1
|
Silvianti F, Maniar D, Agostinho B, de Leeuw TC, Woortman AJJ, van Dijken J, Thiyagarajan S, Sousa AF, Loos K. Enzymatic Synthesis of Copolyesters with the Heteroaromatic Diol 3,4-Bis(hydroxymethyl)furan and Isomeric Dimethyl Furandicarboxylate Substitutions. Biomacromolecules 2024; 25:2792-2802. [PMID: 38602263 PMCID: PMC11094730 DOI: 10.1021/acs.biomac.3c01433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Polyesters from furandicarboxylic acid derivatives, i.e., dimethyl 2,5-furandicarboxylate (2,5-DMFDCA) and 2,4-DMFDCA, show interesting properties among bio-based polymers. Another potential heteroaromatic monomer, 3,4-bis(hydroxymethyl)furan (3,4-BHMF), is often overlooked but holds promise for biopolymer synthesis. Cleaning and greening synthetic procedures, i.e., enzymatic polymerization, offer sustainable pathways. This study explores the Candida antarctica lipase B (CALB)-catalyzed copolymerization of 3,4-BHMF with furan dicarboxylate isomers and aliphatic diols. The furanic copolyesters (co-FPEs) with higher polymerization degrees are obtained using 2,4-isomer, indicating CALB's preference. Material analysis revealed semicrystalline properties in all synthesized 2,5-FDCA-based co-FPEs, with multiple melting temperatures (Tm) from 53 to 124 °C and a glass-transition temperature (Tg) of 9-10 °C. 2,4-FDCA-based co-FPEs showed multiple Tm from 43 to 61 °C and Tg of -14 to 12 °C; one of them was amorphous. In addition, all co-FPEs showed a two-step decomposition profile, indicating aliphatic and semiaromatic segments in the polymer chains.
Collapse
Affiliation(s)
- Fitrilia Silvianti
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Dina Maniar
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Beatriz Agostinho
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | | | - Albert Jan Jacob Woortman
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Jur van Dijken
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Shanmugam Thiyagarajan
- Wageningen
Food & Biobased Research, Wageningen
University and Research, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Andreia F. Sousa
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra
Rua Sílvio Lima—Polo II, Coimbra 3030-790, Portugal
| | - Katja Loos
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| |
Collapse
|
2
|
Lv X, Luo F, Zheng L, Niu R, Liu Y, Xie Q, Song D, Zhang Y, Zhou T, Zhu S. Biodegradable poly(butylene succinate‐co‐butylene furandicarboxylate): Effect of butylene furandicarboxylate unit on thermal, mechanical, and ultraviolet shielding properties, and biodegradability. J Appl Polym Sci 2022. [DOI: 10.1002/app.53122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuedong Lv
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - Faliang Luo
- High‐Efficiency Coal Utilization and Green Chemical Engineering Ningxia University Yinchuan China
| | - Liuchun Zheng
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - Ruixue Niu
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - Yi Liu
- School of Textile Science and Engineering Tiangong University Tianjin China
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials Hubei University of Science and Technology Xianning China
| | - Qiqi Xie
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - DanQing Song
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - YunChuan Zhang
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - Tianbo Zhou
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - Shifan Zhu
- School of Textile Science and Engineering Tiangong University Tianjin China
| |
Collapse
|
3
|
Kasmi N, Terzopoulou Z, Chebbi Y, Dieden R, Habibi Y, Bikiaris DN. Tuning thermal properties and biodegradability of poly(isosorbide azelate) by compositional control through copolymerization with 2,5-furandicarboxylic acid. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2021.109804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Bianchi E, Soccio M, Siracusa V, Gazzano M, Thiyagarajan S, Lotti N. Poly(butylene 2,4-furanoate), an Added Member to the Class of Smart Furan-Based Polyesters for Sustainable Packaging: Structural Isomerism as a Key to Tune the Final Properties. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:11937-11949. [PMID: 34513341 PMCID: PMC8424682 DOI: 10.1021/acssuschemeng.1c04104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/07/2021] [Indexed: 05/10/2023]
Abstract
High-molecular-weight poly(butylene 2,4-furanoate) (2,4-PBF), an isomer of well-known poly(butylene 2,5-furanoate) (2,5-PBF), was synthesized through an eco-friendly solvent-free polycondensation process and processed in the form of an amorphous film by compression molding. Molecular characterization was carried out by NMR spectroscopy and GPC analysis, confirming the chemical structure and high polymerization degree. Thermal analyses evidenced a reduction of both glass-to-rubber transition and melting temperatures, as well as a detriment of crystallization capability, for 2,4-PBF with respect to 2,5-PBF. Nevertheless, it was possible to induce crystal phase formation by annealing treatment. Wide-angle X-ray scattering revealed that the crystal lattices developed in the two isomers are distinct from each other. The different isomerism affects also the thermal stability, being 2,4-PBF more thermally inert than 2,5-PBF. Functional properties, such as wettability, mechanical response, and gas barrier capability, were tested on both amorphous and semicrystalline 2,4-PBF films and compared with those of 2,5-PBF. Reduced hydrophilicity was determined for 2,4-isomer, in line with its lower average dipole moment, suggesting better chemical resistance to hydrolysis. Stress-strain tests have evidenced the higher flexibility and toughness of 2,4-PBF with respect to those of 2,5-PBF and the possibility of improving its mechanical resistance by annealing. Finally, the different isomerism deeply affects the gas barrier performance, being the O2- and CO2-transmission rates of 2,4-PBF 50 and 110 times lower, respectively, than those of 2,5-PBF. The gas barrier properties turned out to be outstanding under a dry atmosphere as well as in humid conditions, suggesting the presence of interchain hydrogen bonds. The gas blocking capability decreases after annealing because of the presence of disclination associated with the formation of crystals.
Collapse
Affiliation(s)
- Enrico Bianchi
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Michelina Soccio
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna 40126, Italy
| | - Valentina Siracusa
- Department
of Chemical Science, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Massimo Gazzano
- Institute
of Organic Synthesis and Photoreactivity, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
| | | | - Nadia Lotti
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna 40126, Italy
- Interdepartmental
Center for Agro-Food Research, CIRI-AGRO, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
5
|
Ahmed AM, Kainulainen TP, Heiskanen JP. Furfural-Based Modification of PET for UV-Blocking Copolymers with Decreased Oxygen Permeability. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Asmaa M. Ahmed
- Research Unit of Sustainable Chemistry, University of Oulu, P. O. Box 4300, FI-90014 Oulu, Finland
| | - Tuomo P. Kainulainen
- Research Unit of Sustainable Chemistry, University of Oulu, P. O. Box 4300, FI-90014 Oulu, Finland
| | - Juha P. Heiskanen
- Research Unit of Sustainable Chemistry, University of Oulu, P. O. Box 4300, FI-90014 Oulu, Finland
| |
Collapse
|
6
|
Unravelling the para- and ortho-benzene substituent effect on the glass transition of renewable wholly (hetero-)aromatic polyesters bearing 2,5-furandicarboxylic moieties. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Wang P, Zhang B. Sustainable aromatic polyesters with 1,5-disubstituted indole units. RSC Adv 2021; 11:16480-16489. [PMID: 35479171 PMCID: PMC9031847 DOI: 10.1039/d1ra02197d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023] Open
Abstract
This work aims to unravel the impact of disubstitution patterns on the physical properties and processing characteristics of indole-based aromatic polyesters. A series of hydroxyl-carboxylate (AB-type) monomers with 1,5-disubstituted indole and 3-6 methylene units was conveniently synthesized and used in bulk polycondensation to yield the corresponding polyesters with decent molecular weight. These new monomers and polyesters showed enhanced thermal stability compared to the previously reported monomers and polyesters with a 1,3-disubstituted indole structure. According to DSC results, these polyesters showed tunable glass transition temperatures (T g ∼57-80 °C), depending on the length of the aliphatic methylene units. DSC and WAXD measurements revealed that these polymers did not crystalize from melt, but the ones with 3 or 5 methylene units per repeating unit crystalized from solution. Finally, we demonstrated that the new polyesters with 1,5-disubstituted indole units could be crosslinked using sustainable aromatic aldehyde, which could further enhance their thermal properties.
Collapse
Affiliation(s)
- Ping Wang
- Centre of Analysis and Synthesis, Lund University P.O. Box 124 SE-22100 Lund Sweden
| | - Baozhong Zhang
- Centre of Analysis and Synthesis, Lund University P.O. Box 124 SE-22100 Lund Sweden
| |
Collapse
|
8
|
Wang G, Xu Y, Jiang M, Wang R, Wang H, Liang Y, Zhou G. Fully bio-based polyesters poly(ethylene-co-1,5-pentylene 2,5-thiophenedicarboxylate)s (PEPTs) with high toughness: Synthesis, characterization and thermo-mechanical properties. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Wang G, Hou M, Jiang M, Wang R, Liang Y, Zhou G. Poly(propylene naphthalate-co-propylene 2,5-furandicarboxylate)s derived from bio-based 2,5-furandicarboxylic acid (FDCA): Synthesis, characterization and thermo-mechanical properties. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Tuning the Properties of Furandicarboxylic Acid-Based Polyesters with Copolymerization: A Review. Polymers (Basel) 2020; 12:polym12061209. [PMID: 32466455 PMCID: PMC7361963 DOI: 10.3390/polym12061209] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 01/29/2023] Open
Abstract
Polyesters based on 2,5-furandicarboxylic acid (FDCA) are a new class of biobased polymers with enormous interest, both from a scientific and industrial perspective. The commercialization of these polymers is imminent as the pressure for a sustainable economy grows, and extensive worldwide research currently takes place on developing cost-competitive, renewable plastics. The most prevalent method for imparting these polymers with new properties is copolymerization, as many studies have been published over the last few years. This present review aims to summarize the trends in the synthesis of FDCA-based copolymers and to investigate the effectiveness of this approach in transforming them to a more versatile class of materials that could potentially be appropriate for a number of high-end and conventional applications.
Collapse
|
11
|
Nolasco MM, Araujo CF, Thiyagarajan S, Rudić S, Vaz PD, Silvestre AJD, Ribeiro-Claro PJA, Sousa AF. Asymmetric Monomer, Amorphous Polymer? Structure–Property Relationships in 2,4-FDCA and 2,4-PEF. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02449] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Mariela M. Nolasco
- CICECO—Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Catarina F. Araujo
- CICECO—Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | | | - Svemir Rudić
- ISIS Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK
| | - Pedro D. Vaz
- Champalimaud Foundation, Champalimaud Centre for the Unknown, 1400-038 Lisboa, Portugal
| | - Armando J. D. Silvestre
- CICECO—Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo J. A. Ribeiro-Claro
- CICECO—Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Andreia F. Sousa
- CICECO—Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|