1
|
Nguyen TTT, Shoukry AE, Saraji S. Investigating reactive transport and precipitation patterns of calcium carbonate in fractured porous media. J Colloid Interface Sci 2025; 679:467-480. [PMID: 39490265 DOI: 10.1016/j.jcis.2024.10.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
HYPOTHESIS Understanding calcium carbonate (CaCO3) precipitation in various polymorphs from nanoparticle size (amorphous calcium carbonate) to microparticle size (vaterite, aragonite, dendrite, calcite) is important for practical applications, including carbon geo-storage (e.g., basalt formations), hydrogen storage, groundwater management, and soil stabilization. Our hypothesis suggests that the interplay of Péclet numbers (Pe), Damköhler numbers (Da), and Supersaturation Index (SI) significantly impacts the evolution of CaCO3 precipitation in fractured porous media in terms of mixing patterns, spatiotemporal evolution, crystal morphology, crystal size, and clogging behavior. EXPERIMENTS This study takes a novel approach to explore the colloidal formation and precipitation dynamics of CaCO3 within a fractured microfluidic system. Here, calcium chloride (CaCl2) and sodium bicarbonate (NaHCO3) solutions were injected and reacted under varied Pe (0-11), Da (0-1), and SI (2-5). FINDINGS Our analysis revealed distinct precipitation patterns and mixing types, such as transverse, longitudinal, and incomplete mixing, providing insights into the behavior in fractured porous media. We systematically analyzed the temporal and spatial evolution of precipitation, demonstrating how Pe, Da, and SI dictate precipitation rates and spatial distribution. Additionally, the study uncovered a range of CaCO3 polymorphic forms, illustrating their evolution and coexistence. Morphological changes and crystal sizes were examined to decode nucleation and growth processes. Significantly, our findings highlight the relationship between precipitation and clogging in the fractured medium, offering a deeper understanding of reactive transport in complex porous environments. These insights are crucial for enhancing carbon containment security and storage efficiency in underground formations, improving groundwater remediation techniques, and developing novel construction materials through controlled precipitation processes.
Collapse
Affiliation(s)
- Trang T T Nguyen
- Subsurface Energy and Digital Innovation Center, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Aktham E Shoukry
- Subsurface Energy and Digital Innovation Center, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Soheil Saraji
- Subsurface Energy and Digital Innovation Center, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
2
|
Merle M, Lagarrigue P, Wang S, Duployer B, Tenailleau C, Müller WEG, Poquillon D, Combes C, Soulié J. Freeze-Cast Composites of Alginate/Pyrophosphate-Stabilized Amorphous Calcium Carbonate: From the Nanoscale Structuration to the Macroscopic Properties. ACS Biomater Sci Eng 2025. [PMID: 39772404 DOI: 10.1021/acsbiomaterials.4c01396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Pyrophosphate-stabilized amorphous calcium carbonates (PyACC) are promising compounds for bone repair due to their ability to release calcium, carbonate, and phosphate ions following pyrophosphate hydrolysis. However, shaping these metastable and brittle materials using conventional methods remains a challenge, especially in the form of macroporous scaffolds, yet essential to promote cell colonization. To overcome these limitations, this article describes for the first time the design and multiscale characterization of freeze-cast alginate (Alg)-PyACC nanocomposite scaffolds. The study initially focused on the synthesis of Alg-PyACC powder through in situ coprecipitation. The presence of alginate chains in the vicinity of the PyACC was shown to affect both the powder reactivity and the release of calcium ions when placed in water (XRD, chemical titrations). In vitro cellular assays confirmed the biocompatibility of Alg-PyACC powder, supporting its use as a filler in scaffolds for bone substitutes. In a second step, the freeze-casting process was carried out using these precursor powders with varying rates of inorganic fillers. The resulting scaffolds were compared in terms of pore size and gradient (via SEM, X-ray microtomography, and mercury intrusion porosimetry). All scaffolds exhibited a pore size gradient oriented along the solidification axis, featuring unidirectional, lamellar, and interconnected pores. Interestingly, we found that the pore size and wall thickness could be controlled by the filler rate. This effect was attributed to the in situ cross-linking of alginate chains by released Ca2+ ions from the fillers, which increased viscosity, affecting temperature-driven segregation during the freezing step. Different multiscale organizations of the porosity and spatial distribution of fillers (FEG-SEM) were correlated with changes in the scaffold mechanical properties (tested via uniaxial compression). With such tunable porous and mechanical properties, Alg-PyACC composite scaffolds present attractive opportunities for specific bone substitute applications.
Collapse
Affiliation(s)
- Marion Merle
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, Toulouse 31030, France
| | - Prescillia Lagarrigue
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, Toulouse 31030, France
| | - Shunfeng Wang
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz 55128, Germany
| | - Benjamin Duployer
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, Toulouse 31062, France
| | - Christophe Tenailleau
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, Toulouse 31062, France
| | - Werner E G Müller
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz 55128, Germany
| | - Dominique Poquillon
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, Toulouse 31030, France
| | - Christèle Combes
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, Toulouse 31030, France
| | - Jérémy Soulié
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, Toulouse 31030, France
| |
Collapse
|
3
|
Boostani HR, Hosseini SM, Hardie AG. Mechanisms of Cd immobilization in contaminated calcareous soils with different textural classes treated by acid- and base-modified biochars. Sci Rep 2024; 14:24614. [PMID: 39427078 PMCID: PMC11490643 DOI: 10.1038/s41598-024-76229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Acid or base modification of biochars has shown promise for enhancing the immobilization of potentially toxic elements (PTEs) such as cadmium (Cd) in contaminated soils. However, limited information is available on the interaction between soil textural classes and modified biochar application for Cd stabilization in contaminated calcareous soils. Therefore, the objective of the study was to examine the extent of Cd immobilization in contaminated calcareous soils with diverse textural classes, utilizing both acid (HNO3) and alkali (NaOH) modified and unmodified biochars derived from sheep manure and rice husk residues. The modified or unmodified biochars were applied at a rate of 2% (w/w) to Cd-contaminated silty clay loam, loam, and sandy loam soils, followed by a 90-day incubation at field water capacity. Sequential extraction and EDTA-release kinetics studies were used to assess the effect of the treatments on the extent and mechanisms of Cd immobilization. Among the treatments, acid-modified manure biochar was most effective at reducing water soluble and exchangeable Cd fractions (-20.5%), by converting them into metal oxide and organic matter bound fractions. This effectiveness was primarily attributed to the significant increase in surface oxygen functional groups in the acid-modified biochar which could promote Cd complexation. However, the acid-modified manure biochar released more immobilized Cd during EDTA extraction than the base-modified manure biochar, suggesting that EDTA extraction of R-O-Cd complexes was easier than extracting Cd associated with insoluble compounds. This difference was likely due to the acidic pH and lower ash content of the acid-modified biochars compared to the base-modified manure biochars. Additionally, the extent of Cd immobilization was lower in sandy loam soil, highlighting the importance of immobilizing Cd in light-textured soils to prevent its transfer to organisms.
Collapse
Affiliation(s)
- Hamid Reza Boostani
- Department of Soil Science, College of Agriculture and Natural Resources of Darab, Shiraz University, Darab, Iran.
| | - Seyed Mashaallah Hosseini
- Soil and Water Research Department, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran.
| | - Ailsa G Hardie
- Department of Soil Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
4
|
Chen Z, Wang X, Li Z, Ying H, Yang W. Influence of Different Ions on Pulse Electrodeposition of CaCO 3 Scales in the Simulated Seawater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14641-14651. [PMID: 38962868 DOI: 10.1021/acs.langmuir.4c01596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
In the circulating water system of coastal power plants, various kinds of ions have a great influence on the formation and growth of CaCO3 scales. This paper focuses on investigating the influence of existing ions on the pulse electrodeposition behaviors of CaCO3 scales. Different concentrations of ions, such as Fe3+, Mg2+, PO43- and SiO32-, are introduced to simulate the actual seawater environment, and their influence on the CaCO3 scale deposition behaviors is assessed by linear sweep voltammetry, chronoamperometry, and electrochemical impedance spectroscopy tests. The surface coverage of the CaCO3 scale layer is evaluated through the residual current density and polarization resistance values, while the crystal structure and surface compactness of the layer are confirmed by the scanning electron microscope and X-ray diffractometer tests. Results indicate that high concentrations of Mg2+, Fe3+, and PO43- ions have the most significant inhibitory effect on the pulse electrodeposition of CaCO3 scales, among which the inhibition effect of Mg2+ ions is mainly reflected in the change of crystal morphology of CaCO3, that is, the crystallization growth process is inhibited. The inhibition effect of PO43- ions is mainly reflected in the gradually reduced coverage and density of CaCO3 crystals on the electrode surface, suggesting that the crystallization nucleation process is inhibited, while Fe3+ ions have a certain inhibition effect on both the crystallization nucleation and growth processes. Furthermore, lower concentrations of SiO32- ions also display a significant inhibition effect on the crystallization nucleation and growth process, and the inhibition effect weakens with increased concentration. This study provides a theoretical basis for exploring the removal of ions in the industrial water softening field.
Collapse
Affiliation(s)
- Zhihao Chen
- School of Chemistry and Molecule Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiao Wang
- School of Chemistry and Molecule Engineering, Nanjing Tech University, Nanjing 211816, China
- Nantong Power Plant, Huaneng International Power Jiangsu Energy Development Co., Ltd., Nantong 226003, China
| | - Zhenyu Li
- School of Chemistry and Molecule Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- National Engineering Technique Research Center for Biotechnology, Nanjing 211816, China
| | - Wenzhong Yang
- School of Chemistry and Molecule Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Kim DH, Min KH, Pack SP. Efficient Bioactive Surface Coatings with Calcium Minerals: Step-Wise Biomimetic Transformation of Vaterite to Carbonated Apatite. Biomimetics (Basel) 2024; 9:402. [PMID: 39056843 PMCID: PMC11274778 DOI: 10.3390/biomimetics9070402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Carbonated apatite (CAp), known as the main mineral that makes up human bone, can be utilized in conjunction with scaffolds to increase their bioactivity. Various methods (e.g., co-precipitation, hydrothermal, and biomimetic coatings) have been used to provide bioactivity by forming CAp on surfaces similar to bone minerals. Among them, the use of simulated body fluids (SBF) is the most popular biomimetic method for generating CAp, as it can provide a mimetic environment. However, coating methods using SBF require at least a week for CAp formation. The long time it takes to coat biomimetic scaffolds is a point of improvement in a field that requires rapid regeneration. Here, we report a step-wise biomimetic coating method to form CAp using calcium carbonate vaterite (CCV) as a precursor. We can manufacture CCV-transformed CAp (V-CAp) on the surface in 4 h at least by immersing CCV in a phosphate solution. The V-CAp deposited surface was analyzed using scanning electron microscopy (SEM) images according to the type of phosphate solutions to optimize the reaction conditions. X-ray diffraction (XRD) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) analysis validated the conversion of CCV to V-CAp on surfaces. In addition, the bioactivity of V-CAp coating was analyzed by the proliferation and differentiation of osteoblasts in vitro. V-CAp showed 2.3-folded higher cell proliferation and 1.4-fold higher ALP activity than the glass surface. The step-wise method of CCV-transformed CAp is a biocompatible method that allows the environment of bone regeneration and has the potential to confer bioactivity to biomaterial surfaces, such as imparting bioactivity to non-bioactive metal or scaffold surfaces within one day. It can rapidly form carbonated apatite, which can greatly improve time efficiency in research and industrial applications.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea;
| | - Ki Ha Min
- Institute of Industrial Technology, Korea University, Sejong 30019, Republic of Korea;
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea;
| |
Collapse
|
6
|
Wang J, Zhang L, Wang K. Bioactive ceramic-based materials: beneficial properties and potential applications in dental repair and regeneration. Regen Med 2024; 19:257-278. [PMID: 39118532 PMCID: PMC11321270 DOI: 10.1080/17460751.2024.2343555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/12/2024] [Indexed: 08/10/2024] Open
Abstract
Bioactive ceramics, primarily consisting of bioactive glasses, glass-ceramics, calcium orthophosphate ceramics, calcium silicate ceramics and calcium carbonate ceramics, have received great attention in the past decades given their biocompatible nature and excellent bioactivity in stimulating cell proliferation, differentiation and tissue regeneration. Recent studies have tried to combine bioactive ceramics with bioactive ions, polymers, bioactive proteins and other chemicals to improve their mechanical and biological properties, thus rendering them more valid in tissue engineering scaffolds. This review presents the beneficial properties and potential applications of bioactive ceramic-based materials in dentistry, particularly in the repair and regeneration of dental hard tissue, pulp-dentin complex, periodontal tissue and bone tissue. Moreover, greater insights into the mechanisms of bioactive ceramics and the development of ceramic-based materials are provided.
Collapse
Affiliation(s)
- Jiale Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3rd of Renmin South Road, Chengdu, 610041, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3rd of Renmin South Road, Chengdu, 610041, China
| | - Kun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3rd of Renmin South Road, Chengdu, 610041, China
| |
Collapse
|
7
|
Guerrero JD, Arias ER, Gutierrez LB. Enhancing copper and lead adsorption in water by in-situ generation of calcium carbonate on alginate/chitosan biocomposite surfaces. Int J Biol Macromol 2024; 266:131110. [PMID: 38522694 DOI: 10.1016/j.ijbiomac.2024.131110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Chitosan (CS) and sodium alginate (SA)-based biocomposites (CSA) were prepared with the in-situ generation of Calcium Carbonate (CSAX_Ca) through a simple, straightforward, economical, and eco-friendly procedure. Different drying conditions (X) were tested to achieve suitable structural and surface characteristics to enhance adsorption capacity: freeze-dried (L), vacuum-dried with methanol (M), and freeze-dried + vacuum-dried with methanol (LM). Temperature and adsorbent dosage effects on the adsorption capacity of Cu2+ or Pb2+ were examined. Results showed that the higher-yielding biocomposite (CSALM_Ca) exhibited rapid adsorption and good diffusion properties, achieving removal above 90 % within contaminant initial concentration ranges of 10-100 mg/L. At 35 °C, a pseudo-second-order kinetic and the Langmuir model effectively described kinetics and isotherms, revealing maximum adsorption (qe, max) of 429 mgCu2+/L and 1742 mgPb2+/g. Characterization through FTIR, XRD, and SEM of the as-prepared adsorbents confirmed the presence of CaCO3 in vaterite and calcite forms and the influence of drying conditions on the material morphology. Post-adsorption material characterization, in combination with adsorption findings, revealed chemisorption processes involving Ca2+ ion exchange for Cu2+ or Pb2+, resulting in surface-insoluble compounds. The best-performing material showed that after three reuse cycles, the removal of Cu2+ and Pb2+ decreased to 75 % and 62 %, respectively.
Collapse
Affiliation(s)
- Jhonnys D Guerrero
- Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE, (FIQ, UNL-CONICET), Santiago del Estero 2829, S3000 Santa Fe, Argentina
| | - Eduardo Rada Arias
- Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE, (FIQ, UNL-CONICET), Santiago del Estero 2829, S3000 Santa Fe, Argentina
| | - Laura B Gutierrez
- Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE, (FIQ, UNL-CONICET), Santiago del Estero 2829, S3000 Santa Fe, Argentina.
| |
Collapse
|
8
|
Raiseliene R, Linkaite G, Zarkov A, Kareiva A, Grigoraviciute I. Large-Scale Green Synthesis of Magnesium Whitlockite from Environmentally Benign Precursor. MATERIALS (BASEL, SWITZERLAND) 2024; 17:788. [PMID: 38399039 PMCID: PMC10890023 DOI: 10.3390/ma17040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Magnesium whitlockite (Mg-WH) powders were synthesized with remarkable efficiency via the dissolution-precipitation method by employing an environmentally benign precursor, gypsum. Under optimized conditions, each 5.00 g of initial gypsum yielded an impressive amount of 3.00 g (89% yield) of Mg-WH in a single batch. Remarkably, no XRD peaks attributable to impurity phases were observed, indicating the single-phase nature of the sample. FT-IR analysis confirmed the presence of the PO43- and HPO42- groups in the obtained Mg-WH phase. The SEM-EDX results confirmed that Mg-WH crystals with homogeneous Ca, Mg, P, and O distributions were obtained. In previously published research papers, the synthesis of Mg-WH has been consistently described as a highly intricate process due to material formation within a narrow pH and temperature range. Our proposed synthesis method is particularly compelling as it eliminates the need for meticulous monitoring, presenting a notable improvement in the quest for a more convenient and efficient Mg-WH synthesis. The proposed procedure not only emphasizes the effectiveness of the process, but also highlights its potential to meet significant demands, providing a reliable solution for large-scale production needs in various promising applications.
Collapse
Affiliation(s)
- Ruta Raiseliene
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Greta Linkaite
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Aleksej Zarkov
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Aivaras Kareiva
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Inga Grigoraviciute
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| |
Collapse
|
9
|
Xu J, Balhoff MT. Emergence of Power-Law Particle Size Distribution in Microfluidic Calcium Carbonate Precipitation: An Extended Yule Process with a Ripening Effect. PHYSICAL REVIEW LETTERS 2023; 131:034001. [PMID: 37540865 DOI: 10.1103/physrevlett.131.034001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/12/2023] [Accepted: 06/28/2023] [Indexed: 08/06/2023]
Abstract
Precipitation of calcium carbonate in bulk solutions is well known to result in a bell-shaped or bimodal particle size distribution. However, it is unclear how the distribution behaves if precipitation occurs in a small, confined volume. In this Letter, we conduct microfluidic experiments where sodium carbonate and calcium chloride solutions are continuously injected into a microchannel to precipitate calcium carbonate particles. Results show that, regardless of the variations in reagent concentrations, mixing schemes, flow rates, and precipitation time, sizes of precipitated particles in the channel are power law distributed, with an exponent of 1.4. The data are described by an extended Yule process with the introduction of a ripening term. Since the Yule process is a general mechanism for power law generation, the extended Yule process proposed here provides a general model for systems where growth and ripening simultaneously present.
Collapse
Affiliation(s)
- Jianping Xu
- Hildebrand Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Subsurface Energy and the Environment, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Matthew T Balhoff
- Hildebrand Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Subsurface Energy and the Environment, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
10
|
Mahadevan G, Brahma RK, Kini RM, Valiyaveettil S. Purification of Intramineral Peptides from Cuttlebones and In Vitro Activity in CaCO 3 Biomineralization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7249-7257. [PMID: 37201193 DOI: 10.1021/acs.langmuir.2c03433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Living organisms develop functional hard structures such as teeth, bones, and shells from calcium salts through mineralization for managing vital functions to sustain life. However, the exact mechanism or role of biomolecules such as proteins and peptides in the biomineralization process to form defect-free hierarchical structures in nature is poorly understood. In this study, we have extracted, purified, and characterized five major peptides (CBP1-CBP5) from the soluble organic materials (SOMs) of cuttlefish bone (CB) and used for the in vitro mineralization of calcium carbonate crystals. The SOMs induced nucleation of the calcite phase at low concentrations and the vaterite phase at high concentrations. The purified peptides nucleated calcite crystals and enhanced aggregation under laboratory conditions. Among five peptides, only CBP2 and CBP3 showed concentration-dependent nucleation, aggregation, and morphological changes of the calcite crystals within 12 h. Circular dichroism studies showed that the peptides CBP2 and CBP3 are in alpha helix and β-sheet conformation, respectively, in solution. CBP1 and CBP4 and CBP5 are in random coil and β-sheet conformation, respectively. In addition, the peptides showed different sizes in solution in the absence (∼27 nm, low aggregation) and presence (∼118 nm, high aggregation) of calcium ions. Aragonite crystals with needle-type morphologies were nucleated in the presence of Mg2+ ions in solution. Overall, exploring the activities of such intramineral peptides from CB help to unravel the mechanism of calcium salt deposition in nature.
Collapse
Affiliation(s)
- Gomathi Mahadevan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Rajeev Kungur Brahma
- Department of Biological Sciences, 14 science drive 4, National University of Singapore, Singapore 117543, Singapore
| | - R Manjunatha Kini
- Department of Biological Sciences, 14 science drive 4, National University of Singapore, Singapore 117543, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
11
|
Guo F, Wang E, Yang Y, Mao Y, Liu C, Bu W, Li P, Zhao L, Jin Q, Liu B, Wang S, You H, Long Y, Zhou N, Guo W. A natural biomineral for enhancing the biomineralization and cell response of 3D printed polylactic acid bone scaffolds. Int J Biol Macromol 2023; 242:124728. [PMID: 37150372 DOI: 10.1016/j.ijbiomac.2023.124728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
Polylactic acid (PLA) has been extensively used as a bone scaffold material, but it still faces many problems including low biomineralization ability, weak cell response, low mechanical properties, etc. In this study, we proposed to utilize the distinctive physical, chemical and biological properties of a natural biomineral with organic matrix, pearl powder, to enhance the overall performance of PLA bone scaffolds. Porous PLA/pearl composite bone scaffolds were prepared using fused deposition modeling (FDM) 3D printing technology, and their comprehensive performance was investigated. Macro- and micro- morphological observation by optical camera and scanning electron microscopy (SEM) showed the 3D printed scaffolds have interconnected and ordered periodic porous structures. Phase analysis by X-ray diffraction (XRD) indicated pearl powder was well composited with PLA without impurity formation during the melt extrusion process. The mechanical test results indicated the tensile and compressive strength of PLA/pearl composite scaffolds with 10 % pearl powder content yielded the highest values, which were 15.5 % and 21.8 % greater than pure PLA, respectively. The water contact angle and water absorption tests indicated that PLA/pearl showed better hydrophilicity than PLA due to the presence of polar groups in the organic matrix of the pearl powder. The results of the simulated body fluid (SBF) soaking revealed that the addition of pearl powder effectively enhanced the formation and deposition of apatite, which was attributed to the release of Ca2+ from the dissolution of pearl powder. The cell culture of bone marrow mesenchymal stem cells (BMSCs) indicated that PLA/pearl scaffolds showed better cell proliferation and osteogenic differentiation than PLA due to the stimulation of the biological organic matrix in pearl powder. These outcomes signify the potential of pearl powder as a natural biomineral containing bio-signal factors to improve the mechanical and biological properties of polymers for better bone tissue engineering application.
Collapse
Affiliation(s)
- Feng Guo
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning 530021, China
| | - Enyu Wang
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Yanjuan Yang
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Yufeng Mao
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Chao Liu
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Wenlang Bu
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Ping Li
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Lei Zhao
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Qingxin Jin
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Bin Liu
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Shan Wang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Hui You
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Yu Long
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Nuo Zhou
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning 530021, China.
| | - Wang Guo
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China.
| |
Collapse
|
12
|
Toufik E, Noukrati H, Rey C, Marsan O, Charvillat C, Cazalbou S, Ben Youcef H, Barroug A, Combes C. On the physicochemical properties, setting chemical reaction, and in vitro bioactivity of aragonite–chitosan composite cement as a bone substitute. NEW J CHEM 2023. [DOI: 10.1039/d2nj05515e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A chitosan gel additive modulates the initial vaterite dissolution–recrystallisation in injectable aragonite-based composite cement and promotes its in vitro bioactivity.
Collapse
Affiliation(s)
- E. Toufik
- Mohammed VI Polytechnic University, HTMR-Lab, 43150, Benguerir, Morocco
- Cadi Ayyad University, Faculty of Sciences Semlalia, SCIMATOP-PIB, 40000, Marrakech, Morocco
- CIRIMAT, Université de Toulouse, CNRS, ENSIACET, 4 allée EmileMonso, 31030 Toulouse Cedex 4, France
| | - H. Noukrati
- Mohammed VI Polytechnic University, ISSB-P, 43150, Benguerir, Morocco
| | - C. Rey
- CIRIMAT, Université de Toulouse, CNRS, ENSIACET, 4 allée EmileMonso, 31030 Toulouse Cedex 4, France
| | - O. Marsan
- CIRIMAT, Université de Toulouse, CNRS, ENSIACET, 4 allée EmileMonso, 31030 Toulouse Cedex 4, France
| | - C. Charvillat
- CIRIMAT, Université de Toulouse, CNRS, ENSIACET, 4 allée EmileMonso, 31030 Toulouse Cedex 4, France
| | - S. Cazalbou
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 31062, Toulouse, France
| | - H. Ben Youcef
- Mohammed VI Polytechnic University, HTMR-Lab, 43150, Benguerir, Morocco
| | - A. Barroug
- Cadi Ayyad University, Faculty of Sciences Semlalia, SCIMATOP-PIB, 40000, Marrakech, Morocco
- Mohammed VI Polytechnic University, ISSB-P, 43150, Benguerir, Morocco
| | - C. Combes
- CIRIMAT, Université de Toulouse, CNRS, ENSIACET, 4 allée EmileMonso, 31030 Toulouse Cedex 4, France
| |
Collapse
|
13
|
Xu J, Balhoff MT. Dissolution-After-Precipitation (DAP): a simple microfluidic approach for studying carbonate rock dissolution and multiphase reactive transport mechanisms. LAB ON A CHIP 2022; 22:4205-4223. [PMID: 36172900 DOI: 10.1039/d2lc00426g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We propose a simple microfluidic approach: Dissolution-After-Precipitation (DAP), to investigate regimes of carbonate rock dissolution and multiphase reactive transport. In this method, a carbonate porous medium is created in a glass microchannel via calcium carbonate precipitation, after which an acid is injected into the channel to dissolve the precipitated porous medium. Utilizing the DAP method, for the first time we realized all five classical single-phase carbonate rock dissolution regimes (uniform, compact, conical, wormhole, ramified wormholes) in a microfluidic chip. The results are validated against the established theoretical dissolution diagram, which shows good agreement. Detailed analysis of these single-phase dissolutions suggests that the heterogeneity of the porous medium may significantly impact how the dissolution patterns evolve over time. Furthermore, DAP is utilized to investigate multiphase dissolution. As examples we tested the cases of an oleic phase (tetradecane) and a gaseous phase (CO2). Results show that the presence of a nonaqueous phase in pore spaces induces the formation of wormholes despite weak advection, and these wormholes ultimately become pathways for nonaqueous phase transport. However, the transport of tetradecane in the wormhole is very slow, causing acid breakthrough into neighboring regions. This mechanism enhances lateral connectivity between wormholes and may lead to a wormhole network. In contrast, CO2 moves rapidly and continuously seeks to enter a widening wormhole from a narrower wormhole or the porous regions, generating phenomena such as ganglia redistribution and counterflow (flow of gas opposite to acid flow). Extensive independent experiments are conducted to verify the reproducibility of the observed phenomena/mechanisms and further analyze them. Real-time monitoring of fluid pressure drop during dissolution is implemented to complement microscopy image analysis. Our method can be implemented repeatedly on the same chip, which offers a convenient and inexpensive option to study pore-scale reactive transport mechanisms.
Collapse
Affiliation(s)
- Jianping Xu
- Hildebrand Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.
- Center for Subsurface Energy and the Environment, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Matthew T Balhoff
- Hildebrand Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.
- Center for Subsurface Energy and the Environment, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
14
|
Paul P, Parbat S, Aditya G. Phosphate ion removal from aqueous solution using snail shell dust: biosorption potential of waste shells of edible snails. RSC Adv 2022; 12:30011-30023. [PMID: 36329945 PMCID: PMC9595186 DOI: 10.1039/d2ra03852h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
The freshwater snails, Filopaludina bengalensis and Pila globosa are widely used for human consumption and as a feed in aquaculture in India and Bangladesh. The generation of shells as a waste product following meat extraction from the live snails incites their utilisation as a potential biomaterial. Shell dust was prepared from the dried shells of F. bengalensis (FSD) and P. globosa (PSD) and employed for phosphate adsorption from aqueous solutions. Batch adsorption experiments were performed to examine the effects of various experimental conditions, such as biosorbent dose, agitation speed, temperature, contact time, pH, initial concentration of phosphate ions, and presence of co-existing ions. SEM, EDS, ICP-OES, FTIR, and XRD results indicated that phosphate ions were adsorbed onto the surface of shell dust particles. The experimental data fitted with the Langmuir isotherm with a maximum adsorption capacity of 62.50 and 66.66 mg g-1 for FSD and PSD. The pseudo-second order kinetic model was well fitted, indicating the chemical adsorption process, and the thermodynamic parameters indicated that the adsorption mechanism of phosphate was spontaneous, feasible, and endothermic. Therefore, the results have established the potentiality of the waste shells of edible snails to be used as an eco-friendly and low-cost biosorbent for phosphate removal from wastewater.
Collapse
Affiliation(s)
- Pranesh Paul
- Department of Zoology, University of Calcutta35, Ballygunge Circular RoadKolkata – 700019India+91 3324614849+91 3324615445 extn 284
| | - Suprio Parbat
- Department of Zoology, University of Calcutta35, Ballygunge Circular RoadKolkata – 700019India+91 3324614849+91 3324615445 extn 284
| | - Gautam Aditya
- Department of Zoology, University of Calcutta35, Ballygunge Circular RoadKolkata – 700019India+91 3324614849+91 3324615445 extn 284
| |
Collapse
|
15
|
Effects of Mg ions on the structural transformation of calcium carbonate and their implication for the tailor-synthesized carbon mineralization process. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Unger RE, Stojanovic S, Besch L, Alkildani S, Schröder R, Jung O, Bogram C, Görke O, Najman S, Tremel W, Barbeck M. In Vivo Biocompatibility Investigation of an Injectable Calcium Carbonate (Vaterite) as a Bone Substitute including Compositional Analysis via SEM-EDX Technology. Int J Mol Sci 2022; 23:1196. [PMID: 35163120 PMCID: PMC8835873 DOI: 10.3390/ijms23031196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/30/2022] Open
Abstract
Injectable bone substitutes (IBS) are increasingly being used in the fields of orthopedics and maxillofacial/oral surgery. The rheological properties of IBS allow for proper and less invasive filling of bony defects. Vaterite is the most unstable crystalline polymorph of calcium carbonate and is known to be able to transform into hydroxyapatite upon contact with an organic fluid (e.g., interstitial body fluid). Two different concentrations of hydrogels based on poly(ethylene glycol)-acetal-dimethacrylat (PEG-a-DMA), i.e., 8% (w/v) (VH-A) or 10% (w/v) (VH-B), were combined with vaterite nanoparticles and implanted in subcutaneous pockets of BALB/c mice for 15 and 30 days. Explants were prepared for histochemical staining and immunohistochemical detection methods to determine macrophage polarization, and energy-dispersive X-ray analysis (EDX) to analyze elemental composition was used for the analysis. The histopathological analysis revealed a comparable moderate tissue reaction to the hydrogels mainly involving macrophages. Moreover, the hydrogels underwent a slow cellular infiltration, revealing a different degradation behavior compared to other IBS. The immunohistochemical detection showed that M1 macrophages were mainly found at the material surfaces being involved in the cell-mediated degradation and tissue integration, while M2 macrophages were predominantly found within the reactive connective tissue. Furthermore, the histomorphometrical analysis revealed balanced numbers of pro- and anti-inflammatory macrophages, demonstrating that both hydrogels are favorable materials for bone tissue regeneration. Finally, the EDX analysis showed a stepwise transformation of the vaterite particle into hydroxyapatite. Overall, the results of the present study demonstrate that hydrogels including nano-vaterite particles are biocompatible and suitable for bone tissue regeneration applications.
Collapse
Affiliation(s)
- Ronald E. Unger
- Repair-Lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Sanja Stojanovic
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18108 Niš, Serbia; (S.S.); (S.N.)
- Scientific Research Center for Biomedicine, Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18108 Niš, Serbia
| | - Laura Besch
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany; (L.B.); (R.S.); (W.T.)
| | - Said Alkildani
- BerlinAnalytix GmbH, Ullsteinstrasse 108, 12109 Berlin, Germany; (S.A.); (C.B.)
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Romina Schröder
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany; (L.B.); (R.S.); (W.T.)
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Caroline Bogram
- BerlinAnalytix GmbH, Ullsteinstrasse 108, 12109 Berlin, Germany; (S.A.); (C.B.)
| | - Oliver Görke
- Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technical University Berlin, Hardenbergstr. 40, 10623 Berlin, Germany;
| | - Stevo Najman
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18108 Niš, Serbia; (S.S.); (S.N.)
- Scientific Research Center for Biomedicine, Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18108 Niš, Serbia
| | - Wolfgang Tremel
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany; (L.B.); (R.S.); (W.T.)
| | - Mike Barbeck
- Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technical University Berlin, Hardenbergstr. 40, 10623 Berlin, Germany;
| |
Collapse
|
17
|
Merle M, Soulié J, Sassoye C, Roblin P, Rey C, Bonhomme C, Combes C. Pyrophosphate-stabilised amorphous calcium carbonate for bone substitution: toward a doping-dependent cluster-based model. CrystEngComm 2022. [DOI: 10.1039/d2ce00936f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multiscale and multitool advanced characterisation of pyrophosphate-stabilised amorphous calcium carbonates allowed building a cluster-based model paving the way for tunable biomaterials.
Collapse
Affiliation(s)
- Marion Merle
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| | - Jérémy Soulié
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| | | | - Pierre Roblin
- LGC, Université de Toulouse, CNRS, 118 Route de Narbonne Bâtiment 2R1, Toulouse, France
| | - Christian Rey
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| | | | - Christèle Combes
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| |
Collapse
|
18
|
Czaplicka N, Konopacka-Łyskawa D, Lewandowska P, Łapiński M, Bray R. Influence of selected CO2 absorption promoters on the characteristics of calcium carbonate particles produced by carbonation of the post-distillation liquid from the Solvay process. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.06.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Yoo KH, Kim YI, Yoon SY. Physicochemical and Biological Properties of Mg-Doped Calcium Silicate Endodontic Cement. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1843. [PMID: 33917786 PMCID: PMC8068188 DOI: 10.3390/ma14081843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/31/2022]
Abstract
Calcium silicate-based cement has been widely used for endodontic repair. However, it has a long setting time and needs to shorten setting time. This study investigated the effects of magnesium (Mg) ion on the setting reaction, mechanical properties, and biological properties of calcium silicate cement (CSC). Sol-gel route was used to synthesize Mg ion-doped calcium silicate cement. Synthesized cement was formulated with the addition of different contents of Mg ion, according to 0, 1, 3, 5 mol% of Mg ion-doped calcium silicate. The synthesized cements were characterized with X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). We also evaluated the physicochemical and biological properties of cement, such as the setting time, compressive strength, micro-hardness, simulated body fluid (SBF) immersion, cytotoxicity, and cell differentiation tests. As a result, the Mg ion improves the hydration properties of calcium silicate cement, and the setting time is reduced by increasing the amounts of Mg ion. However, the mechanical properties deteriorated with increasing Mg ion, and 1 and 3 mol% Mg-doped calcium silicate had appropriate mechanical properties. Also, the results of biological properties such as cytotoxicity, ALP activity, and ARS staining improved with Mg ion. Consequently, the optimal condition is 3 mol% of Mg ion-doped calcium silicate (3%Mg-CSC).
Collapse
Affiliation(s)
- Kyung-Hyeon Yoo
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Korea;
| | - Yong-Il Kim
- Department of Orthodontics, Dental Research Institute, Pusan National University, Yangsan 50612, Korea
| | - Seog-Young Yoon
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
20
|
Cestari F, Agostinacchio F, Galotta A, Chemello G, Motta A, M. Sglavo V. Nano-Hydroxyapatite Derived from Biogenic and Bioinspired Calcium Carbonates: Synthesis and In Vitro Bioactivity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:264. [PMID: 33498482 PMCID: PMC7909533 DOI: 10.3390/nano11020264] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/02/2023]
Abstract
Biogenic calcium carbonates naturally contain ions that can be beneficial for bone regeneration and therefore are attractive resources for the production of bioactive calcium phosphates. In the present work, cuttlefish bones, mussel shells, chicken eggshells and bioinspired amorphous calcium carbonate were used to synthesize hydroxyapatite nano-powders which were consolidated into cylindrical pellets by uniaxial pressing and sintering 800-1100 °C. Mineralogical, structural and chemical composition were studied by SEM, XRD, inductively coupled plasma/optical emission spectroscopy (ICP/OES). The results show that the phase composition of the sintered materials depends on the Ca/P molar ratio and on the specific CaCO3 source, very likely associated with the presence of some doping elements like Mg2+ in eggshell and Sr2+ in cuttlebone. Different CaCO3 sources also resulted in variable densification and sintering temperature. Preliminary in vitro tests were carried out (by the LDH assay) and they did not reveal any cytotoxic effects, while good cell adhesion and proliferation was observed at day 1, 3 and 5 after seeding through confocal microscopy. Among the different tested materials, those derived from eggshells and sintered at 900 °C promoted the best cell adhesion pattern, while those from cuttlebone and amorphous calcium carbonate showed round-shaped cells and poorer cell-to-cell interconnection.
Collapse
Affiliation(s)
- Francesca Cestari
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (A.G.); (G.C.); (A.M.); (V.M.S.)
| | - Francesca Agostinacchio
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (A.G.); (G.C.); (A.M.); (V.M.S.)
- BIOTech Research Center, and European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, University of Trento, via delle Regole 101, 38123 Trento, Italy
| | - Anna Galotta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (A.G.); (G.C.); (A.M.); (V.M.S.)
| | - Giovanni Chemello
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (A.G.); (G.C.); (A.M.); (V.M.S.)
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (A.G.); (G.C.); (A.M.); (V.M.S.)
- BIOTech Research Center, and European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, University of Trento, via delle Regole 101, 38123 Trento, Italy
- INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| | - Vincenzo M. Sglavo
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (A.G.); (G.C.); (A.M.); (V.M.S.)
- INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
21
|
Wang H, Wang Y, Zhao Q, Zhou X, Zou H, Song Y, Sheng Y. The preparation, structure and luminescent properties of Mg–CaCO 3:Eu 3+ phosphors. CrystEngComm 2021. [DOI: 10.1039/d0ce01737j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Morphology and luminescence properties of Mg–CaCO3:Eu3+ phosphors are found to change with the initial magnesium ion concentration.
Collapse
Affiliation(s)
- Hongyang Wang
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| | - Yulu Wang
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| | - Qianran Zhao
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| | - Xiuqing Zhou
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| | - Haifeng Zou
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| | - Yanhua Song
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| | - Ye Sheng
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| |
Collapse
|
22
|
Cookman J, Hamilton V, Hall SR, Bangert U. Non-classical crystallisation pathway directly observed for a pharmaceutical crystal via liquid phase electron microscopy. Sci Rep 2020; 10:19156. [PMID: 33154480 PMCID: PMC7644682 DOI: 10.1038/s41598-020-75937-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022] Open
Abstract
Non-classical crystallisation (NCC) pathways are widely accepted, however there is conflicting evidence regarding the intermediate stages of crystallisation, how they manifest and further develop into crystals. Evidence from direct observations is especially lacking for small organic molecules, as distinguishing these low-electron dense entities from their similar liquid-phase surroundings presents signal-to-noise ratio and contrast challenges. Here, Liquid Phase Electron Microscopy (LPEM) captures the intermediate pre-crystalline stages of a small organic molecule, flufenamic acid (FFA), a common pharmaceutical. High temporospatial imaging of FFA in its native environment, an organic solvent, suggests that in this system a Pre-Nucleation Cluster (PNC) pathway is followed by features exhibiting two-step nucleation. This work adds to the growing body of evidence that suggests nucleation pathways are likely an amalgamation of multiple existing non-classical theories and highlights the need for the direct evidence presented by in situ techniques such as LPEM.
Collapse
Affiliation(s)
- J Cookman
- Physics Department & Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland
| | - V Hamilton
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - S R Hall
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - U Bangert
- Physics Department & Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland.
| |
Collapse
|
23
|
Sohrabi M, Eftekhari Yekta B, Rezaie HR, Naimi‐Jamal MR. Rheology, injectability, and bioactivity of bioactive glass containing chitosan/gelatin, nano pastes. J Appl Polym Sci 2020. [DOI: 10.1002/app.49240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mehri Sohrabi
- School of Metallurgy and Materials Engineering Iran University of Science and Technology Tehran Iran
| | - Bijan Eftekhari Yekta
- School of Metallurgy and Materials Engineering Iran University of Science and Technology Tehran Iran
| | - Hamid R. Rezaie
- School of Metallurgy and Materials Engineering Iran University of Science and Technology Tehran Iran
| | - Mohammad R. Naimi‐Jamal
- Research Laboratory of Green Organic Synthesis and Polymers Iran University of Science and Technology Tehran Iran
| |
Collapse
|