excellent durability and mechanical properties. PUs based on renewable resources were developed to improve the environmental impact of coatings by decreasing the carbon footprint. However, at the end-of-life, PU-coated textiles still end up as landfill or are incinerated since PUs are not biodegradable and are not being recycled at this moment. Therefore, the recycling of PU-coated substrates needs to be examined. This study reports the selective solvolysis of a polyester (PET) fabric coated with a bio-based PU using a 70% ZnCl2 aqueous solution. This method allowed the easy separation of the coating from the fabric. The thermal, chemical and mechanical characteristics of the virgin PET and recycled PET were examined via tensile strength tests, IR, TGA, DSC and GPC. Analysis of the fractions after solvolysis revealed that the PU was converted into the original polyol and an amine, corresponding to the isocyanate used for PU synthesis.
Collapse
|
19
|
Zhou Y, Maisonneuve S, Maurel F, Xie J, Métivier R. Competitive Photoisomerization and Energy Transfer Processes in Fluorescent Multichromophoric Systems. Chemistry 2022; 28:e202202071. [PMID: 36065043 PMCID: PMC10092411 DOI: 10.1002/chem.202202071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Indexed: 12/13/2022]
Abstract
Multichromophoric systems showing both fluorescence and photoisomerization are fascinating, with complex interchromophoric interactions. The experimental and theoretical study of a series of compounds, bearing a variable number of 4-dicyanomethylene-2-tert-butyl-6-(p-(N-(2-azidoethyl)-N-methyl)aminostyryl)-4H-pyran (DCM) units are reported. The photophysical properties of multi-DCM derivatives, namely 2DCM and 3DCM, were compared to the single model azido-functionalized DCM, in the E and Z isomers. The (EE)-2DCM and (EEE)-3DCM were synthesized via the click reaction. Steady-state spectroscopy and photokinetics experiments under UV or visible irradiation indicated the presence of intramolecular energy transfer processes among the DCM units. Homo- and hetero-energy transfer processes between adjacent chromophores were confirmed by fluorescence anisotropy and decays. Molecular dynamics simulations for 2DCM were carried out and analyzed using a Markov state model, providing geometrical parameters (orientation and distance between chromophores) and energy transfer efficiency. This work contributes to a better understanding and rationalization of multiple energy transfer processes occuring within multichromophoric systems.
Collapse
Affiliation(s)
- Yang Zhou
- ENS Paris-Saclay, Université Paris-Saclay CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Stéphane Maisonneuve
- ENS Paris-Saclay, Université Paris-Saclay CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | | | - Juan Xie
- ENS Paris-Saclay, Université Paris-Saclay CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Rémi Métivier
- ENS Paris-Saclay, Université Paris-Saclay CNRS, PPSM, 91190, Gif-sur-Yvette, France
| |
Collapse
|
20
|
Yuan Z, Ding J, Zhang Y, Huang B, Song Z, Meng X, Ma X, Gong X, Huang Z, Ma S, Xiang S, Xu W. Components, mechanisms and applications of stimuli-responsive polymer gels. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Gao Z, Yan F, Shi L, Han Y, Qiu S, Zhang J, Wang F, Wu S, Tian W. Acylhydrazone-based supramolecular assemblies undergoing a converse sol-to-gel transition on trans → cis photoisomerization. Chem Sci 2022; 13:7892-7899. [PMID: 35865886 PMCID: PMC9258502 DOI: 10.1039/d2sc01657e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Photoisomeric supramolecular assemblies have drawn enormous attention in recent years. Although it is a general rule that photoisomerization from a less to a more distorted isomer causes the destruction of assemblies, this photoisomerization process inducing a converse transition from irregular aggregates to regular assemblies is still a great challenge. Here, we report a converse sol-to-gel transition derived from the planar to nonplanar photoisomer conversion, which is in sharp contrast to the conventional light-induced gel collapse. A well-designed acylhydrazone-linked monomer is exploited as a photoisomer to realize the above-mentioned phase transition. In the monomer, imine is responsible for trans-cis interconversion and amide generates intermolecular hydrogen bonds enabling the photoisomerization-driven self-assembly. The counterintuitive feature of the sol-to-gel transition is ascribed to the partial trans → cis photoisomerization of acylhydrazone causing changes in stacking mode of monomers. Furthermore, the reversible phase transition is applied in the valves formed in situ in microfluidic devices, providing fascinating potential for miniature materials.
Collapse
Affiliation(s)
- Zhao Gao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Fei Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Lulu Shi
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Yifei Han
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Shuai Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Juan Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Feng Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Si Wu
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
22
|
Light-responsive biomaterials for ocular drug delivery. Drug Deliv Transl Res 2022:10.1007/s13346-022-01196-5. [PMID: 35751001 DOI: 10.1007/s13346-022-01196-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 11/03/2022]
Abstract
Light-responsive biomaterials can be used for the delivery of therapeutic drugs and nucleic acids, where the tunable/precise delivery of payload highlights the potential of such biomaterials for treating a variety of conditions. The translucency of eyes and advances of laser technology in ophthalmology make light-responsive delivery of drugs feasible. Importantly, light can be applied in a non-invasive fashion; therefore, light-triggered drug delivery systems have great potential for clinical impact. This review will examine various types of light-responsive polymers and the chemistry that underpins their application as ophthalmic drug delivery systems.
Collapse
|
23
|
Ouimet JA, Xu J, Flores‐Hansen C, Phillip WA, Boudouris BW. Design Considerations for Next‐Generation Polymer Sorbents: From Polymer Chemistry to Device Configurations. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jonathan Aubuchon Ouimet
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Jialing Xu
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Carsten Flores‐Hansen
- Department of Chemistry Purdue University West Lafayette Indiana 47907 United States
| | - William A. Phillip
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Bryan W. Boudouris
- Department of Chemistry Purdue University West Lafayette Indiana 47907 United States
- Charles D. Davidson School of Chemical Engineering Purdue University West Lafayette Indiana 47907 United States
| |
Collapse
|
24
|
Xu X, Wang G. Molecular Solar Thermal Systems towards Phase Change and Visible Light Photon Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107473. [PMID: 35132792 DOI: 10.1002/smll.202107473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Molecular solar thermal (MOST) systems have attracted tremendous attention for solar energy conversion and storage, which can generate high-energy metastable isomers upon capturing photon energy, and release the stored energy as heat on demand during back conversion. However, the pristine molecular photoswitches are limited by low storage energy density and UV light photon energy storage. Recently, numerous pioneering works have been focused on the development of MOST systems towards phase change (PC) and visible light photon energy storage to increase their properties. On the one hand, the strategy of simultaneously capturing isomerization enthalpy and PC energy between solid and liquid can not only offer high latent heat, but also promote the development of sustainable energy systems. On the other hand, the efficient photon energy storage in the visible light range opens a tremendously fascinating avenue to fabricate MOST systems powered under natural sunlight. Here, the recent advances of MOST systems towards PC and visible light photon energy storage are systematically summarized, the most promising advantages and current challenges are analyzed, and emerging strategies and future research directions are proposed.
Collapse
Affiliation(s)
- Xingtang Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
25
|
Krishnan A, Roy S, Menon S. Amphiphilic Block Copolymers: From Synthesis Including Living Polymerization Methods to Applications in Drug Delivery. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Griffiths K, Halcovitch NR, Griffin JM. Efficient solid-state photoswitching of methoxyazobenzene in a metal-organic framework for thermal energy storage. Chem Sci 2022; 13:3014-3019. [PMID: 35382460 PMCID: PMC8905824 DOI: 10.1039/d2sc00632d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/15/2022] [Indexed: 01/01/2023] Open
Abstract
Efficient photoswitching in the solid-state remains rare, yet is highly desirable for the design of functional solid materials. In particular, for molecular solar thermal energy storage materials high conversion to the metastable isomer is crucial to achieve high energy density. Herein, we report that 4-methoxyazobenzene (MOAB) can be occluded into the pores of a metal-organic framework Zn2(BDC)2(DABCO), where BDC = 1,4-benzenedicarboxylate and DABCO = 1,4-diazabicyclo[2.2.2]octane. The occluded MOAB guest molecules show near-quantitative E → Z photoisomerization under irradiation with 365 nm light. The energy stored within the metastable Z-MOAB molecules can be retrieved as heat during thermally-driven relaxation to the ground-state E-isomer. The energy density of the composite is 101 J g-1 and the half-life of the Z-isomer is 6 days when stored in the dark at ambient temperature.
Collapse
Affiliation(s)
- Kieran Griffiths
- Department of Chemistry, Lancaster University Lancaster LA14YB UK
| | | | - John M Griffin
- Department of Chemistry, Lancaster University Lancaster LA14YB UK
- Materials Science Institute, Lancaster University Lancaster LA14YB UK
| |
Collapse
|
27
|
Ahmadi‐Nohadani H, Nono‐Tagne S, Barrett CJ, Otsuka I. Electrospun Azo‐Cellulose Fabric: A Smart Polysaccharidic Photo‐actuator. Macromol Rapid Commun 2022; 43:e2200063. [DOI: 10.1002/marc.202200063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/22/2022] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | - Issei Otsuka
- Université Grenoble Alpes, CNRS, CERMAV Grenoble 38000 France
| |
Collapse
|
28
|
Lyu J, Bielawski CW. New classes of functionalized parylenes and poly(phenylene vinylene)s via coupling of dihaloxylyl diesters. Polym Chem 2022. [DOI: 10.1039/d1py01063h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New classes of poly(p-xylylene)s and poly(p-phenylene vinylene)s were synthesized and studied.
Collapse
Affiliation(s)
- Jihong Lyu
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
29
|
Zhang Y, Yuan J, Zhao X, Wu L, Liu Z, Song XM. The photoinduced back-and-forth deformation behavior of poly(arylene ether)s containing bis-azobenzene groups in the main chain. Polym Chem 2022. [DOI: 10.1039/d1py01542g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel series of poly(arylene ether)s containing various bis-azobenzene groups in the main chain were synthesized and showed photoinduced back-and-forth deformation behavior.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Jianhang Yuan
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Xue Zhao
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Le Wu
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Zhen Liu
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Xi-Ming Song
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| |
Collapse
|
30
|
Kaler S, Jones MD. Recent advances in externally controlled ring-opening polymerisations. Dalton Trans 2021; 51:1241-1256. [PMID: 34918735 DOI: 10.1039/d1dt03471e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Switchable catalysis is a powerful tool in the polymer chemist's toolbox as it allows on demand access to a variety of polymer architectures. Switchable catalysts operate by the generation of a species which is chemically distinct in behaviour and structure to the precursor. This difference in catalytic activity has been exploited to allow spatiotemporal control over polymerisations in the synthesis of (co)polymers. Although switchable methodologies have been applied to other polymerisation mechanisms for quite some time, for ring opening polymerisation (ROP) reactions it is a relatively young area of research. Despite its infancy, the field is accelerating rapidly. Here, we review recent developments for selected external stimuli for ROP, including redox chemistry, light, allosteric and mechanical control. Furthermore, a brief review on switch catalysis involving exogeneous gases will also be provided, although this area differs from traditional switchable catalysis techniques. An outlook on the future of switchable catalysis is also provided.
Collapse
Affiliation(s)
- Sandeep Kaler
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Matthew D Jones
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
31
|
Park S, Byun S, Ryu H, Hahm H, Lee J, Hong S. Reversibly Photoswitchable Catalysts for Olefin Metathesis Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Seongwook Park
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
- Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Seunghwan Byun
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Huijeoung Ryu
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Hyungwoo Hahm
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Sukwon Hong
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
- Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
32
|
Kang JS, Kim N, Kim T, Seo M, Kim BS. Circularly Polarized Light-Driven Supramolecular Chirality. Macromol Rapid Commun 2021; 43:e2100649. [PMID: 34708479 DOI: 10.1002/marc.202100649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Indexed: 10/20/2022]
Abstract
Introduction of asymmetry into a supramolecular system via external chiral stimuli can contribute to the understanding of the intriguing homochirality found in nature. Circularly polarized light (CPL) is regarded as a chiral physical force with right- or left-handedness. It can induce and modulate supramolecular chirality due to preferential interaction with one enantiomer. Herein, this review focuses on the photon-to-matter chirality transfer mechanisms at the supramolecular level. Thus, asymmetric photochemical reactions are reviewed, and the creation of a chiral bias upon CPL irradiation is discussed. Furthermore, the possible mechanisms for the amplification and propagation of the bias into the supramolecular level are outlined based on the nature of the photochromic building block. Representative examples, including azobenzene derivatives, polydiacetylene, bicyclic ketone, polyfluorenes, Cn -symmetric molecules, and inorganic nanomaterials, are presented.
Collapse
Affiliation(s)
- Jun Su Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Namhee Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Taehyung Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea.,Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Myungeun Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
33
|
Song W, Qu X, Li Y, Li J, Wang C, Ding L. Azobenzene-containing Alternating and Random Metathesis Copolymers toward Gaining More Insight into Photoisomerization Properties. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Song
- Department of Polymer and Composite Material, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xiaotian Qu
- Department of Polymer and Composite Material, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yadi Li
- Department of Polymer and Composite Material, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Juan Li
- Department of Polymer and Composite Material, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chengshuang Wang
- Department of Polymer and Composite Material, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Liang Ding
- Department of Polymer and Composite Material, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
34
|
Li Y, Song W, Li J, Wang C, Ding L. Azobenzene-containing side-chain ionic metathesis polymers: Facile synthesis, self-assembly and photoresponsive behavior. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Sign-alternating optical reorientation in nematic liquid crystals with low-molar-mass and polymeric absorbing bis-azobenzene dopants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
|
37
|
Bokare A, Arif J, Erogbogbo F. Strategies for Incorporating Graphene Oxides and Quantum Dots into Photoresponsive Azobenzenes for Photonics and Thermal Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2211. [PMID: 34578524 PMCID: PMC8467028 DOI: 10.3390/nano11092211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Graphene represents a new generation of materials which exhibit unique physicochemical properties such as high electron mobility, tunable optics, a large surface to volume ratio, and robust mechanical strength. These properties make graphene an ideal candidate for various optoelectronic, photonics, and sensing applications. In recent years, numerous efforts have been focused on azobenzene polymers (AZO-polymers) as photochromic molecular switches and thermal sensors because of their light-induced conformations and surface-relief structures. However, these polymers often exhibit drawbacks such as low photon storage lifetime and energy density. Additionally, AZO-polymers tend to aggregate even at moderate doping levels, which is detrimental to their optical response. These issues can be alleviated by incorporating graphene derivatives (GDs) into AZO-polymers to form orderly arranged molecules. GDs such as graphene oxide (GO), reduced graphene oxide (RGO), and graphene quantum dots (GQDs) can modulate the optical response, energy density, and photon storage capacity of these composites. Moreover, they have the potential to prevent aggregation and increase the mechanical strength of the azobenzene complexes. This review article summarizes and assesses literature on various strategies that may be used to incorporate GDs into azobenzene complexes. The review begins with a detailed analysis of structures and properties of GDs and azobenzene complexes. Then, important aspects of GD-azobenzene composites are discussed, including: (1) synthesis methods for GD-azobenzene composites, (2) structure and physicochemical properties of GD-azobenzene composites, (3) characterization techniques employed to analyze GD-azobenzene composites, and most importantly, (4) applications of these composites in various photonics and thermal devices. Finally, a conclusion and future scope are given to discuss remaining challenges facing GD-azobenzene composites in functional science engineering.
Collapse
Affiliation(s)
| | | | - Folarin Erogbogbo
- Department of Biomedical Engineering, San José State University, 1 Washington Square, San José, CA 95112, USA; (A.B.); (J.A.)
| |
Collapse
|
38
|
Li C, Chen H, Yang X, Wang K, Liu J. An ion transport switch based on light-responsive conformation-dependent G-quadruplex transmembrane channels. Chem Commun (Camb) 2021; 57:8214-8217. [PMID: 34308935 DOI: 10.1039/d1cc03273a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A light-responsive ion transport switch has been developed based on conformation-dependent azobenzene-incorporated lipophilic G-quadruplex channels, which provides a new smart approach for the selective transport of K+ ions across the lipid membrane.
Collapse
Affiliation(s)
- Chunying Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China.
| | | | | | | | | |
Collapse
|
39
|
Shen H, Wu W, Liu S, Zhang J, Lam JWY, Tang BZ. Photodegradation‐Induced Turn‐On
Luminescence of
Tetraphenylethylene‐Based
Trithiocarbonate Polymers
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hanchen Shen
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute of Advanced Study The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong China
| | - Wenjie Wu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute of Advanced Study The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong China
| | - Shunjie Liu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute of Advanced Study The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong China
| | - Jing Zhang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute of Advanced Study The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong China
- Department of Laboratory Medicine, Nanfang Hospital Southern Medical University Guangzhou Guangdong 510515 China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute of Advanced Study The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1 st RD, South Area Hi‐tech Park, Nanshan Shenzhen Guangdong 518057 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute of Advanced Study The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1 st RD, South Area Hi‐tech Park, Nanshan Shenzhen Guangdong 518057 China
- Center for Aggregation‐induced Emission, SCUT‐HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou Guangdong 510640 China
- HKUST AIE Institute Guangzhou Development District, Huangpu Guangzhou Guangdong 510530 China
- Guangdong‐Hong Kong‐Macao Joint laboratory of Optoelectronic and Magnetic Functional Materials The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong, China
| |
Collapse
|
40
|
Łukasik N, Hemine K, Anusiewicz I, Skurski P, Paluszkiewicz E. Photoresponsive Amide-Based Derivatives of Azobenzene-4,4'-Dicarboxylic Acid-Experimental and Theoretical Studies. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3995. [PMID: 34300906 PMCID: PMC8306546 DOI: 10.3390/ma14143995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
Azobenzene derivatives are one of the most important molecular switches for biological and material science applications. Although these systems represent a well-known group of compounds, there remains a need to identify the factors influencing their photochemical properties in order to design azobenzene-based technologies in a rational way. In this contribution, we describe the synthesis and characterization of two novel amides (L1 and L2) containing photoresponsive azobenzene units. The photochemical properties of the obtained compounds were investigated in DMSO by UV-Vis spectrophotometry, as well as 1H NMR spectroscopy, and the obtained results were rationalized via Density Functional Theory (DFT) methods. After irradiation with UV light, both amides underwent trans to cis isomerization, yielding 40% and 22% of the cis isomer of L1 and L2 amides, respectively. Quantum yields of this process were determined as 6.19% and 2.79% for L1 and L2, respectively. The reverse reaction (i.e., cis to trans isomerization) could be achieved after thermal or visible light activation. The analysis of the theoretically determined equilibrium structure of the transition-state connecting cis and trans isomers on the reaction path indicated that the trans-cis interconversion is pursued via the flipping of the substituent, rather than its rotation around the N=N bond. The kinetics of thermal back-reaction and the effect of the presence of the selected ions on the half-life of the cis form were also investigated and discussed. In the case of L1, the presence of fluoride ions sped the thermal relaxation up, whereas the half-life time of cis-L2 was extended in the presence of tested ions.
Collapse
Affiliation(s)
- Natalia Łukasik
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Koleta Hemine
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Iwona Anusiewicz
- Laboratory of Quantum Chemistry, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland; (I.A.); (P.S.)
| | - Piotr Skurski
- Laboratory of Quantum Chemistry, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland; (I.A.); (P.S.)
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland;
| |
Collapse
|
41
|
Sabir F, Zeeshan M, Laraib U, Barani M, Rahdar A, Cucchiarini M, Pandey S. DNA Based and Stimuli-Responsive Smart Nanocarrier for Diagnosis and Treatment of Cancer: Applications and Challenges. Cancers (Basel) 2021; 13:3396. [PMID: 34298610 PMCID: PMC8307033 DOI: 10.3390/cancers13143396] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 07/02/2021] [Indexed: 12/26/2022] Open
Abstract
The rapid development of multidrug co-delivery and nano-medicines has made spontaneous progress in tumor treatment and diagnosis. DNA is a unique biological molecule that can be tailored and molded into various nanostructures. The addition of ligands or stimuli-responsive elements enables DNA nanostructures to mediate highly targeted drug delivery to the cancer cells. Smart DNA nanostructures, owing to their various shapes, sizes, geometry, sequences, and characteristics, have various modes of cellular internalization and final disposition. On the other hand, functionalized DNA nanocarriers have specific receptor-mediated uptake, and most of these ligand anchored nanostructures able to escape lysosomal degradation. DNA-based and stimuli responsive nano-carrier systems are the latest advancement in cancer targeting. The data exploration from various studies demonstrated that the DNA nanostructure and stimuli responsive drug delivery systems are perfect tools to overcome the problems existing in the cancer treatment including toxicity and compromised drug efficacy. In this light, the review summarized the insights about various types of DNA nanostructures and stimuli responsive nanocarrier systems applications for diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Fakhara Sabir
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Mahira Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ushna Laraib
- Department of Pharmacy, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98615-538, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg, Germany
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| |
Collapse
|
42
|
Cieciórski P, Majewski PW, Megiel E. New Photoresponsive Poly(meth)acrylates Bearing Azobenzene Moieties Obtained via ATRP Polymerization Exhibiting Liquid-Crystalline Behavior. Polymers (Basel) 2021; 13:polym13132172. [PMID: 34209057 PMCID: PMC8271449 DOI: 10.3390/polym13132172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/20/2023] Open
Abstract
Here, we report our studies on photoresponsive poly(meth)acrylates containing azobenzene groups connected to a polymer backbone via a short methylene linker. A series of side-chain azobenzene polymers was synthesized via the atom transfer radical polymerization (ATRP) technique using several catalytic systems. The polymers synthesized under the optimized conditions were characterized by a narrow polydispersity (Đ ≤ 1.35), and they underwent a reversible transformation of their structure under light illumination. The fabricated polymers can store and release energy accumulated during the UV-light illumination by the thermal cis-trans isomerization of the chromophore groups. The enthalpy of the process (determined from DSC) was relatively high and equaled 61.9 J∙g−1 (17 Wh∙kg−1), indicating a high potential of these materials in energy storage applications. The liquid-crystalline behavior of the synthesized poly(meth)acrylates was demonstrated by the birefringent optical textures as observed in thin-films and X-ray scattering studies.
Collapse
|
43
|
|
44
|
Chen J, Xu T, Zhao W, Ma LL, Chen D, Lu YQ. Photoresponsive thin films of well-synthesized azobenzene side-chain liquid crystalline polynorbornenes as command surface for patterned graphic writing. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Aflori M. Smart Nanomaterials for Biomedical Applications-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:396. [PMID: 33557177 PMCID: PMC7913901 DOI: 10.3390/nano11020396] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
Recent advances in nanotechnology have forced the obtaining of new materials with multiple functionalities. Due to their reduced dimensions, nanomaterials exhibit outstanding physio-chemical functionalities: increased absorption and reactivity, higher surface area, molar extinction coefficients, tunable plasmonic properties, quantum effects, and magnetic and photo properties. However, in the biomedical field, it is still difficult to use tools made of nanomaterials for better therapeutics due to their limitations (including non-biocompatible, poor photostabilities, low targeting capacity, rapid renal clearance, side effects on other organs, insufficient cellular uptake, and small blood retention), so other types with controlled abilities must be developed, called "smart" nanomaterials. In this context, the modern scientific community developed a kind of nanomaterial which undergoes large reversible changes in its physical, chemical, or biological properties as a consequence of small environmental variations. This systematic mini-review is intended to provide an overview of the newest research on nanosized materials responding to various stimuli, including their up-to-date application in the biomedical field.
Collapse
Affiliation(s)
- Magdalena Aflori
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
46
|
Bao G, Wen S, Lin G, Yuan J, Lin J, Wong KL, Bünzli JCG, Jin D. Learning from lanthanide complexes: The development of dye-lanthanide nanoparticles and their biomedical applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213642] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Zhang Y, Huang J, Zhang J, Zhu X, Tong G. Synthesis and self-assembly of photo-responsive polypeptoid-based copolymers containing azobenzene side chains. Polym Chem 2021. [DOI: 10.1039/d0py01723j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photo-responsive polypeptoid-based copolymers containing azobenzene side chains have been well synthesized and they could self-assemble into tunable nanostructures with reversible light-switched behaviors.
Collapse
Affiliation(s)
- Yuxuan Zhang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Research Institute of Polymer Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Jie Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Research Institute of Polymer Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Jun Zhang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Research Institute of Polymer Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Research Institute of Polymer Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Gangsheng Tong
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Research Institute of Polymer Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| |
Collapse
|
48
|
Husni P, Shin Y, Kim JC, Kang K, Lee ES, Youn YS, Rusdiana T, Oh KT. Photo-Based Nanomedicines Using Polymeric Systems in the Field of Cancer Imaging and Therapy. Biomedicines 2020; 8:E618. [PMID: 33339198 PMCID: PMC7765596 DOI: 10.3390/biomedicines8120618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
The use of photo-based nanomedicine in imaging and therapy has grown rapidly. The property of light in converting its energy into different forms has been exploited in the fields of optical imaging (OI) and phototherapy (PT) for diagnostic and therapeutic applications. The development of nanotechnology offers numerous advantages to overcome the challenges of OI and PT. Accordingly, in this review, we shed light on common photosensitive agents (PSAs) used in OI and PT; these include fluorescent and bioluminescent PSAs for OI or PT agents for photodynamic therapy (PDT) and photothermal therapy (PTT). We also describe photo-based nanotechnology systems that can be used in photo-based diagnostics and therapies by using various polymeric systems.
Collapse
Affiliation(s)
- Patihul Husni
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Yuseon Shin
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Jae Chang Kim
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Kioh Kang
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea;
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea;
| | - Taofik Rusdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Kyung Taek Oh
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| |
Collapse
|
49
|
Tao Y, Chan HF, Shi B, Li M, Leong KW. Light: A Magical Tool for Controlled Drug Delivery. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005029. [PMID: 34483808 PMCID: PMC8415493 DOI: 10.1002/adfm.202005029] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 05/04/2023]
Abstract
Light is a particularly appealing tool for on-demand drug delivery due to its noninvasive nature, ease of application and exquisite temporal and spatial control. Great progress has been achieved in the development of novel light-driven drug delivery strategies with both breadth and depth. Light-controlled drug delivery platforms can be generally categorized into three groups: photochemical, photothermal, and photoisomerization-mediated therapies. Various advanced materials, such as metal nanoparticles, metal sulfides and oxides, metal-organic frameworks, carbon nanomaterials, upconversion nanoparticles, semiconductor nanoparticles, stimuli-responsive micelles, polymer- and liposome-based nanoparticles have been applied for light-stimulated drug delivery. In view of the increasing interest in on-demand targeted drug delivery, we review the development of light-responsive systems with a focus on recent advances, key limitations, and future directions.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingyang Shi
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Kam W Leong
- Department of Biomedical Engineering, Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
50
|
González-Sálamo J, Ortega-Zamora C, Carrillo R, Hernández-Borges J. Application of stimuli-responsive materials for extraction purposes. J Chromatogr A 2020; 1636:461764. [PMID: 33316565 DOI: 10.1016/j.chroma.2020.461764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Stimuli-responsive materials, frequently designated as "smart/intelligent materials", can modify their structure or properties by either a biological, physical, or chemical stimulus which, if properly controlled, could be used for specific applications. Such materials have been studied and exploited in several fields, like electronics, photonics, controlled drugs administration, imaging and medical diagnosis, among others, as well as in Analytical Chemistry where they have been used as chromatographic stationary phases, as part of sensors and for extraction purposes. This review article pretends to provide an overview of the most recent applications of these materials (mostly polymeric materials) in sample preparation for extraction purposes, as well as to provide a general vision of the current state-of-the-art of this field, their potential use and future applications.
Collapse
Affiliation(s)
- Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España.
| | - Cecilia Ortega-Zamora
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España
| | - Romen Carrillo
- Instituto de Productos Naturales y Agrobiología IPNA-CSIC. Avda. Astrofísico Fco. Sánchez, 3. 38206 San Cristóbal de La Laguna, España
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España.
| |
Collapse
|