1
|
Yang S, Zhou T, Yu X, Nolan SP, Szostak M. [Pd(NHC)(μ-Cl)Cl] 2: The Highly Reactive Air- and Moisture-Stable, Well-Defined Pd(II)-N-Heterocyclic Carbene (NHC) Complexes for Cross-Coupling Reactions. Acc Chem Res 2024; 57:3343-3355. [PMID: 39504265 DOI: 10.1021/acs.accounts.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
ConspectusPalladium-catalyzed cross-coupling reactions owing to their high specificity and superb chemoselectivity represent a powerful tool for the rapid construction of C-C and C-X bonds across various areas of chemical research, including pharmaceutical development, polymer and agrochemical industries, bioactive natural products, and advanced functional materials, rendering them indispensable for modern synthetic chemists. The major driving force for the advances in this critical field is the design of increasingly more reactive and more selective ligands and precatalysts that aim not only to address challenging cross-coupling processes but also to achieve optimal reactivity, selectivity, and functional group compatibility under mild, user-friendly, operationally simple, and broadly applicable conditions. In this context, Pd(II)-N-heterocyclic carbene complexes (NHC = N-heterocyclic carbene) have garnered prevalent attention among practitioners of organic synthesis due to their unique electronic and steric characteristics that are unmatched among other ligands. In particular, the superior σ-donating ability of NHC ligands in conjunction with conformational flexibility as well as the ease of steric and electronic modification and high stability to air and moisture enable highly effective fundamental elementary steps in catalytic cycles and facile formation of well-defined complexes.The key factor in the design of well-defined, air- and moisture-stable Pd(II) precatalysts involves the incorporation of supporting ligands, which are essential for ensuring the stability of Pd(II)-NHC complexes and facile activation of Pd(II)-NHC precatalysts to catalytically active monoligated Pd(0)-NHC species under the reaction conditions. Notably, [Pd(NHC)(μ-Cl)Cl]2 chloro dimers, which can be readily synthesized via a one-pot, atom-economic process, are the most reactive Pd(II)-NHC complexes synthesized to date. These well-defined, air- and moisture-stable dimers readily dissociate to monomers and are activated to Pd(0)-NHC catalysts under both mild and strong base conditions, showcasing enhanced reactivity and selectivity among their Pd(II)-NHC counterparts. This balance between high, operationally simple stability, which is characteristic of Pd(II) complexes together with the ease of activation to the strongly nucleophilic Pd(0)-NHC catalysts, renders [Pd(NHC)(μ-Cl)Cl]2 the most reactive Pd(II)-NHC precatalysts developed to date for a broad range of general cross-coupling processes, including C-X, C-O, C-N, and C-S activation and enabling the direct late-stage functionalization of complex compounds decorated with a wide range of sensitive functional groups.In this Account, we outline [Pd(NHC)(μ-Cl)Cl]2 as a highly reactive Pd(II)-NHC precatalyst that should be routinely used as the first choice Pd complexes for a wide range of challenging cross-coupling reactions. The advancements in this field over the past 20 years emphasize the critical role of catalyst design to achieve optimal reactivity. Consequently, [Pd(NHC)(μ-Cl)Cl]2 chloro dimers should be recommended as the go-to complexes in the powerful toolbox of Pd-catalyzed cross-coupling reactions. These now commercially available Pd(II)-NHC complexes see widespread use across the synthetic chemistry community and enable the accelerated application of challenging cross-couplings in the synthesis of new molecules.
Collapse
Affiliation(s)
- Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Xiang Yu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
Podchorodecka P, Dziuk B, Junga R, Szostak R, Szostak M, Bisz E. IPr* Thia - wingtip-flexible, sterically hindered, modular, N,C/S,C-chelating thiazole-donor N-heterocyclic carbene ligands. Dalton Trans 2024; 53:14975-14985. [PMID: 39230139 DOI: 10.1039/d4dt01468e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
N-Heterocyclic carbenes (NHCs) represent a pivotal class of ligands in coordination chemistry owing to their unique electronic properties. In particular, hemilabile N-heterocyclic carbenes have garnered significant attention over the past decade due to their capacity to transiently coordinate to metals and open coordination sites. However, hemilabile NHC ligands have been predominantly limited to N, O and P donors, while NHC ligands bearing versatile S-donors have been severely underdeveloped. Herein, we report wingtip-flexible, sterically hindered NHC ligands that feature N,C/S,C-chelating thiazole donors in combination with the powerful IPr* (IPr* = (2,6-bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene) scaffold. These ligands are prepared using a highly modular SNAr arylation of thiazole derivatives. Full structural and electronic characterization is reported. The ligands feature a high barrier to rotation around the N-thiazole axis (10 kcal mol-1). The ligands are evaluated for their steric, electron-donating and π-accepting properties as well as coordination chemistry to Ag(I), Pd(II), Rh(I) and Se. Preliminary studies on Ag, Pd and Rh catalysis are presented. The efficiency of the approach is highlighted by preparing a library of unsymmetrical imidazolium precursors. The mono-IPr* wingtip provides a highly hindered yet sterically flexible environment adjusting to metal centers, while the N-thiazolyl wingtip displays a fluxional behavior that interchanges from the hard/soft N,C to soft/soft S,C coordination. Considering the importance of hemilabile N-heterocyclic carbene ligands in metal stabilization in inorganic and organometallic chemistry, we expect that this class of ligands will be of broad interest.
Collapse
Affiliation(s)
- Pamela Podchorodecka
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland.
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, Wroclaw 50-373, Poland
| | - Robert Junga
- Department of Thermal Engineering and Industrial Facilities, Opole University of Technology, 5 Mikołajczyka Street, Opole 45-271, Poland
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland.
| |
Collapse
|
3
|
Umabharathi SB, Neetha M, Anilkumar G. Palladium N-Heterocyclic Carbene-Catalyzed Aminations: An Outline. Top Curr Chem (Cham) 2024; 382:3. [PMID: 38265533 DOI: 10.1007/s41061-024-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
Amination reactions play a pivotal role in synthetic organic chemistry, facilitating the generation of nitrogen-containing scaffolds with broad applications in drug synthesis, material production, polymer formation, and the generation of amino acids and peptides. Amination offers the potential to fine tune the properties of natural products and produce functional materials for various applications. Palladium N-heterocyclic carbene (Pd-NHC) emerges as an innovative and highly effective catalyst in this context. Under favorable reaction conditions, this robust and simple catalyst efficiently facilitates the synthesis of a diverse range of compounds with varying complexity and utility. Pd-NHC complexes exhibit significant σ-electron donating potential, enhancing the ease of the oxidative addition process in their mechanistic pathway. Their steric topography further contributes to a rapid reductive elimination. These complexes demonstrate remarkable stability, a result of the strong Pd-ligand bond. The wide variety of Pd-NHC complexes has proven highly efficient in catalyzing reactions across a spectrum of complexities, from simple to intricate. The domain of aminations catalyzed by Pd-NHC has undergone significant diversification, presenting new opportunities, particularly in the realms of material chemistry and natural product synthesis. This review outlines the advancements in Pd-NHC-catalyzed amination reactions, covering literature up to date.
Collapse
Affiliation(s)
- S B Umabharathi
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P. O., Kollam, Kerala, 690525, India
| | - Mohan Neetha
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P. O., Kottayam, Kerala, 686560, India
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P. O., Kottayam, Kerala, 686560, India.
- Institute for Integrated Programs and Research in Basic Sciences (IIRBS), Mahatma Gandhi University, Priyadarsini Hills P. O., Kottayam, Kerala, 686560, India.
- Advanced Molecular Materials Research Center (AMMRC), Mahatma Gandhi University, Priyadarsini Hills P. O., Kottayam, Kerala, 686560, India.
| |
Collapse
|
4
|
Liu J, Zhu Y, Luo J, Zhu Z, Zhao L, Zeng X, Li D, Chen J, Lan X. A Simple and Practical Bis-N-Heterocyclic Carbene as an Efficient Ligand in Cu-Catalyzed Glaser Reaction. Molecules 2023; 28:5083. [PMID: 37446745 DOI: 10.3390/molecules28135083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Conjugated diyne derivatives are important scaffolds in modern organic synthetic chemistry. Using the Glaser reaction involves the coupling of terminal alkynes which can efficiently produce conjugated diyne derivatives, while the use of a stoichiometric amount of copper salts, strong inorganic base, and excess oxidants is generally needed. Developing an environmentally friendly and effective method for the construction of symmetrical 1,3-diynes compounds by Glaser coupling is still highly desirable. In this study, we present an economical method for the production of symmetric diynes starting from various terminal acetylenes in a Glaser reaction. A simple and practical bis-N-heterocyclic carbene ligand has been introduced as efficient ligands for the Cu-catalyzed Glaser reaction. High product yields were obtained at 100 °C for a variety of substrates including aliphatic and aromatic terminal alkynes and differently substituted terminal alkynes including the highly sterically hindered substrate 2-methoxy ethynylbenzene or 2-trifluoromethyl ethynylbenzene and a series of functional groups, such as trifluoromethyl group, ester group, carboxyl group, and nitrile group. The established protocol is carried out in air under base-free condition and is operationally simple. These research work suggest that bis-N-heterocyclic carbene could also an appealing ligand for Glaser reaction and provide a reference for the preparation of symmetric 1,3-diynes in industrial filed.
Collapse
Affiliation(s)
- Jie Liu
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Yao Zhu
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Jun Luo
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Ziyi Zhu
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Lin Zhao
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Xiaoyan Zeng
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Dongdong Li
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Jun Chen
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Xiaobing Lan
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| |
Collapse
|
5
|
Zhou F, Zhang L, Hu W, Yuan B, Shi JC. A General Catalyst for Buchwald-Hartwig Amination to Prepare Secondary Five-Membered Heteroaryl Amines with Breaking the Base Barrier. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Fan R, Kuai M, Lin D, Bauer F, Fang W. A General C–N Cross-Coupling to Synthesize Heteroaryl Amines Using a Palladacyclic N-Heterocyclic Carbene Precatalyst. Org Lett 2022; 24:8688-8693. [DOI: 10.1021/acs.orglett.2c03580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Ruoqian Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, 210037 Nanjing, China
| | - Meiying Kuai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, 210037 Nanjing, China
| | - Dong Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, 210037 Nanjing, China
| | - Felix Bauer
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, 210037 Nanjing, China
| |
Collapse
|
7
|
Ye Y, Liu Z, Wang Y, Zhang Y, Yin F, He Q, Peng J, Tan K, Shen Y. N-Indole-substituted N-heterocyclic carbene palladium precatalysts: Synthesis, characterization and catalytic cross-couplings. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Wang CA, Zhao W, Li YW, Han Y, Zhang J, Li Q, Nie K, Chang J, Liu FS. Bulky Pd-PEPPSI-Embedded Conjugated Microporous Polymers-Catalyzed Suzuki-Miyaura Cross-Coupling of Aryl Chlorides and Arylboronic Acids. Polym Chem 2022. [DOI: 10.1039/d1py01616d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through post-synthesis method, a type of bulky N-heterocyclic carbenes (NHCs) functionalized conjugated microporous polymers to supported the palladium-based molecular catalyst has been developed. The resulting heterogeneous catalyst Pd-PEPPSI-CMP, showing greater...
Collapse
|
9
|
Zheng DZ, Xiong HG, Song AX, Yao HG, Xu C. Buchwald-Hartwig Amination of Aryl Esters and Chlorides catalyzed by Dianisole-decorated Pd-NHC complex. Org Biomol Chem 2022; 20:2096-2101. [DOI: 10.1039/d1ob02051j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular and generic method for the Buchwald-Hartwig amination reactions of relatively unreactive aryl esters as acyl electrophiles and aryl chlorides as aryl electrophiles is developed, delivering efficient synthesis of...
Collapse
|
10
|
Li DH, Lan XB, Song AX, Rahman MM, Xu C, Huang FD, Szostak R, Szostak M, Liu FS. Buchwald-Hartwig Amination of Coordinating Heterocycles Enabled by Large-but-Flexible Pd-BIAN-NHC Catalysts*. Chemistry 2021; 28:e202103341. [PMID: 34773313 DOI: 10.1002/chem.202103341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 01/21/2023]
Abstract
A new class of large-but-flexible Pd-BIAN-NHC catalysts (BIAN=acenaphthoimidazolylidene, NHC=N-heterocyclic carbene) has been rationally designed to enable the challenging Buchwald-Hartwig amination of coordinating heterocycles. This robust class of BIAN-NHC catalysts permits cross-coupling under practical aerobic conditions of a variety of heterocycles with aryl, alkyl, and heteroarylamines, including historically challenging oxazoles and thiazoles as well as electron-deficient heterocycles containing multiple heteroatoms with BIAN-INon (N,N'-bis(2,6-di(4-heptyl)phenyl)-7H-acenaphtho[1,2-d]imidazol-8-ylidene) as the most effective ligand. Studies on the ligand structure and electronic properties of the carbene center are reported. The study should facilitate the discovery of even more active catalyst systems based on the unique BIAN-NHC scaffold.
Collapse
Affiliation(s)
- Dong-Hui Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| | - Xiao-Bing Lan
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou, Hunan Province 423000, P. R. China
| | - A-Xiang Song
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Chang Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| | - Fei-Dong Huang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw, 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Feng-Shou Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| |
Collapse
|
11
|
Fan GG, Jiang BW, Sang W, Cheng H, Zhang R, Yu BY, Yuan Y, Chen C, Verpoort F. Metal-Free Synthesis of Heteroaryl Amines or Their Hydrochlorides via an External-Base-Free and Solvent-Free C-N Coupling Protocol. J Org Chem 2021; 86:14627-14639. [PMID: 34658240 DOI: 10.1021/acs.joc.1c01467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, a metal-free and solvent-free protocol was developed for the C-N coupling of heteroaryl halides and amines, which afforded numerous heteroaryl amines or their hydrochlorides without any external base. Further investigations elucidated that the basicity of amines and specific interactions derived from the X-ray crystallography analysis of 3j'·HCl played pivotal roles in the reactions. Moreover, this protocol was scalable to gram scales and applicable to drug molecules, which demonstrated its practical value for further applications.
Collapse
Affiliation(s)
- Guang-Gao Fan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Bo-Wen Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Wei Sang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Hua Cheng
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, PR China
| | - Rui Zhang
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, PR China
| | - Bao-Yi Yu
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, Beijing University of Agriculture, Beinong Road 7, Beijing 102206, PR China
| | - Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China.,National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russian Federation.,Ghent University Global Campus, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 21985, Korea
| |
Collapse
|
12
|
Acenaphthene-Based N-Heterocyclic Carbene Metal Complexes: Synthesis and Application in Catalysis. Catalysts 2021. [DOI: 10.3390/catal11080972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
N-Heterocyclic carbene (NHC) ligands have become a privileged structural motif in modern homogenous and heterogeneous catalysis. The last two decades have brought a plethora of structurally and electronically diversified carbene ligands, enabling the development of cutting-edge transformations, especially in the area of carbon-carbon bond formation. Although most of these were accomplished with common imidazolylidene and imidazolinylidene ligands, the most challenging ones were only accessible with the acenaphthylene-derived N-heterocyclic carbene ligands bearing a π-extended system. Their superior σ-donor capabilities with simultaneous ease of modification of the rigid backbone enhance the catalytic activity and stability of their transition metal complexes, which makes BIAN-NHC (BIAN—bis(imino)acenaphthene) ligands an attractive tool for the development of challenging reactions. The present review summarizes synthetic efforts towards BIAN-NHC metal complexes bearing acenaphthylene subunits and their applications in modern catalysis, with special emphasis put on recently developed enantioselective processes.
Collapse
|
13
|
Ouyang JS, Liu S, Pan B, Zhang Y, Liang H, Chen B, He X, Chan WTK, Chan ASC, Sun TY, Wu YD, Qiu L. A Bulky and Electron-Rich N-Heterocyclic Carbene–Palladium Complex (SIPr)Ph2Pd(cin)Cl: Highly Efficient and Versatile for the Buchwald–Hartwig Amination of (Hetero)aryl Chlorides with (Hetero)aryl Amines at Room Temperature. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jia-Sheng Ouyang
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Siqi Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bendu Pan
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Yaqi Zhang
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Hao Liang
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Bin Chen
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Xiaobo He
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Wesley Ting Kwok Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Albert S. C. Chan
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yun-Dong Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Liqin Qiu
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| |
Collapse
|
14
|
Chen C, Liu FS, Szostak M. BIAN-NHC Ligands in Transition-Metal-Catalysis: A Perfect Union of Sterically Encumbered, Electronically Tunable N-Heterocyclic Carbenes? Chemistry 2021; 27:4478-4499. [PMID: 32989914 PMCID: PMC7940599 DOI: 10.1002/chem.202003923] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/24/2020] [Indexed: 12/12/2022]
Abstract
The discovery of NHCs (NHC = N-heterocyclic carbenes) as ancillary ligands in transition-metal-catalysis ranks as one of the most important developments in synthesis and catalysis. It is now well-recognized that the strong σ-donating properties of NHCs along with the ease of scaffold modification and a steric shielding of the N-wingtip substituents around the metal center enable dramatic improvements in catalytic processes, including the discovery of reactions that are not possible using other ancillary ligands. In this context, although the classical NHCs based on imidazolylidene and imidazolinylidene ring systems are now well-established, recently tremendous progress has been made in the development and catalytic applications of BIAN-NHC (BIAN = bis(imino)acenaphthene) class of ligands. The enhanced reactivity of BIAN-NHCs is a direct result of the combination of electronic and steric properties that collectively allow for a major expansion of the scope of catalytic processes that can be accomplished using NHCs. BIAN-NHC ligands take advantage of (1) the stronger σ-donation, (2) lower lying LUMO orbitals, (3) the presence of an extended π-system, (4) the rigid backbone that pushes the N-wingtip substituents closer to the metal center by buttressing effect, thus resulting in a significantly improved control of the catalytic center and enhanced air-stability of BIAN-NHC-metal complexes at low oxidation state. Acenaphthoquinone as a precursor enables facile scaffold modification, including for the first time the high yielding synthesis of unsymmetrical NHCs with unique catalytic properties. Overall, this results in a highly attractive, easily accessible class of ligands that bring major advances and emerge as a leading practical alternative to classical NHCs in various aspects of catalysis, cross-coupling and C-H activation endeavors.
Collapse
Affiliation(s)
- Changpeng Chen
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| | - Feng-Shou Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| |
Collapse
|
15
|
Pan T, Wang Y, Liu FS, Lin H, Zhou Y. Copper(I)–NHCs complexes: Synthesis, characterization and their inhibition against the biofilm formation of Streptococcus mutans. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Lan XB, Ye Z, Yang C, Li W, Liu J, Huang M, Liu Y, Ke Z. Tungsten-Catalyzed Direct N-Alkylation of Anilines with Alcohols. CHEMSUSCHEM 2021; 14:860-865. [PMID: 33350585 DOI: 10.1002/cssc.202002830] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The implementation of non-noble metals mediated chemistry is a major goal in homogeneous catalysis. Borrowing hydrogen/hydrogen autotransfer (BH/HA) reaction, as a straightforward and sustainable synthetic method, has attracted considerable attention in the development of non-noble metal catalysts. Herein, we report a tungsten-catalyzed N-alkylation reaction of anilines with primary alcohols via BH/HA. This phosphine-free W(phen)(CO)4 (phen=1,10-phenthroline) system was demonstrated as a practical and easily accessible in-situ catalysis for a broad range of amines and alcohols (up to 49 examples, including 16 previously undisclosed products). Notably, this tungsten system can tolerate numerous functional groups, especially the challenging substrates with sterically hindered substituents, or heteroatoms. Mechanistic insights based on experimental and computational studies are also provided.
Collapse
Affiliation(s)
- Xiao-Bing Lan
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application School of Chemistry & Biology and Environmental Engineering, Xiangnan University, Chenzhou, Hunan Province, 423000, P. R. China
| | - Zongren Ye
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Chenhui Yang
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Weikang Li
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jiahao Liu
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Ming Huang
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
17
|
Okuda Y, Nagaoka M, Yamamoto T. Bulky
N
‐Heterocyclic‐Carbene‐Coordinated Palladium Catalysts for 1,2‐Addition of Arylboron Compounds to Carbonyl Compounds. ChemCatChem 2020. [DOI: 10.1002/cctc.202001464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuta Okuda
- Department of Materials Science and Engineering Graduate School of Engineering Tokyo Denki University Senju-Asahi-cho 5 Adachi-ku Tokyo 120-8551 Japan
| | - Masahiro Nagaoka
- Organometallic Chemistry Group Sagami Chemical Research Institute Hayakawa 2743-1 Ayase Kanagawa 252-1193 Japan
| | - Tetsuya Yamamoto
- Department of Materials Science and Engineering Graduate School of Engineering Tokyo Denki University Senju-Asahi-cho 5 Adachi-ku Tokyo 120-8551 Japan
- Department of Applied Chemistry School of Engineering Tokyo Denki University Senju-Asahi-cho 5 Adachi-ku Tokyo 120-8551 Japan
| |
Collapse
|
18
|
Yang XW, Li DH, Song AX, Liu FS. "Bulky-Yet-Flexible" α-Diimine Palladium-Catalyzed Reductive Heck Cross-Coupling: Highly Anti-Markovnikov-Selective Hydroarylation of Alkene in Air. J Org Chem 2020; 85:11750-11765. [PMID: 32808522 DOI: 10.1021/acs.joc.0c01509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To pursue a highly regioselective and efficient reductive Heck reaction, a series of moisture- and air-stable α-diimine palladium precatalysts were rationally designed, readily synthesized, and fully characterized. The relationship between the structures of the palladium complexes and the catalytic properties was investigated. It was revealed that the"bulky-yet-flexible"palladium complexes allowed highly anti-Markovnikov-selective hydroarylation of alkenes with (hetero)aryl bromides under aerobic conditions. Further synthetic application of the present protocol could provide rapid and straightforward access to functional and biologically active molecules.
Collapse
Affiliation(s)
- Xu-Wen Yang
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Dong-Hui Li
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - A-Xiang Song
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Feng-Shou Liu
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| |
Collapse
|
19
|
Chernyshev VM, Denisova EA, Eremin DB, Ananikov VP. The key role of R-NHC coupling (R = C, H, heteroatom) and M-NHC bond cleavage in the evolution of M/NHC complexes and formation of catalytically active species. Chem Sci 2020; 11:6957-6977. [PMID: 33133486 PMCID: PMC7553045 DOI: 10.1039/d0sc02629h] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/19/2020] [Indexed: 02/01/2023] Open
Abstract
Complexes of metals with N-heterocyclic carbene ligands (M/NHC) are typically considered the systems of choice in homogeneous catalysis due to their stable metal-ligand framework. However, it becomes obvious that even metal species with a strong M-NHC bond can undergo evolution in catalytic systems, and processes of M-NHC bond cleavage are common for different metals and NHC ligands. This review is focused on the main types of the M-NHC bond cleavage reactions and their impact on activity and stability of M/NHC catalytic systems. For the first time, we consider these processes in terms of NHC-connected and NHC-disconnected active species derived from M/NHC precatalysts and classify them as fundamentally different types of catalysts. Problems of rational catalyst design and sustainability issues are discussed in the context of the two different types of M/NHC catalysis mechanisms.
Collapse
Affiliation(s)
- Victor M Chernyshev
- Platov South-Russian State Polytechnic University (NPI) , Prosveschenya 132 , Novocherkassk , 346428 , Russia
| | - Ekaterina A Denisova
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russian Federation
| | - Dmitry B Eremin
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russian Federation
- The Bridge@USC , University of Southern California , 1002 Childs Way , Los Angeles , California 90089-3502 , USA
| | - Valentine P Ananikov
- Platov South-Russian State Polytechnic University (NPI) , Prosveschenya 132 , Novocherkassk , 346428 , Russia
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russian Federation
| |
Collapse
|
20
|
Lu HY, Shen A, Li YQ, Hu YC, Ni C, Cao YC. N-heterocyclic carbene-palladium-imine complex catalyzed α-arylation of ketones with aryl and heteroaryl chlorides under air atmosphere. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
N-heterocyclic carbene-Pd(II)-2-methyl-4,5-dihydrooxazole complex-catalyzed highly chemoselective mono-amination of dichlorobenzenes. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|