1
|
Terranova ML. Physiological Roles of Eumelanin- and Melanogenesis-Associated Diseases: A Look at the Potentialities of Engineered and Microbial Eumelanin in Clinical Practice. Bioengineering (Basel) 2024; 11:756. [PMID: 39199714 PMCID: PMC11351163 DOI: 10.3390/bioengineering11080756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
This paper aims to highlight the physiological actions exerted by eumelanin present in several organs/tissues of the human body and to rationalise the often conflicting functional roles played by this biopolymer on the basis of its peculiar properties. Besides pigmentary disorders, a growing number of organ injuries and degenerative pathologies are presently ascribed to the modification of physiological eumelanin levels in terms of alterations in its chemical/structural features, and of a partial loss or uneven distribution of the pigment. The present review analyses the more recent research dedicated to the physiological and pathological actions of eumelanin and provides an insight into some melanogenesis-associated diseases of the skin, eye, ear, and brain, including the most significant neurodegenerative disorders. Also described are the potentialities of therapies based on the localised supply of exogeneous EU and the opportunities that EU produced via synthetic biology offers in order to redesign therapeutical and diagnostic applications.
Collapse
Affiliation(s)
- Maria Letizia Terranova
- Dip.to di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", 00133 Roma, Italy
| |
Collapse
|
2
|
Menichetti A, Mordini D, Vicenzi S, Montalti M. Melanin for Photoprotection and Hair Coloration in the Emerging Era of Nanocosmetics. Int J Mol Sci 2024; 25:5862. [PMID: 38892049 PMCID: PMC11172709 DOI: 10.3390/ijms25115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Nanotechnology is revolutionizing fields of high social and economic impact. such as human health preservation, energy conversion and storage, environmental decontamination, and art restoration. However, the possible global-scale application of nanomaterials is raising increasing concerns, mostly related to the possible toxicity of materials at the nanoscale. The possibility of using nanomaterials in cosmetics, and hence in products aimed to be applied directly to the human body, even just externally, is strongly debated. Preoccupation arises especially from the consideration that nanomaterials are mostly of synthetic origin, and hence are often seen as "artificial" and their effects as unpredictable. Melanin, in this framework, is a unique material since in nature it plays important roles that specific cosmetics are aimed to cover, such as photoprotection and hair and skin coloration. Moreover, melanin is mostly present in nature in the form of nanoparticles, as is clearly observable in the ink of some animals, like cuttlefish. Moreover, artificial melanin nanoparticles share the same high biocompatibility of the natural ones and the same unique chemical and photochemical properties. Melanin is hence a natural nanocosmetic agent, but its actual application in cosmetics is still under development, also because of regulatory issues. Here, we critically discuss the most recent examples of the application of natural and biomimetic melanin to cosmetics and highlight the requirements and future steps that would improve melanin-based cosmetics in the view of future applications in the everyday market.
Collapse
Affiliation(s)
- Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, 47921 Rimini, Italy
| | - Dario Mordini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.)
| | - Silvia Vicenzi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.)
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, 47921 Rimini, Italy
| |
Collapse
|
3
|
Sharma A, Mohapatra H, Arora K, Babbar R, Arora R, Arora P, Kumar P, Algın Yapar E, Rani K, Meenu M, Babu MA, Kaur M, Sindhu RK. Bioactive Compound-Loaded Nanocarriers for Hair Growth Promotion: Current Status and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:3739. [PMID: 37960095 PMCID: PMC10649697 DOI: 10.3390/plants12213739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023]
Abstract
Hair loss (alopecia) has a multitude of causes, and the problem is still poorly defined. For curing alopecia, therapies are available in both natural and synthetic forms; however, natural remedies are gaining popularity due to the multiple effects of complex phytoconstituents on the scalp with fewer side effects. Evidence-based hair growth promotion by some plants has been reported for both traditional and advanced treatment approaches. Nanoarchitectonics may have the ability to evolve in the field of hair- and scalp-altering products and treatments, giving new qualities to hair that can be an effective protective layer or a technique to recover lost hair. This review will provide insights into several plant and herbal formulations that have been reported for the prevention of hair loss and stimulation of new hair growth. This review also focuses on the molecular mechanisms of hair growth/loss, several isolated phytoconstituents with hair growth-promoting properties, patents, in vivo evaluation of hair growth-promoting activity, and recent nanoarchitectonic technologies that have been explored for hair growth.
Collapse
Affiliation(s)
- Arvind Sharma
- School of Pharmaceutical and Health Sciences, Bhoranj (Tikker–Kharwarian), Hamirpur 176041, India;
| | - Harapriya Mohapatra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Kanika Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Evren Algın Yapar
- Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas 58140, Türkiye;
| | - Kailash Rani
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Maninder Meenu
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute, Mohali 143005, India;
| | | | - Maninderjit Kaur
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India;
| | - Rakesh K. Sindhu
- School of Pharmacy, Sharda University, Greater Noida 201306, India
| |
Collapse
|
4
|
Mavridi-Printezi A, Menichetti A, Mordini D, Montalti M. Functionalization of and through Melanin: Strategies and Bio-Applications. Int J Mol Sci 2023; 24:9689. [PMID: 37298641 PMCID: PMC10253489 DOI: 10.3390/ijms24119689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
A unique feature of nanoparticles for bio-application is the ease of achieving multi-functionality through covalent and non-covalent functionalization. In this way, multiple therapeutic actions, including chemical, photothermal and photodynamic activity, can be combined with different bio-imaging modalities, such as magnetic resonance, photoacoustic, and fluorescence imaging, in a theragnostic approach. In this context, melanin-related nanomaterials possess unique features since they are intrinsically biocompatible and, due to their optical and electronic properties, are themselves very efficient photothermal agents, efficient antioxidants, and photoacoustic contrast agents. Moreover, these materials present a unique versatility of functionalization, which makes them ideal for the design of multifunctional platforms for nanomedicine integrating new functions such as drug delivery and controlled release, gene therapy, or contrast ability in magnetic resonance and fluorescence imaging. In this review, the most relevant and recent examples of melanin-based multi-functionalized nanosystems are discussed, highlighting the different methods of functionalization and, in particular, distinguishing pre-functionalization and post-functionalization. In the meantime, the properties of melanin coatings employable for the functionalization of a variety of material substrates are also briefly introduced, especially in order to explain the origin of the versatility of melanin functionalization. In the final part, the most relevant critical issues related to melanin functionalization that may arise during the design of multifunctional melanin-like nanoplatforms for nanomedicine and bio-application are listed and discussed.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (A.M.); (D.M.)
| |
Collapse
|
5
|
Xia L, Yuan L, Zhou K, Zeng J, Zhang K, Zheng G, Fu Q, Xia Z, Fu Q. Mixed-Solvent-Mediated Strategy for Enhancing Light Absorption of Polydopamine and Adhesion Persistence of Dopamine Solutions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22493-22505. [PMID: 37114979 DOI: 10.1021/acsami.3c00769] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mussel-inspired polydopamine (PDA) and its derivative materials have exhibited a huge potential as a facile and versatile route to fabricate multifunctional coatings on virtually any substrate surface. However, their performance and applicability are frequently obstructed by limited optical absorption in visible regions of PDA and poor surface adhesion persistence of dopamine solutions. Herein, we report a facile strategy to improve these problems by rationally regulating the dopamine polymerization pathway through mixed-solvent-mediated periodate oxidation of dopamine. The spectral analysis, ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry, and density functional theory simulations systematically demonstrate that the mixed-solvent reaction systems can effectively accelerate the periodate-induced formation of cyclized moieties in the PDA microstructure and inhibit their further oxidative cleavage, thus contributing to narrowing the inherent energy band gap of PDA and improving the long-lasting surface deposition performance of aged dopamine solutions. Moreover, the newly constructed cyclized species-rich PDA coatings have excellent surface uniformity and significantly enhanced chemical stability. Benefiting from these fascinating properties, they have been further used for permanent dyeing of natural gray hair with remarkably improved blackening effect and excellent practicability, which exhibited their promising prospect in real-world applications.
Collapse
Affiliation(s)
- Lan Xia
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Long Yuan
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Kai Zhou
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Guocan Zheng
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Qiang Fu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
6
|
David Dayanidhi P, Anithabanu P, Vaidyanathan VG. Studies on stabilization of collagen using Cr-doped polydopamine complex. Biophys Chem 2023; 292:106917. [PMID: 36370540 DOI: 10.1016/j.bpc.2022.106917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
Abstract
The stabilization of collagen using different small molecules have been explored for the development of biomaterials. One of the most studied molecules in biomaterials research is polydopamine (PDA) due to its ability to bind to different substrates that ranges from metal surface to collagen. Similarly, in leather tanning, chromium has been an extensively used metal ion as it binds strongly with collagen and enhances its stability. However, as per regulatory authority, the presence of chromium in leather has been restricted to minimum level. Here, we studied the application of chromium doped polydopamine (Cr-PDA) complex as collagen stabilizing agent. The preparation and characterization of Cr-PDA were confirmed using FE-SEM, DLS and FT-IR techniques. Cr-PDA did not alter the triple helical structure of collagen as evidenced from the CD spectral data. Cr-PDA delays the fibrillation in collagen compared to collagen or PDA alone. Calorimetric data shows the enhanced stability of collagen when treated with Cr-PDA compared to collagen control but lesser than PDA alone. Viscometry studies have shown that Cr-PDA reduces the viscosity of collagen compared to PDA or collagen alone. Contact angle studies showed that PDA and Cr-PDA imparts more hydrophobicity to collagen compared to control. Tensile strength studies showed that addition of Cr-PDA or PDA increases the tensile strength of the collagen fiber. The present study on stabilization of collagen using Cr-PDA might be helpful in development of crosslinking agents with eco-friendly approach.
Collapse
Affiliation(s)
- P David Dayanidhi
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - P Anithabanu
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - V G Vaidyanathan
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Jia D, Shen Y, Zhang X, Wang Y, Su R, Qi W. Colorful Pigments Based on Multicomponent Metal‐Phenol Network Nanoparticles for Hair Dyeing. ChemistrySelect 2022. [DOI: 10.1002/slct.202203886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dongshuang Jia
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| | - Yuhe Shen
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| | - Xuelin Zhang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin 300072 P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin 300072 P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
8
|
Zhou X, Gao S, Huang D, Lu Z, Guan Y, Zou L, Hu K, Zhao Z, Zhang Y. Bioinspired, Ultra-fast Polymerization of Dopamine Under Mild Conditions. Macromol Rapid Commun 2022; 43:e2200581. [PMID: 35881763 DOI: 10.1002/marc.202200581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/06/2022]
Abstract
Spontaneous oxidative polymerization of dopamine (DA) has been widely exploited as a facile and versatile method for surface modification. However, the reaction is very slow and only occurs in alkaline solutions, which severely limit its applications. Herein we report that the reaction can be dramatically accelerated by using Fe2+ as catalyst. While it takes hours and days using conventional method, the Fe2+ -catalyzed reaction finishes almost immediately at pH 7.0. In addition, under the catalysis of Fe2+ , the reaction can occur at a pH down to 4.0. The fast Fe2+ -catalyzed polymerization of DA leads to fast deposition of polydopamine (PDA) coating, thus allowing fast surface modification and textile dyeing. The Fe2+ -catalyzed reaction also allows spatial control over the PDA deposition. The fast, simple and mild surface modification method developed here will find applications in numerous fields. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaoman Zhou
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Sijia Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Di Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Zhengbo Lu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Ying Guan
- Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Lei Zou
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Keling Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Zhuo Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Yongjun Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China.,Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
9
|
Zheng C, Huang J, Li T, Wang Y, Jiang J, Zhang X, Huang L, Xia B, Dong W. Permanent Low-Toxicity Hair Dye Based on Pregrafting Melanin with Cystine. ACS Biomater Sci Eng 2022; 8:2858-2863. [PMID: 35706331 DOI: 10.1021/acsbiomaterials.2c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A pregrafting strategy is presented to construct covalent bridges between synthetic melanin, i.e., polydopamine (PDA), and hair for permanent hair dyeing. As a result, PDA is more uniformly distributed throughout the hair surface, and the dyed hair shows higher color intensity and better durability to washing than the control samples dyed with PDA directly at the same conditions.
Collapse
Affiliation(s)
- Chen Zheng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jie Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Lin Huang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Bihua Xia
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
10
|
Augustine N, Putzke S, Janke A, Simon F, Drechsler A, Zimmerer CA. Dopamine-Supported Metallization of Polyolefins─A Contribution to Transfer to an Eco-friendly and Efficient Technological Process. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5921-5931. [PMID: 35040627 DOI: 10.1021/acsami.1c19575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metallization is a common method to produce functional or decorative coatings on plastic surfaces. State-of-the-art technologies require energy-intensive process steps and the use of organic solvents or hazardous substances to achieve sufficient adhesion between the polymer and the metal layer. The present study introduces a facile bio-inspired "green" approach to improve this technology: the use of dopamine, a small-molecule mimic of the main structural component of adhesive mussel proteins, as an adhesion promoter. To understand dopamine adhesion and identify conditions for successful metallization, polyethylene surfaces were dip-coated with dopamine and metallized with nickel by electroless metallization; essential parameters such as temperature, pH value, concentration of dopamine and buffer, and the deposition time were systematically varied. Effects of adding oxidants to the dopamine bath, cross-linking, thermal and UV post-treatment of the polydopamine film, and plasma pretreatment of the substrate were investigated. The properties of the polydopamine layer and the quality of the metal film were studied by physico-chemical, optical, and mechanical techniques. It was shown that simple dip-coating of the substrate with dopamine under optimal conditions is sufficient to support metal layers with a good optical quality. Technologically relevant metal layer quality and adhesion were obtained with annealed and UV-treated polydopamine films and enhanced by plasma pretreatment of the substrate. The study shows that dopamine provides a new interfacial design for plastic metallization that can reduce energy consumption, use of hazardous substances, and reject rate during manufacturing. The results are essential findings for further technological developments of a universal platform to promote adhesion between plastics and metal or potentially also other material classes, enabling economic material development and more eco-friendly applications.
Collapse
Affiliation(s)
- Nithyarani Augustine
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Sascha Putzke
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Andreas Janke
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Frank Simon
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Astrid Drechsler
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Cordelia A Zimmerer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| |
Collapse
|
11
|
Williams TN, Szymczyk M, Freeman HS. In situ Chelation of Monoazo Dyes in Human Hair Keratin Fibers Using Environmentally Benign Metal Ions. ACS APPLIED BIO MATERIALS 2021; 4:6195-6202. [DOI: 10.1021/acsabm.1c00512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tova N. Williams
- Wilson College of Textiles, North Carolina State University, 1020 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Malgorzata Szymczyk
- Wilson College of Textiles, North Carolina State University, 1020 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Harold S. Freeman
- Wilson College of Textiles, North Carolina State University, 1020 Main Campus Drive, Raleigh, North Carolina 27606, United States
| |
Collapse
|
12
|
Shen Y, Liu J, Wang Y, Qi W, Su R, He Z. Colorful Pigments for Hair Dyeing Based on Enzymatic Oxidation of Tyrosine Derivatives. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34851-34864. [PMID: 34260221 DOI: 10.1021/acsami.1c06881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Melanin exists widely in nature and can afford a variety of colors from black to brown and red according to chemical structure differences and specific mixtures. Inspired by nature, this work reports that tyrosine derivatives with different protecting groups at its N- or C-terminal can be enzymatically oxidized into melanin-like pigments with a wide range of colors. The emergence of colorful pigments can be attributed to the incomplete enzymatic oxidation and polymerization caused by the chemical premodification of the tyrosine molecule. The pigments can be deposited on the surface of the hair to obtain a series of colorful and saturated hair dye effects. Moreover, after the pigments were coated on the hair, we can further deposit silver nanoparticles through in situ reduction, making these coatings have anti-inflammatory and antibacterial potential, thereby expanding their potential use for people with low immunity or those who work in hospitals. This work proposes a green and effective way to synthesize colorful pigments with great potential applications in the hair dying and cosmetic industries.
Collapse
Affiliation(s)
- Yuhe Shen
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Jiayu Liu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
13
|
Deng Z, Wang W, Xu X, Nie Y, Liu Y, Gould OEC, Ma N, Lendlein A. Biofunction of Polydopamine Coating in Stem Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10748-10759. [PMID: 33594879 DOI: 10.1021/acsami.0c22565] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High levels of reactive oxygen species (ROS) during stem cell expansion often lead to replicative senescence. Here, a polydopamine (PDA)-coated substrate was used to scavenge extracellular ROS for mesenchymal stem cell (MSC) expansion. The PDA-coated substrate could reduce the oxidative stress and mitochondrial damage in replicative senescent MSCs. The expression of senescence-associated β-galactosidase of MSCs from three human donors (both bone marrow- and adipose tissue-derived) was suppressed on PDA. The MSCs on the PDA-coated substrate showed a lower level of interleukin 6 (IL-6), one of the senescence-associated inflammatory components. Cellular senescence-specific genes, such as p53 and p21, were downregulated on the PDA-coated substrate, while the stemness-related gene, OCT4, was upregulated. The PDA-coated substrate strongly promoted the proliferation rate of MSCs, while the stem cell character and differentiation potential were retained. Large-scale expansion of stem cells would greatly benefit from the PDA-coated substrate.
Collapse
Affiliation(s)
- Zijun Deng
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, 14195 Berlin, Germany
| | - Weiwei Wang
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Xun Xu
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Yan Nie
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Yue Liu
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Oliver E C Gould
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Nan Ma
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, 14195 Berlin, Germany
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, 14195 Berlin, Germany
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
14
|
Iron Gall Ink Revisited: A Surfactant-Free Emulsion Technology for Black Hair-Dyeing Formulation. COSMETICS 2021. [DOI: 10.3390/cosmetics8010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inspired by the redox reactions in the preparation of the iron gall ink that has been used in Europe since the Middle Ages, we developed a technology for forming the oil-in-water emulsions, without any surfactants and emulsifiers, by homogenizing a mixture of tannic acid, gallic acid, Fe(D-gluconate)2, and natural oil, which are all approved as cosmetic ingredients. Various plant-derived oils, such as argan oil, olive oil, sunflower oil, grape seed oil, hemp seed oil, peppermint oil, rosemary oil, and ylang-ylang oil, were used as an oil phase for the emulsion formation, and all the fabricated emulsions exhibited the capability of black hair-dyeing. This surfactant-free emulsion technology for combining the hair-dyeing capability of Fe3+–tannin complex with the hair-fortifying property of natural oil would have great impact on the hair-cosmetic industry.
Collapse
|
15
|
Sun Y, Wang C, Sun M, Fan Z. Bioinspired polymeric pigments to mimic natural hair coloring. RSC Adv 2021; 11:1694-1699. [PMID: 35424122 PMCID: PMC8693533 DOI: 10.1039/d0ra09539g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Due to an increasingly aging population, hair dyeing has become more necessary in daily life; however synthetic hair dyes often have the disadvantages of harsh dyeing conditions, a slow dyeing process and biological toxicity. Herein, we developed a bioinspired approach to mimic the natural hair dyeing process under mild conditions. Compared to the existing polydopamine deposition approach with harsh conditions, mild conditions and effective deposition were achieved here. First, in the presence of tyrosine hydroxylase and metal ions, dopamine could be oxidized into polydopamine, a mimic of human eumelanin, and then self-assembled into nanometer-scale pigments. Through optimizing the experimental parameters, various colors and the desired darkness could be achieved within less than 1 minute. In addition, significant durability was observed after continuous washing with polydopamine assemblies as hair dyes. Morphological analysis was applied to verify the deposition of polydopamine assemblies onto the hair surface, which induces the hair color change. Also, animal studies were conducted to evaluate the efficiency and biological toxicity of this approach. Overall, this bioinspired approach could provide a new avenue for biocompatible and effective nanomaterial-based hair dyes for at-home use.
Collapse
Affiliation(s)
- Yu Sun
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Congyu Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Min Sun
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Zhen Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University Shanghai 201804 China
- Institute for Advanced Study, Tongji University Shanghai 200092 China
| |
Collapse
|
16
|
Pary F, Nelson L, Nelson TL. Drop the Toxins! Bioinspired Hair Dye Offers a Safer Alternative. ACS CENTRAL SCIENCE 2020; 6:2133-2135. [PMID: 33376776 PMCID: PMC7760062 DOI: 10.1021/acscentsci.0c01576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Fathima
F. Pary
- Department of Chemistry, Oklahoma State University Stillwater, Stillwater, Oklahoma 74078, United States
| | - Latasha
A. Nelson
- Department of Chemistry, Oklahoma State University Stillwater, Stillwater, Oklahoma 74078, United States
| | - Toby L. Nelson
- Department of Chemistry, Oklahoma State University Stillwater, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
17
|
Mavridi-Printezi A, Guernelli M, Menichetti A, Montalti M. Bio-Applications of Multifunctional Melanin Nanoparticles: From Nanomedicine to Nanocosmetics. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2276. [PMID: 33212974 PMCID: PMC7698489 DOI: 10.3390/nano10112276] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Bioinspired nanomaterials are ideal components for nanomedicine, by virtue of their expected biocompatibility or even complete lack of toxicity. Natural and artificial melanin-based nanoparticles (MNP), including polydopamine nanoparticles (PDA NP), excel for their extraordinary combination of additional optical, electronic, chemical, photophysical, and photochemical properties. Thanks to these features, melanin plays an important multifunctional role in the design of new platforms for nanomedicine where this material works not only as a mechanical support or scaffold, but as an active component for imaging, even multimodal, and simple or synergistic therapy. The number of examples of bio-applications of MNP increased dramatically in the last decade. Here, we review the most recent ones, focusing on the multiplicity of functions that melanin performs in theranostics platforms with increasing complexity. For the sake of clarity, we start analyzing briefly the main properties of melanin and its derivative as well as main natural sources and synthetic methods, moving to imaging application from mono-modal (fluorescence, photoacoustic, and magnetic resonance) to multi-modal, and then to mono-therapy (drug delivery, anti-oxidant, photothermal, and photodynamic), and finally to theranostics and synergistic therapies, including gene- and immuno- in combination to photothermal and photodynamic. Nanomedicine aims not only at the treatment of diseases, but also to their prevention, and melanin in nature performs a protective action, in the form of nanopigment, against UV-Vis radiations and oxidants. With these functions being at the border between nanomedicine and cosmetics nanotechnology, recently examples of applications of artificial MNP in cosmetics are increasing, paving the road to the birth of the new science of nanocosmetics. In the last part of this review, we summarize and discuss these important recent results that establish evidence of the interconnection between nanomedicine and cosmetics nanotechnology.
Collapse
Affiliation(s)
- Alexandra Mavridi-Printezi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Moreno Guernelli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
- Tecnopolo di Rimini, Via Campana 71, 47922 Rimini, Italy
| |
Collapse
|
18
|
Mulyati S, Muchtar S, Arahman N, Meirisa F, Syamsuddin Y, Zuhra Z, Rosnelly CM, Shamsuddin N, Mat Nawi NI, Wirzal MDH, Bilad MR, Takagi R, Matsuyama H. One-Pot Polymerization of Dopamine as an Additive to Enhance Permeability and Antifouling Properties of Polyethersulfone Membrane. Polymers (Basel) 2020; 12:E1807. [PMID: 32806565 PMCID: PMC7464200 DOI: 10.3390/polym12081807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022] Open
Abstract
This paper reports the fabrication of polyethersulfone membranes via in situ hydrogen peroxide-assisted polymerization of dopamine. The dopamine and hydrogen peroxide were introduced into the dope solution where the polymerization occurred, resulting in a single-step additive formation during membrane fabrication. The effectivity of modification was evaluated through characterizations of the resulting membranes in terms of chemical functional groups, surface morphology, porosity, contact angle, mechanical strength and filtration of humic acid solution. The results confirm that the polydopamine was formed during the dope solution mixing through peroxide-assisted polymerization as proven by the appearance of peaks associated OH and NH groups in the resulting membranes. The presence of polydopamine residual in the membrane matric enhances the pore properties in terms of size and porosity (by a factor of 10), and by lowering the hydrophilicity (from 69° to 53°) which leads to enhanced filtration flux of up to 217 L/m2 h. The presence of the residual polydopamine also enhances membrane surface hydrophilicity which improve the antifouling properties as shown from the flux recovery ratio of > 80%.
Collapse
Affiliation(s)
- Sri Mulyati
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.M.); (N.A.); (F.M.); (Y.S.); (Z.Z.); (C.M.R.)
| | - Syawaliah Muchtar
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.M.); (N.A.); (F.M.); (Y.S.); (Z.Z.); (C.M.R.)
| | - Nasrul Arahman
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.M.); (N.A.); (F.M.); (Y.S.); (Z.Z.); (C.M.R.)
| | - Friska Meirisa
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.M.); (N.A.); (F.M.); (Y.S.); (Z.Z.); (C.M.R.)
| | - Yanna Syamsuddin
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.M.); (N.A.); (F.M.); (Y.S.); (Z.Z.); (C.M.R.)
| | - Zuhra Zuhra
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.M.); (N.A.); (F.M.); (Y.S.); (Z.Z.); (C.M.R.)
| | - Cut Meurah Rosnelly
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.M.); (N.A.); (F.M.); (Y.S.); (Z.Z.); (C.M.R.)
| | - Norazanita Shamsuddin
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link BE1410, Brunei;
| | - Normi Izati Mat Nawi
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia; (N.I.M.N.); (M.D.H.W.); (M.R.B.)
| | - Mohd Dzul Hakim Wirzal
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia; (N.I.M.N.); (M.D.H.W.); (M.R.B.)
| | - Muhammad Roil Bilad
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia; (N.I.M.N.); (M.D.H.W.); (M.R.B.)
| | - Ryosuke Takagi
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodai-Cho 1-1, Nadaku, Kobe 657-8501, Japan; (R.T.); (H.M.)
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodai-Cho 1-1, Nadaku, Kobe 657-8501, Japan; (R.T.); (H.M.)
| |
Collapse
|
19
|
Kim S, Hong S. Nature-Inspired Adhesive Catecholamines for Highly Concentrated Colorimetric Signal in Spatial Biomarker Labeling. Adv Healthc Mater 2020; 9:e2000540. [PMID: 32543085 DOI: 10.1002/adhm.202000540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/20/2020] [Indexed: 12/25/2022]
Abstract
Colorants have been utilized for precise biomarker detection in rapid and convenient colorimetric bioassays. However, the diffusion of colorants in solution often results in poor sensitivity, which is a major obstacle to the clinical translation of current colorants. To address this issue, in the current study, a unique colorant is developed that possesses adhesiveness for concentration near the target biomarker, avoiding diffusion. In nature, the synergistic interplay between catechol and amine functional groups is thought to be key for the unique mechanism of marine mussel adhesion. In addition, polymerized catecholamines are found in nature as biopigments, that is, in melanin. The dual role of catechol/catecholamine moieties in natural organics inspire to design novel colorimetric bioassays based on an adhesive colorant. Horseradish peroxidase (HRP) is used to initiate in situ polymerization of the catecholic precursors with amine-containing additive molecules and simultaneously attach them near the HRP-labeled biomarkers. This novel catecholamine-based adhesive colorant provides an excellent quantitative (naked-eye) visible signal and it also generates superb spatial information on the biomarkers on complex surfaces (e.g., cell membranes).
Collapse
Affiliation(s)
- Seunghwi Kim
- Department of Emerging Materials ScienceDGIST (Daegu Gyeongbuk Institute of Science and Technology) Daegu 42988 Republic of Korea
| | - Seonki Hong
- Department of Emerging Materials ScienceDGIST (Daegu Gyeongbuk Institute of Science and Technology) Daegu 42988 Republic of Korea
| |
Collapse
|
20
|
Battistella C, McCallum NC, Gnanasekaran K, Zhou X, Caponetti V, Montalti M, Gianneschi NC. Mimicking Natural Human Hair Pigmentation with Synthetic Melanin. ACS CENTRAL SCIENCE 2020; 6:1179-1188. [PMID: 32724852 PMCID: PMC7379382 DOI: 10.1021/acscentsci.0c00068] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Indexed: 05/14/2023]
Abstract
Human hair is naturally colored by melanin pigments, which afford myriad colors from black, to brown, to red depending on the chemical structures and specific blends. In recent decades, synthetic efforts have centered on dopamine oxidation to polydopamine, an effective eumelanin similar to the one found in humans. To date, only a few attempts at polydopamine deposition on human hair have been reported, and their translation to widespread usage and potential commercialization is still hampered by the harsh conditions employed. We reasoned that novel, mild, biocompatible approaches could be developed to establish a metal-free route to tunable, nature-inspired, long-lasting coloration of human hair. Herein, we describe synthetic and formulation routes to achieving this goal and show efficacy on a variety of human hair samples via multiple spectroscopic and imaging techniques. Owing to the mild and inexpensive conditions employed, this novel approach has the potential to replace classical harsh hair dyeing conditions that have raised concerns for several decades due to their potential toxicity.
Collapse
Affiliation(s)
- Claudia Battistella
- Department
of Chemistry, Department of Materials Science & Engineering, Department
of Biomedical Engineering, Department of Pharmacology, International
Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
| | - Naneki C. McCallum
- Department
of Chemistry, Department of Materials Science & Engineering, Department
of Biomedical Engineering, Department of Pharmacology, International
Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
| | - Karthikeyan Gnanasekaran
- Department
of Chemistry, Department of Materials Science & Engineering, Department
of Biomedical Engineering, Department of Pharmacology, International
Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
| | - Xuhao Zhou
- Department
of Chemistry, Department of Materials Science & Engineering, Department
of Biomedical Engineering, Department of Pharmacology, International
Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
| | - Valeria Caponetti
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Marco Montalti
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Nathan C. Gianneschi
- Department
of Chemistry, Department of Materials Science & Engineering, Department
of Biomedical Engineering, Department of Pharmacology, International
Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
| |
Collapse
|
21
|
Venkatesan G, Dancik Y, Sinha A, Bigliardi M, Srinivas R, Dawson T, Valiyaveettil S, Bigliardi P, Pastorin G. Facile synthesis of oligo anilines as permanent hair dyes: how chemical modifications impart colour and avoid toxicity. NEW J CHEM 2019. [DOI: 10.1039/c9nj03362a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chemical modification of the hair dye para-phenylenediamine results in colors that avoid in situ oxidation and toxicity.
Collapse
Affiliation(s)
| | - Yuri Dancik
- Skin Research Institute of Singapore
- Singapore
- Le Studium Loire Valley Institute of Advanced Studies
- Orléans
- France
| | - Arup Sinha
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Mei Bigliardi
- Skin Research Institute of Singapore
- Singapore
- Department of Dermatology
- Division of Dermato-Allergy
- University of Minnesota
| | | | | | | | - Paul Bigliardi
- Skin Research Institute of Singapore
- Singapore
- Department of Dermatology
- Division of Dermato-Allergy
- University of Minnesota
| | | |
Collapse
|
22
|
Dong Y, Qiu Y, Gao D, Zhang K, Zhou K, Yin H, Yi G, Li J, Xia Z, Fu Q. Melanin-mimetic multicolor and low-toxicity hair dye. RSC Adv 2019; 9:33617-33624. [PMID: 35528905 PMCID: PMC9073633 DOI: 10.1039/c9ra07466j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/13/2019] [Indexed: 01/30/2023] Open
Abstract
Most commercial permanent hair dyeing technologies are based on the oxidative process of p-phenylenediamine and its derivative materials. However, concerns about their toxicological issues have been raised throughout the years. Herein, we report an innovative surface coloration strategy for fabricating melanin-mimetic multicolor and low-toxicity hair dyes through sodium periodate-induced rapid deposition of eumelanin-like polydopamine (PDA) and pheomelanin-like PDA/cysteine co-deposited coatings on the hair surface. The color and morphology of the resulting hair were characterized in detail by several spectroscopy methods and the possible mechanism for the multi-coloring effects and structural differences of the melanin-mimetic coating was proposed. Our strategy eliminates the use of toxic dye precursors or organic solvents, and the favorable safety of the PDA-based formulations is demonstrated. The fabricated dyes can be applied to hair simply by combing, resulting in uniform multi-coloring effects within a short time. Furthermore, the melanin-mimetic hair dyes have excellent durability and ultraviolet protection performance. This work provides a facile and versatile methodology to develop the next generation of safe, sustainable and multicolor hair dyes and pave new avenues for advancing the field of surface coloration, nanoreactors, nanogenerators, energy storage materials and biomimetic sensing devices. This study developed novel approaches for melanin-mimetic multicolor and low-toxicity hair dye through rapid deposition of PDA-based coatings on hair.![]()
Collapse
Affiliation(s)
- Yingying Dong
- Institute of Engineering Thermophysics
- School of Energy and Power Engineering
- Chongqing University
- Chongqing 400030
- China
| | - Yan Qiu
- School of Pharmacy
- Southwest Medical University
- Luzhou
- China
| | - Die Gao
- School of Pharmacy
- Southwest Medical University
- Luzhou
- China
| | - Kailian Zhang
- School of Pharmacy
- Southwest Medical University
- Luzhou
- China
| | - Kai Zhou
- Analytical and Testing Center
- Chongqing University
- Chongqing
- China
| | - Honggang Yin
- School of Pharmacy
- Southwest Medical University
- Luzhou
- China
| | - Gaoyi Yi
- School of Pharmacy
- Southwest Medical University
- Luzhou
- China
| | - Jun Li
- Institute of Engineering Thermophysics
- School of Energy and Power Engineering
- Chongqing University
- Chongqing 400030
- China
| | - Zhining Xia
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing
- China
| | - Qifeng Fu
- School of Pharmacy
- Southwest Medical University
- Luzhou
- China
| |
Collapse
|