1
|
Liosis C, Sofiadis G, Karvelas E, Karakasidis T, Sarris I. Inverse Tesla Valve as Micromixer for Water Purification. MICROMACHINES 2024; 15:1371. [PMID: 39597182 PMCID: PMC11596631 DOI: 10.3390/mi15111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Contaminated water has remained an unsolved problem for decades, particularly when the contamination derived from heavy metals. A possible solution is to mix the contaminated water with magnetic nanoparticles so that an adsorption process can take place. In that frame, Tesla valve micromixer and Fe3O4 magnetic nanoparticles were selected to perform simulations for encounter maximum mixing efficiency. These simulations focus on inlet velocities ratios between contaminated water and nanoparticles and inlet rates of nanoparticles. The maximum mixing efficiency was 44% for the inverse double Tesla micromixer found for the combination of Fe3O4 nanoparticles as the inlet rate and with inlet velocity ratios of VpVc=10.
Collapse
Affiliation(s)
- Christos Liosis
- Department of Mechanical Engineering, University of West Attica, Egaleo, 12241 Athens, Greece; (C.L.); (G.S.); (E.K.)
| | - George Sofiadis
- Department of Mechanical Engineering, University of West Attica, Egaleo, 12241 Athens, Greece; (C.L.); (G.S.); (E.K.)
| | - Evangelos Karvelas
- Department of Mechanical Engineering, University of West Attica, Egaleo, 12241 Athens, Greece; (C.L.); (G.S.); (E.K.)
| | - Theodoros Karakasidis
- Condensed Matter Physics Laboratory, Department of Physics, University of Thessaly, 35100 Lamia, Greece;
| | - Ioannis Sarris
- Department of Mechanical Engineering, University of West Attica, Egaleo, 12241 Athens, Greece; (C.L.); (G.S.); (E.K.)
| |
Collapse
|
2
|
Kar P, Oriola AO, Oyedeji AO. Molecular Docking Approach for Biological Interaction of Green Synthesized Nanoparticles. Molecules 2024; 29:2428. [PMID: 38893302 PMCID: PMC11173450 DOI: 10.3390/molecules29112428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, significant progress has been made in the subject of nanotechnology, with a range of methods developed to synthesize precise-sized and shaped nanoparticles according to particular requirements. Often, the nanoparticles are created by employing dangerous reducing chemicals to reduce metal ions into uncharged nanoparticles. Green synthesis or biological approaches have been used recently to circumvent this issue because biological techniques are simple, inexpensive, safe, clean, and extremely productive. Nowadays, much research is being conducted on how different kinds of nanoparticles connect to proteins and nucleic acids using molecular docking models. Therefore, this review discusses the most recent advancements in molecular docking capacity to predict the interactions between various nanoparticles (NPs), such as ZnO, CuO, Ag, Au, and Fe3O4, and biological macromolecules.
Collapse
Affiliation(s)
- Pallab Kar
- African Medicinal Flora and Fauna Research Niche, Walter Sisulu University, Mthatha 5117, South Africa;
| | - Ayodeji O. Oriola
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5117, South Africa
| | - Adebola O. Oyedeji
- African Medicinal Flora and Fauna Research Niche, Walter Sisulu University, Mthatha 5117, South Africa;
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5117, South Africa
| |
Collapse
|
3
|
Altammar KA. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Front Microbiol 2023; 14:1155622. [PMID: 37180257 PMCID: PMC10168541 DOI: 10.3389/fmicb.2023.1155622] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 05/16/2023] Open
Abstract
The significance of nanoparticles (NPs) in technological advancements is due to their adaptable characteristics and enhanced performance over their parent material. They are frequently synthesized by reducing metal ions into uncharged nanoparticles using hazardous reducing agents. However, there have been several initiatives in recent years to create green technology that uses natural resources instead of dangerous chemicals to produce nanoparticles. In green synthesis, biological methods are used for the synthesis of NPs because biological methods are eco-friendly, clean, safe, cost-effective, uncomplicated, and highly productive. Numerous biological organisms, such as bacteria, actinomycetes, fungi, algae, yeast, and plants, are used for the green synthesis of NPs. Additionally, this paper will discuss nanoparticles, including their types, traits, synthesis methods, applications, and prospects.
Collapse
Affiliation(s)
- Khadijah A. Altammar
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al-Batin, Saudi Arabia
| |
Collapse
|
4
|
Sahoo A, Bhattacharya D, Das M, Mandal P. Shape dependent multiferroic behavior in Bi 2Fe 4O 9nanoparticles. NANOTECHNOLOGY 2022; 33:305702. [PMID: 35413693 DOI: 10.1088/1361-6528/ac667d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Ferroelectric and magnetic properties are investigated for Bi2Fe4O9nanoparticles with different shapes (cuboid and sphere-like) synthesized by hydrothermal and sol-gel method. The magnetic study reveals that coercivity, Neel temperature and remanent magnetization strongly depend on shape of the particle. The nanoparticle with sphere-like shape exhibits magnetization curve of antiferromagnetic (AFM) ordering with ferromagnetic (FM) component. As the particle shape changes from sphere-like to cuboid, the AFM component is dominating over the ferromagnetic component. A small exchange bias is also observed at low temperature in both the sphere-like and cuboid nanoparticle. The coercivity, remanent magnetization and Neel temperature of sphere-like nanoparticle is greater than cuboid nanoparticle. Ferroelectric measurement shows the remanent polarization of cuboid is greater than sphere-like nanoparticle but the coercivity is almost same. This Bi2Fe4O9nanoparticle shows a small change in polarization under magnetic field. The polarization value decreases with magnetic field increases. The magnetoelectric coupling-measured by change of remanent polarization under magnetic field are found to be greater in Bi2Fe4O9sphere-like nanoparticles. These shape dependent magnetic and ferroelectric properties are coming because of shape anisotropy.
Collapse
Affiliation(s)
- Aditi Sahoo
- CSIR-Central Glass & Ceramic Research Institute, Kolkata 700032, India
| | | | - Moumita Das
- Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Prabhat Mandal
- Saha Institute of Nuclear Physics, Kolkata 700064, India
| |
Collapse
|
5
|
Barrio J, Pedersen A, Feng J, Sarma SC, Wang M, Li AY, Yadegari H, Luo H, Ryan MP, Titirici MM, Stephens IEL. Metal coordination in C 2N-like materials towards dual atom catalysts for oxygen reduction. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:6023-6030. [PMID: 35401983 PMCID: PMC8922559 DOI: 10.1039/d1ta09560a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/04/2022] [Indexed: 05/29/2023]
Abstract
Single-atom catalysts, in particular the Fe-N-C family of materials, have emerged as a promising alternative to platinum group metals in fuel cells as catalysts for the oxygen reduction reaction. Numerous theoretical studies have suggested that dual atom catalysts can appreciably accelerate catalytic reactions; nevertheless, the synthesis of these materials is highly challenging owing to metal atom clustering and aggregation into nanoparticles during high temperature synthesis treatment. In this work, dual metal atom catalysts are prepared by controlled post synthetic metal-coordination in a C2N-like material. The configuration of the active sites was confirmed by means of X-ray adsorption spectroscopy and scanning transmission electron microscopy. During oxygen reduction, the catalyst exhibited an activity of 2.4 ± 0.3 A gcarbon -1 at 0.8 V versus a reversible hydrogen electrode in acidic media, comparable to the most active in the literature. This work provides a novel approach for the targeted synthesis of catalysts containing dual metal sites in electrocatalysis.
Collapse
Affiliation(s)
- Jesús Barrio
- Department of Materials, Royal School of Mines, Imperial College London London SW27 AZ England UK
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Angus Pedersen
- Department of Materials, Royal School of Mines, Imperial College London London SW27 AZ England UK
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Jingyu Feng
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Saurav Ch Sarma
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Mengnan Wang
- Department of Materials, Royal School of Mines, Imperial College London London SW27 AZ England UK
| | - Alain Y Li
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Hossein Yadegari
- Department of Materials, Royal School of Mines, Imperial College London London SW27 AZ England UK
| | - Hui Luo
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Mary P Ryan
- Department of Materials, Royal School of Mines, Imperial College London London SW27 AZ England UK
| | - Maria-Magdalena Titirici
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University 2-1-1 Katahira, Aobaku Sendai Miyagi 980-8577 Japan
| | - Ifan E L Stephens
- Department of Materials, Royal School of Mines, Imperial College London London SW27 AZ England UK
| |
Collapse
|
6
|
Ab-initio calculations combined with Monte Carlo simulation of the physical properties of Fe3S4 compound. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Farkaš B, de Leeuw NH. A Perspective on Modelling Metallic Magnetic Nanoparticles in Biomedicine: From Monometals to Nanoalloys and Ligand-Protected Particles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3611. [PMID: 34203371 PMCID: PMC8269646 DOI: 10.3390/ma14133611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
The focus of this review is on the physical and magnetic properties that are related to the efficiency of monometallic magnetic nanoparticles used in biomedical applications, such as magnetic resonance imaging (MRI) or magnetic nanoparticle hyperthermia, and how to model these by theoretical methods, where the discussion is based on the example of cobalt nanoparticles. Different simulation systems (cluster, extended slab, and nanoparticle models) are critically appraised for their efficacy in the determination of reactivity, magnetic behaviour, and ligand-induced modifications of relevant properties. Simulations of the effects of nanoscale alloying with other metallic phases are also briefly reviewed.
Collapse
Affiliation(s)
- Barbara Farkaš
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK;
| | - Nora H. de Leeuw
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK;
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
8
|
Rehman Y, Cheng Z, Wang X, Huang XF, Konstantinov K. Theranostic two-dimensional superparamagnetic maghemite quantum structures for ROS-mediated cancer therapy. J Mater Chem B 2021; 9:5805-5817. [PMID: 34231637 DOI: 10.1039/d1tb01036k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, size- and shape-controlled two-dimensional (2D) superparamagnetic maghemite (γ-Fe2O3) quantum flakes (MQFs) with high surface area and mesoporosity were prepared by facile hydrothermal synthesis for biological applications. These quantum flakes exhibited superparamagnetic behaviours over a wide temperature range of 75-950 K with high saturation magnetization of Ms - 23 emu g-1 and a lower coercivity of Hc - 6.1 Oe. MQFs also demonstrated a good colloidal stability and a positively charged flake surface. Selective toxicity dependent upon selective ROS scavenging/generation and cellular MQF uptake towards non-malignant human keratinocyte (HaCaT) and malignant melanoma (A357) and human breast cancer (MDA-MB 231) cell lines were witnessed. An increased ROS concentration resulted due to the peroxidase-like activity of MQFs in malignant cells. In contrast, ROS scavenging was observed in non-malignant cells due to dominant catalase-like activity. In vitro fluorescence properties added the diagnostic ability to the ambit of MQFs. Furthermore, the therapeutic efficiency could be significantly enhanced by the hyperthermic (25-47 °C) ability of MQF in cancerous cells. Our findings reveal the novel theranostic MQF structure with immense cancer therapeutic potential via augmentation of ROS generation by hyperthermia in a selective microenvironment.
Collapse
Affiliation(s)
- Yaser Rehman
- Institute for Superconducting & Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia. and Illawara Health & Medical Research Institute (IHMRI), Wollongong, NSW 2522, Australia
| | - Zhenxiang Cheng
- Institute for Superconducting & Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia.
| | - Xiaolin Wang
- Institute for Superconducting & Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia.
| | - Xu-Feng Huang
- Illawara Health & Medical Research Institute (IHMRI), Wollongong, NSW 2522, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting & Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia. and Illawara Health & Medical Research Institute (IHMRI), Wollongong, NSW 2522, Australia
| |
Collapse
|
9
|
Essajai R, Mzerd A, Hassanain N, Qjani M. Thermal conductivity enhancement of nanofluids composed of rod-shaped gold nanoparticles: Insights from molecular dynamics. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111494] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|