1
|
Yan Q, Li Y, Wang T, Chen Y, Zhao J, Jiang J, Lu H, Jia H. Elucidating the impact of mulching film on organic carbon mineralization from the perspective of aggregate level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178198. [PMID: 39721541 DOI: 10.1016/j.scitotenv.2024.178198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Plastic films mulching, a management strategy designed to boost agricultural productivity, significantly impacts soil fertility and the turnover of soil organic carbon (SOC). Aggregates in the soil play a crucial role in this SOC cycling. Yet, the effect of mulching on the changes in organic carbon components and the mineralization at the aggregate scale is still not well understood. We conducted a three-year field experiment to examine the effects of various mulching types (CK: non-mulching, BPM: black polyethylene mulching, CPM: colorless polyethylene mulching, BDM: black degradable mulching, CDM: colorless degradable mulching) on the transformation and mineralization of organic carbon within soil aggregates. Generally, after three years of continuous mulching, compared to CK, soil aggregate stability significantly improved, the content of SOC and HFOC increased by 8-14 % and 12-24 % respectively, while the content of LFOC decreased by 3-51 %. The response mechanisms of organic carbon mineralization in different size aggregates to mulching are different. The change in carbon components is the main factor stimulating the mineralization of organic carbon in >0.25 mm aggregates; microbial diversity is the dominant factor inhibiting the mineralization of organic carbon in 0.053-0.25 mm aggregates; while <0.053 mm aggregates are not significantly affected by mulching. Our findings suggest that plastic mulching reduce the mineralization of SOC and enhances its sequestration by modulating the composition of organic carbon fractions, extracellular enzymes, and microorganisms within soil aggregates of different sizes. This study provides a valuable reference for gaining further insights into the turnover dynamics of soil organic carbon at the aggregate scale.
Collapse
Affiliation(s)
- Qing Yan
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yanpei Li
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Tongtong Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yi Chen
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jinze Zhao
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jiarui Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Haodong Lu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
2
|
Saito K, Türel T, Eisenreich F, Tomović Ž. Closed-Loop Recyclable Poly(imine-acetal)s with Dual-Cleavable Bonds for Primary Building Block Recovery. CHEMSUSCHEM 2023; 16:e202301017. [PMID: 37518676 DOI: 10.1002/cssc.202301017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Chemical recycling offers a promising solution for the end-of-life treatment of synthetic polymers. However, the efficient recovery of well-defined recycled building blocks continues to be a major challenge, especially for crosslinked thermosets. Here, we developed vanillin-based polymer networks functionalized with dual-cleavable imine and acetal bonds that facilitate chemical recycling to primary building blocks and their convenient separation at the molecular level. A library of crosslinked poly(imine-acetal)s was synthesized by combining the in-bulk synthesized liquid di-vanillin acetal monomer (DVA) with commercially available liquid di- and triamines under solvent-free conditions. These thermosets showed tailor-made thermal and mechanical properties along with outstanding chemical recyclability. Under aqueous acidic conditions, poly(imine-acetal)s selectively and completely disintegrate into small molecules. During the polymer design stage, these compounds were carefully selected to enable facile separation without tedious techniques. As a result, the primary building blocks were isolated in high yields and purity and immediately reused to produce fresh polymers with identical thermomechanical properties. Since our "design for recycling" concept aims at obtaining the primary building blocks rather than monomers after depolymerization, a plethora of possibilities are unlocked to utilize these chemical resources, including closed-loop recycling as portrayed.
Collapse
Affiliation(s)
- Keita Saito
- Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven (The, Netherlands
| | - Tankut Türel
- Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven (The, Netherlands
| | - Fabian Eisenreich
- Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven (The, Netherlands
| | - Željko Tomović
- Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven (The, Netherlands
| |
Collapse
|
3
|
Kim W, Kim YM, Song S, Kim E, Kim DG, Jung YC, Yu WR, Na W, Choi YS. Manufacture of antibacterial carbon fiber-reinforced plastics (CFRP) using imine-based epoxy vitrimer for medical application. Heliyon 2023; 9:e16945. [PMID: 37332980 PMCID: PMC10272483 DOI: 10.1016/j.heliyon.2023.e16945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
An antibacterial carbon fiber-reinforced plastics (CFRP) was manufactured based on a vitrimer containing imine groups. A liquid curing agent was prepared to include an imine group in the matrix, and was synthesized without a simple mixing reaction and any purification process. The vitrimer used as the matrix for CFRP was prepared by reacting a commercial epoxy with a synthesized curing agent. The structural and thermal properties of the vitrimer were determined by Fourier transform-infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In addition, the temperature-dependent behavior of the vitrimer was characterized by stress relaxation, reshaping, and shape memory experiments. The mechanical properties of composites fabricated using vitrimer were fully analyzed by tensile, flexural, short-beam strength, and Izod impact tests and had mechanical properties similar to reference material. Moreover, both the vitrimer and the vitrimer composites showed excellent antibacterial activity against Staphylococcus aureus and Escherichia coil due to the imine group inside the vitrimer. Therefore, vitrimer composites have potential for applications requiring antimicrobial properties, such as medical devices.
Collapse
Affiliation(s)
- Wonbin Kim
- Composites Materials Application Research Center, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk, 55324, Republic of Korea
| | - Yong Min Kim
- Composites Materials Application Research Center, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk, 55324, Republic of Korea
- Department of Material Science and Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 151-742, Republic of Korea
| | - SeungHyeon Song
- Composites Materials Application Research Center, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk, 55324, Republic of Korea
- Functional Soft Materials Laboratory, School of Chemical Engineering Jeonbuk National University, Beakje-dearo 567, Deokjin-gu, 54896, Jeonju, Republic of Korea
| | - Eunjung Kim
- Composites Materials Application Research Center, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk, 55324, Republic of Korea
- Department of Material Science and Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 151-742, Republic of Korea
| | - Dong-Gyun Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Yong Chae Jung
- Composites Materials Application Research Center, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk, 55324, Republic of Korea
| | - Woong-Ryeol Yu
- Department of Material Science and Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 151-742, Republic of Korea
| | - WonJin Na
- Composites Materials Application Research Center, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk, 55324, Republic of Korea
| | - Yong-Seok Choi
- Composites Materials Application Research Center, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk, 55324, Republic of Korea
| |
Collapse
|
4
|
Husted KEL, Brown CM, Shieh P, Kevlishvili I, Kristufek SL, Zafar H, Accardo JV, Cooper JC, Klausen RS, Kulik HJ, Moore JS, Sottos NR, Kalow JA, Johnson JA. Remolding and Deconstruction of Industrial Thermosets via Carboxylic Acid-Catalyzed Bifunctional Silyl Ether Exchange. J Am Chem Soc 2023; 145:1916-1923. [PMID: 36637230 DOI: 10.1021/jacs.2c11858] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Convenient strategies for the deconstruction and reprocessing of thermosets could improve the circularity of these materials, but most approaches developed to date do not involve established, high-performance engineering materials. Here, we show that bifunctional silyl ether, i.e., R'O-SiR2-OR'', (BSE)-based comonomers generate covalent adaptable network analogues of the industrial thermoset polydicyclopentadiene (pDCPD) through a novel BSE exchange process facilitated by the low-cost food-safe catalyst octanoic acid. Experimental studies and density functional theory calculations suggest an exchange mechanism involving silyl ester intermediates with formation rates that strongly depend on the Si-R2 substituents. As a result, pDCPD thermosets manufactured with BSE comonomers display temperature- and time-dependent stress relaxation as a function of their substituents. Moreover, bulk remolding of pDCPD thermosets is enabled for the first time. Altogether, this work presents a new approach toward the installation of exchangeable bonds into commercial thermosets and establishes acid-catalyzed BSE exchange as a versatile addition to the toolbox of dynamic covalent chemistry.
Collapse
Affiliation(s)
- Keith E L Husted
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher M Brown
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hadiqa Zafar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joseph V Accardo
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julian C Cooper
- Department of Chemistry, University of Illinois at Urbana Champaign, Champaign County, Illinois 61820, United States
| | - Rebekka S Klausen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana Champaign, Champaign County, Illinois 61820, United States.,Department of Materials Science and Engineering, University of Illinois at Urbana Champaign, Champaign County, Illinois 60208, United States
| | - Nancy R Sottos
- Department of Materials Science and Engineering, University of Illinois at Urbana Champaign, Champaign County, Illinois 60208, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
A Critical Review of Sustainable Vanillin-modified Vitrimers: Synthesis, Challenge and Prospects. REACTIONS 2023. [DOI: 10.3390/reactions4010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nearly 90% of thermosets are produced from petroleum resources, they have remarkable mechanical characteristics, are chemically durable, and dimensionally stable. However, they can contribute to global warming, depletion of petroleum reserves, and environmental contamination during manufacture, use, and disposal. Using renewable resources to form thermosetting materials is one of the most crucial aspects of addressing the aforementioned issues. Vanillin-based raw materials have been used in the industrial manufacturing of polymer materials because they are simple to modify structurally. Conversely, traditional thermosetting materials as a broad class of high-molecular-weight molecules are challenging to heal, decompose and recover owing to their permanent 3-D crosslinking network. Once the products are damaged, recycling issues could arise, causing resource loss and environmental impact. It could be solved by inserting dynamic covalent adaptable networks (DCANs) into the polymer chains, increasing product longevity, and minimizing waste. It also improves the attractiveness of these products in the prospective field. Moreover, it is essential to underline that increasing product lifespan and reducing waste is equivalent to reducing the expense of consuming resources. The detailed synthesis, reprocessing, thermal, and mechanical characteristics of partly and entirely biomass thermosetting polymers made from vanillin-modified monomers are covered in the current work. Finally, the review highlights the benefits, difficulties, and application of these emerging vanillin-modified vitrimers as a potential replacement for conventional non-recyclable thermosets.
Collapse
|
6
|
Rashid MA, Liu W, Wei Y, Jiang Q. Review of intrinsically recyclable biobased epoxy thermosets enabled by dynamic chemical bonds. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2080559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Muhammad Abdur Rashid
- Center for Civil Aviation Composites, Donghua University, Shanghai, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
- Dhaka University of Engineering and Technology, Gazipur, Bangladesh
| | - Wanshuang Liu
- Center for Civil Aviation Composites, Donghua University, Shanghai, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Yi Wei
- Center for Civil Aviation Composites, Donghua University, Shanghai, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Qiuran Jiang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| |
Collapse
|
7
|
Yu BY, Yue DW, Hou KX, Ju L, Chen H, Ding C, Liu ZG, Dai YQ, Bisoyi HK, Guan YS, Lu WB, Li CH, Li Q. Stretchable and self-healable spoof plasmonic meta-waveguide for wearable wireless communication system. LIGHT, SCIENCE & APPLICATIONS 2022; 11:307. [PMID: 36280662 PMCID: PMC9592613 DOI: 10.1038/s41377-022-01005-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Microwave transmission lines in wearable systems are easily damaged after frequent mechanical deformation, posing a severe threat to wireless communication. Here, we report a new strategy to achieve stretchable microwave transmission lines with superior reliability and durability by integrating a self-healable elastomer with serpentine-geometry plasmonic meta-waveguide to support the spoof surface plasmon polariton (SSPP). After mechanical damage, the self-healable elastomer can autonomously repair itself to maintain the electromagnetic performance and mechanical strength. Meanwhile, the specially designed SSPP structure exhibits excellent stability and damage resistance. Even if the self-healing process has not been completed or the eventual repair effect is not ideal, the spoof plasmonic meta-waveguide can still maintain reliable performance. Self-healing material enhances strength and durability, while the SSPP improves stability and gives more tolerance to the self-healing process. Our design coordinates the structural design with material synthesis to maximize the advantages of the SSPP and self-healing material, significantly improving the reliability and durability of stretchable microwave transmission lines. We also perform communication quality experiments to demonstrate the potential of the proposed meta-waveguide as interconnects in future body area network systems.
Collapse
Affiliation(s)
- Bu-Yun Yu
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 210096, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| | - De-Wei Yue
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ke-Xin Hou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lu Ju
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 210096, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| | - Hao Chen
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 210096, China
| | - Cong Ding
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 210096, China
| | - Zhen-Guo Liu
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 210096, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| | - Yun-Qian Dai
- Purple Mountain Laboratories, Nanjing, 211111, China
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Ying-Shi Guan
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Wei-Bing Lu
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, 210096, China.
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 210096, China.
- Purple Mountain Laboratories, Nanjing, 211111, China.
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
8
|
Cleavable epoxy networks using azomethine-bearing amine hardeners. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Lucherelli MA, Duval A, Avérous L. Biobased vitrimers: Towards sustainable and adaptable performing polymer materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Ussama W, Shibata M. Self-healing polyester networks prepared from poly(butylene succinate-co-butylene itaconate) and thiol-terminated polyether containing disulfide linkages. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Liu C, Chen C, Tu C, Hung S, Chao C. Structure colorants based on cross‐linked cholesteric liquid crystalline polymeric slices. J Appl Polym Sci 2022. [DOI: 10.1002/app.51717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chun‐Yen Liu
- Department of Materials Science and Engineering National Cheng Kung University Tainan City Taiwan
| | - Cheng‐Chieh Chen
- Department of Chemical Engineering National Cheng Kung University Tainan City Taiwan
| | - Chia‐Ming Tu
- Department of Materials Science and Engineering National Cheng Kung University Tainan City Taiwan
| | - Sheng‐Chi Hung
- Department of Materials Science and Engineering National Cheng Kung University Tainan City Taiwan
| | - Chia‐Hui Chao
- Department of Materials Science and Engineering National Cheng Kung University Tainan City Taiwan
| |
Collapse
|
12
|
Xu L, Zhu L, Jie S, Bu Z, Li BG. Controllable Preparation of the Reversibly Cross-Linked Rubber Based on Imine Bonds Starting from Telechelic Liquid Rubber. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Li Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liqian Zhu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Suyun Jie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhiyang Bu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bo-Geng Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
13
|
Liguori A, Hakkarainen M. Designed from Biobased for Recycling: Imine-Based Covalent Adaptable Networks. Macromol Rapid Commun 2022; 43:e2100816. [PMID: 35080074 DOI: 10.1002/marc.202100816] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/06/2022] [Indexed: 11/05/2022]
Abstract
Turning thermosets into fully sustainable materials requires utilization of biobased raw materials and design for easy recyclability. Here, dynamic covalent chemistry for fabrication of covalent adaptable networks (CANs) could be an enabling tool. CAN thermosets ideally combine the positive material properties of thermosets with thermal recyclability of linear thermoplastics. Among the dynamic covalent bonds, imine bond, also called Schiff base, can participate in both dissociative and associative pathways. This induces potential for chemical recyclability, thermal reprocessability and self-healing. This review presents an overview of the current research front of biobased thermosets fabricated by Schiff base chemistry. The discussed materials are categorized on the basis of the employed biobased components. The chemical approaches for the synthesis and curing of the resins, as well as the resulting properties and recyclability of the obtained thermosets are described and discussed. Finally, challenges and future perspectives are briefly summarized. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anna Liguori
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, Teknikringen 58, Stockholm, 100 44, Sweden
| | - Minna Hakkarainen
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, Teknikringen 58, Stockholm, 100 44, Sweden
| |
Collapse
|
14
|
Wang Y, Jin B, Ye D, Liu Z. Fully recyclable carbon fiber reinforced vanillin-based epoxy vitrimers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110927] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Alraddadi MA, Chiaradia V, Stubbs CJ, Worch JC, Dove AP. Renewable and recyclable covalent adaptable networks based on bio-derived lipoic acid. Polym Chem 2021; 12:5796-5802. [PMID: 34777585 PMCID: PMC8524469 DOI: 10.1039/d1py00754h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022]
Abstract
The modern materials economy is inefficient since most products are principally derived from non-renewable feedstocks and largely single-use in nature. Conventional thermoset materials are often inherently unreprocessable due to their irreversible covalent crosslinks and hence are challenging to recycle and/or reprocess. Covalent adaptable networks (CAN)s, which incorporate reversible or dynamic covalent bonding, have emerged as an efficient means to afford reprocessable crosslinked materials and increasing the feedstock sustainability of CANs is a developing aim. In this study, the biomass-derived lipoic acid, which possesses a dynamic cyclic disulfide moiety, was transformed into a series of bifunctional monomers via a one-step esterification or amidation reaction and reacted with a commercially available multi-valent thiol in the presence of an organobase catalyst to afford dynamically crosslinked networks. Large differences in material properties, such as storage modulus and glass transition temperature, were observed when the ratio of the lipoic acid-based monomer to thiol (from 1 : 1 to 16 : 1) and the composition of the monomer were changed to modify the network architecture. The thermomechanical properties of an optimised formulation were investigated more thoroughly to reveal a moderately strong rubber (ultimate tensile strength = 1.8 ± 0.4 MPa) possessing a large rubbery plateau (from 0 to 150 °C) which provides an adaptable material with a wide operational temperature range. Finally, the chemical recycling, or depolymerisation, of the optimised network was also demonstrated by simply solvating the material in the presence of an organobase catalyst.
Collapse
Affiliation(s)
| | | | - Connor J Stubbs
- School of Chemistry, University of Birmingham Edgbaston B15 2TT UK
| | - Joshua C Worch
- School of Chemistry, University of Birmingham Edgbaston B15 2TT UK
| | - Andrew P Dove
- School of Chemistry, University of Birmingham Edgbaston B15 2TT UK
| |
Collapse
|
16
|
Facile Synthesis of Thermoplastic Polyamide Elastomers Based on Amorphous Polyetheramine with Damping Performance. Polymers (Basel) 2021; 13:polym13162645. [PMID: 34451185 PMCID: PMC8397970 DOI: 10.3390/polym13162645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
Novel thermoplastic polyamide elastomers (TPAEs) consisting of long-chain semicrystalline polyamide 1212 (PA1212) and amorphous polyetheramine were synthesized via one-pot melt polycondensation. The method provides accessible routes to prepare TPAEs with a high tolerance of compatibility between polyamide and polyether oligomers compared with the traditional two-step method. These TPAEs with 10 wt % to 76 wt % of soft content were obtained by reaction of dodecanedioic acid, 1,12-dodecanediamine, and poly(propylene glycol) (PPG) diamine. The structure–property relationships of TPAEs were systematically studied. The chemical structure and the morphologic analyses have revealed that microphase separation occurs in the amorphous region. The TPAEs that have long-chain PPG segments consist of a crystalline polyamide domain, amorphous polyamide-rich domain, and amorphous polyetheramine-rich domain, while the ones containing short-chain PPG segments comprise of a crystalline polyamide domain and miscible amorphous polyamide phase and amorphous polyetheramine phase due to the compatibility between short-chain polyetheramine and amorphous polyamide. These novel TPAEs show good damping performance at low temperature, especially the TPAEs that incorporated 76 wt % and 62 wt % of PPG diamine. The TPAEs exhibit high elastic properties and low residual strain at room temperature. They are lightweight with density between 1.01 and 1.03 g/cm3. The long-chain TPAEs have well-balanced properties of low density, high elastic return, and high shock-absorbing ability. This work provides a route to expand TPAEs to damping materials with special application for sports equipment used in extremely cold conditions such as ski boots.
Collapse
|
17
|
Wang L, Yan S, Zhang L, Mai Y, Li W, Pang H. An Acid-/Base-Degradable Epoxy Resin Cured by 1,3,5-Triacroylamino-hexahydro-s-triazine Derivative. Macromol Res 2021. [DOI: 10.1007/s13233-021-9060-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
|
19
|
Ge M, Miao JT, Zhang K, Wu Y, Zheng L, Wu L. Building biobased, degradable, flexible polymer networks from vanillin via thiol–ene “click” photopolymerization. Polym Chem 2021. [DOI: 10.1039/d0py01407a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new biobased allyl ether monomer with acetal groups is synthesized from renewable vanillin for building flexible transparent thiol–ene networks with good degradability under mild acidic conditions.
Collapse
Affiliation(s)
- Meiying Ge
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Jia-Tao Miao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Kai Zhang
- Zhicheng College
- Fuzhou University
- Fuzhou 350002
- China
| | - Yadong Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Longhui Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Lixin Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| |
Collapse
|
20
|
Gan H, Seraji SM, Zhang J, Swan SR, Issazadeh S, Varley RJ. Synthesis of a phosphorus‑silicone modifier imparting excellent flame retardancy and improved mechanical properties to a rapid cure epoxy. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104743] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Wan J, Zhao J, Zhang X, Fan H, Zhang J, Hu D, Jin P, Wang DY. Epoxy thermosets and materials derived from bio-based monomeric phenols: Transformations and performances. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101287] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|