1
|
He W, Ye K, Zhang M, Bai S, Xu S, Fang K. Enhanced Cr(vi) removal by Co and PPy co-modified Ca-Al-layered double hydroxides due to adsorption and reduction mechanisms. RSC Adv 2024; 14:37933-37948. [PMID: 39610813 PMCID: PMC11603411 DOI: 10.1039/d4ra06943a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Co and polypyrrole co-modified hierarchical CaAl-LDH microspheres (CCALP) were synthesized via hydrothermal and in situ polymerization methods. The synergistic effect of PPy and Co endowed CCALP with higher surface area and more reduction sites than CaAl-LDHs modified by Co or PPy alone, maintaining good recyclability for Cr(vi) removal efficiency over four cycles without any treatment. Compared to Co, PPy doping was the dominant reason for Cr(vi) reduction on CCALP. Under optimized conditions, the theoretical maximum adsorption capacity reached 845.25 mg g-1, and the removal efficiency of Cr(vi) achieved 98.83%. The Langmuir model fitted well with the Cr(vi) adsorption on CCALP, supporting the monolayer adsorption hypothesis. The adsorption process followed the Avrami fractional kinetics (AFO) model, suggesting complex and multiple kinetic stages. Thermodynamic experiments confirmed that the adsorption was a spontaneous exothermic process. The density functional theory (DFT) and electrostatic potential (ESP) calculations confirmed that the oxygen-containing parts of Cr2O7 2- and HCrO4 - were the affinity sites, and the co-doping of Co and PPy significantly improved the Cr(vi) adsorption energy on CCALP. Therefore, the Cr(vi) removal mechanism on CCALP was proposed with electrostatic interaction, ion exchange, complexation and reduction.
Collapse
Affiliation(s)
- Wenyan He
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China (+8629) 8558-3188
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an University of Science and Technology Xi'an 710054 China
| | - Kaijie Ye
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China (+8629) 8558-3188
| | - Mi Zhang
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China (+8629) 8558-3188
| | - Sheng Bai
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China (+8629) 8558-3188
| | - Siyan Xu
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China (+8629) 8558-3188
| | - Kuo Fang
- College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
2
|
Li X, Liu RH, Han XK, Ma XX, Zhang L, Zhu HJ, Kong XJ, Li X, Yan H, Zhou HW, Li YW, Wang SN, Zhong DC, Dai FN, Dou MY, Hao HG. Enhancing Photoreduction of Cr(VI) through a Multivalent Manganese(II)-Organic Framework Incorporating Anthracene Moieties. Inorg Chem 2024; 63:16897-16907. [PMID: 39197012 DOI: 10.1021/acs.inorgchem.4c02816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Exploiting a photocatalyst with high stability and excellent activity for Cr(VI) reduction under mild conditions is crucial yet challenging. Herein, the rigid aromatic multicarboxylate ligand with chromophore anthracene was selected to coordinate with multivalent metal ion manganese and to obtain a stable two-dimensional (2D) Mn-based metal-organic framework (MOF), LCUH-120, which can efficiently and quickly convert Cr(VI) into Cr(III) under light without the need for any additional photosensitizer. The efficient photosensitive anthracene group serves as a photosensitizer center and multivalent Mn(II) ion as a photocatalyst center in LCUH-120, and the conversion of Cr(VI) to Cr(III) can be realized completely in just 40 min. Specifically, the rate constant (k) and reduction rate of the Cr(VI) photocatalytic reaction can be high up to 0.134 min-1 and 2.50 mgCr(VI) g-1cata min-1 in an acidic environment (pH = 2), respectively. Compared to our previously reported three-dimensional (3D) Sm-MOF, LCUH-120 exhibits a significantly higher catalytic reaction rate, which might be ascribed to the fact that the photocatalyst center Mn node can improve the rate of electron transfer and promote the separation of holes and photogenerated electrons. In an acidic environment, the reaction mechanism can be verified through various contrast experiments and theoretical simulations.
Collapse
Affiliation(s)
- Xin Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Rong-Hua Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xue-Ke Han
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xiao-Xue Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Hong-Jie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xiang-Jin Kong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Hui Yan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Hua-Wei Zhou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yun-Wu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Su-Na Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Di-Chang Zhong
- Institute for New Energy Materials and Low Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology, Tianjin 300384, China
| | - Fang-Na Dai
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Ming-Yu Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Hong-Guo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
3
|
Tripathi M, Pathak S, Singh R, Singh P, Singh PK, Shukla AK, Maurya S, Kaur S, Thakur B. A Comprehensive Review of Lab-Scale Studies on Removing Hexavalent Chromium from Aqueous Solutions by Using Unmodified and Modified Waste Biomass as Adsorbents. TOXICS 2024; 12:657. [PMID: 39330585 PMCID: PMC11435892 DOI: 10.3390/toxics12090657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Anthropogenic activities and increasing human population has led to one of the major global problems of heavy metal contamination in ecosystems and to the generation of a huge amount of waste material biomass. Hexavalent chromium [Cr(VI)] is the major contaminant introduced by various industrial effluents and activities into the ecosystem. Cr(VI) is a known mutagen and carcinogen with numerous detrimental effects on the health of humans, plants, and animals, jeopardizing the balance of ecosystems. Therefore, the remediation of such a hazardous toxic metal pollutant from the environment is necessary. Various physical and chemical methods are available for the sequestration of toxic metals. However, adsorption is recognized as a more efficient technology for Cr(VI) remediation. Adsorption by utilizing waste material biomass as adsorbents is a sustainable approach in remediating hazardous pollutants, thus serving the dual purpose of remediating Cr(VI) and exploiting waste material biomass in an eco- friendly manner. Agricultural biomass, industrial residues, forest residues, and food waste are the primary waste material biomass that could be employed, with different strategies, for the efficient sequestration of toxic Cr(VI). This review focuses on the use of diverse waste biomass, such as industrial and agricultural by-products, for the effective remediation of Cr(VI) from aqueous solutions. The review also focuses on the operational conditions that improve Cr(VI) remediation, describes the efficacy of various biomass materials and modifications, and assesses the general sustainability of these approaches to reducing Cr(VI) pollution.
Collapse
Affiliation(s)
- Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India; (S.P.); (P.S.)
| | - Sukriti Pathak
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India; (S.P.); (P.S.)
| | - Ranjan Singh
- Department of Microbiology, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India;
| | - Pankaj Singh
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India; (S.P.); (P.S.)
| | - Pradeep Kumar Singh
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India;
| | - Awadhesh Kumar Shukla
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224001, Uttar Pradesh, India; (A.K.S.)
| | - Sadanand Maurya
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224001, Uttar Pradesh, India; (A.K.S.)
| | - Sukhminderjit Kaur
- Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (B.T.)
| | - Babita Thakur
- Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (B.T.)
| |
Collapse
|
4
|
Tibebu S, Kassahun E, Ale TH, Worku A, Sime T, Berhanu AA, Akino B, Hailu AM, Ayana LW, Shibeshi A, Mohammed MA, Lema NK, Ammona AA, Tebeje A, Korsa G, Ayele A, Nuru S, Kebede S, Ayalneh S, Angassa K, Weldmichael TG, Ashebir H. The application of Rumex Abysinicus derived activated carbon/bentonite clay/graphene oxide/iron oxide nanocomposite for removal of chromium from aqueous solution. Sci Rep 2024; 14:19280. [PMID: 39164377 PMCID: PMC11335875 DOI: 10.1038/s41598-024-70238-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Rapid industrialization has significantly boosted economic growth but has also introduced severe environmental challenges, particularly in water pollution. This study evaluates the effectiveness of a nanocomposite composed of Rumex Abyssinicus Activated Carbon/Acid Activated Bentonite Clay/Graphene Oxide, and Iron Oxide (RAAC/AABC/GO/Fe3O4) for chromium removal from aqueous solutions. The preparation of the nanocomposite involved precise methods, and its characterization was performed using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) surface area analysis, and the point of zero charge (pHpzc). Batch adsorption experiments were designed using Design Expert software with a central composite design under response surface methodology. The factors investigated included pH (3, 6, and 9), initial Cr (VI) concentration (40, 70, and 100 mg/L), adsorbent dose (0.5, 0.75, 1 g/200 mL), and contact time (60, 90, and 120 min). Adsorption isotherms were analyzed using nonlinearized Langmuir, Freundlich, and Temkin models, while pseudo-first-order and pseudo-second-order models were applied to adsorption kinetics. Characterization revealed a pHpzc of 8.25, a porous and heterogeneous surface (SEM), diverse functional groups (FTIR), an amorphous structure (XRD), and a significant surface area of 1201.23 m2/g (BET). The highest removal efficiency of 99.91% was achieved at pH 6, with an initial Cr (VI) concentration of 70 mg/L, a 90 min contact time, and an adsorbent dose of 1 g/200 mL. Optimization of the adsorption process identified optimal parameters as pH 5.84, initial Cr (VI) concentration of 88.94 mg/L, contact time of 60 min, and adsorbent dose of 0.52 g/200 mL. The Langmuir isotherm model, with an R2 value of 0.92836, best described the adsorption process, indicating a monolayer adsorption mechanism. The pseudo-second-order kinetics model provided the best fit with an R2 value of 0.988. Overall, the nanocomposite demonstrates significant potential as a cost-effective and environmentally friendly solution for chromium removal from wastewater.
Collapse
Affiliation(s)
- Solomon Tibebu
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia.
| | - Estifanos Kassahun
- Department of Chemical Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
- Innovation Incubation Center & Intellectual Property Right Coordination Office, University-Industry Linkage & Technology Transfer Directorate, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Tigabu Haddis Ale
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Abebe Worku
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Takele Sime
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Afework Aemro Berhanu
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Belay Akino
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Abrha Mulu Hailu
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
- Department of Chemistry, Aksum University, Tigray, Ethiopia
| | - Lalise Wakshum Ayana
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
- Manufacturing Industry Development Institute, Chemical and Construction Inputs Industry Research and Development Center, Addis Ababa, Ethiopia
| | - Abebaw Shibeshi
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Mohammednur Abdu Mohammed
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Niguse Kelile Lema
- Department of Biotechnology, Arba Minch University, Arba Minch, Ethiopia
| | - Andualem Arka Ammona
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Aseged Tebeje
- Department of Chemical Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Gamachis Korsa
- Department of Biotechnology, College of Applied and Natural Science, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Abate Ayele
- Department of Biotechnology, College of Applied and Natural Science, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Saba Nuru
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Seble Kebede
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Shiferaw Ayalneh
- Department of Chemical Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Kenatu Angassa
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Tsedekech Gebremeskel Weldmichael
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Hailu Ashebir
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Asimakidou T, Kalaitzidou K, Pinakidou F, Zhou T, Rivera-Gil P, Balcells L, Mitrakas M, Makridis A, Katsikini M, Vourlias G, Chrissafis K, Simeonidis K. Implementing magnetically-active Sn-based nanocomposites in hexavalent chromium removal from drinking water. CHEMOSPHERE 2024; 361:142529. [PMID: 38838862 DOI: 10.1016/j.chemosphere.2024.142529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
A novel nanocomposite consisting of Fe3O4-loaded tin oxyhydroxy-chloride is demonstrated as an efficient adsorbent for the removal of hexavalent chromium in compliance to the new drinking water regulation. This study introduces a continuous-flow production of the nanocomposite through the separate synthesis of (i) 40 nm Fe3O4 nanoparticles and (ii) multilayered spherical arrangements of a tin hydroxy-chloride identified as abhurite, before the application of a wet-blending process. The homogeneous distribution of Fe3O4 nanoparticles on the abhurite's morphology, features nanocomposite with magnetic response whereas the 10 % loaded nanocomposite preserves a Cr(VI) uptake capacity of 7.2 mg/g for residual concentrations below 25 μg/L. Kinetic and thermodynamic examination of the uptake evolution indicates a relative rapid Cr(VI) capture dominated by interparticle diffusion and a spontaneous endothermic process mediated by reduction to Cr(III). The efficiency of the optimized nanocomposite was validated in a pilot unit operating in a sequence of a stirring reactor and a rotary magnetic separator showing an alternative and competitive application path than typical fixed-bed filtration, which is supported by the absence of any acute cellular toxicity according to human kidney cell viability tests.
Collapse
Affiliation(s)
- Theopoula Asimakidou
- Analytical Chemistry Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Department of Physics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Kyriaki Kalaitzidou
- Analytical Chemistry Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Fani Pinakidou
- Department of Physics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Ting Zhou
- Integrative Biomedical Materials and Nanomedicine Lab, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Pilar Rivera-Gil
- Integrative Biomedical Materials and Nanomedicine Lab, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Lluis Balcells
- Institut de Ciencia de Materials de Barcelona, CSIC, Campus Universitat Autònoma de Barcelona, A08193 Bellaterra, Spain
| | - Manassis Mitrakas
- Analytical Chemistry Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Antonios Makridis
- Department of Physics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Katsikini
- Department of Physics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - George Vourlias
- Department of Physics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | - Konstantinos Simeonidis
- Analytical Chemistry Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
6
|
Cho K, Kim WK, Moon J, Cha D, Park J. Effect of in situ CO 2 mixing of cement paste on the leachability of hexavalent chromium (Cr(VI)). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51582-51592. [PMID: 39115736 PMCID: PMC11374918 DOI: 10.1007/s11356-024-34582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
In situ CO2 mixing technology is a potential technology for permanently sequestering CO2 during concrete manufacturing processes. Although it has been approved as a promising carbon capture and utilisation (CCU) method, its effect on the leachability of heavy metals from cementitious compounds has not yet been studied. This study focuses on the effect of in situ CO2 mixing of cement paste on the leaching of hexavalent chromium (Cr(VI)). The tank leaching test of the CO2 mixing cement specimen resulted in a Cr(VI) cumulative leaching of 0.614 mg/m2 in 28 d, which is ten times lower than that of the control mixing specimens. The results in thermogravimetric analysis indicated that a relatively significant amount of CrO42- is immobilised as CaCrO4 during the CO2-mixing, and a higher Cr-O extension is observed in the Fourier transform infrared spectra. Furthermore, a portion of the monocarboaluminate is inferred from microstructural analyses to incorporate CrO42- ions. These results demonstrate that in situ CO2 mixing is beneficial not only in reducing CO2 emissions, but also in controlling the leaching of toxic substances.
Collapse
Affiliation(s)
- Kian Cho
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea, 08826
| | - Won Kyung Kim
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea, 08826
| | - Juhyuk Moon
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea, 08826
| | - Daniel Cha
- Department of Civil and Environmental Engineering, University of Delaware, Delaware, 19716, USA
| | - Junboum Park
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea, 08826.
| |
Collapse
|
7
|
Castro AS, Cruz BDD, Correia DM, Lanceros-Méndez S, Martins PM. Sustainable Lignin-Reinforced Chitosan Membranes for Efficient Cr(VI) Water Remediation. Polymers (Basel) 2024; 16:1766. [PMID: 39000622 PMCID: PMC11243881 DOI: 10.3390/polym16131766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 07/17/2024] Open
Abstract
The pollution of aquatic environments is a growing problem linked to population growth and intense anthropogenic activities. Because of their potential impact on human health and the environment, special attention is paid to contaminants of emerging concern, namely heavy metals. Thus, this work proposes the use of naturally derived materials capable of adsorbing chromium (VI) (Cr(VI)), a contaminant known for its potential toxicity and carcinogenic effects, providing a sustainable alternative for water remediation. For this purpose, membranes based on chitosan (CS) and chitosan/Kraft lignin (CS/KL) with different percentages of lignin (0.01 and 0.05 g) were developed using the solvent casting technique. The introduction of lignin imparts mechanical strength and reduces swelling in pristine chitosan. The CS and CS/0.01 KL membranes performed excellently, removing Cr(VI) at an initial 5 mg/L concentration. After 5 h of contact time, they showed about 100% removal. The adsorption process was analyzed using the pseudo-first-order model, and the interaction between the polymer matrix and the contaminant was attributed to electrostatic interactions. Therefore, CS and CS/KL membranes could be low-cost and efficient adsorbents for heavy metals in wastewater treatment applications.
Collapse
Affiliation(s)
- Ana S Castro
- Centre of Chemistry, University of Minho, 4710-057 Braga, Portugal
- Institute of Science and Innovation on Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Bárbara D D Cruz
- Centre of Chemistry, University of Minho, 4710-057 Braga, Portugal
- Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | | | - Senentxu Lanceros-Méndez
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Pedro M Martins
- Institute of Science and Innovation on Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Zhang B, Zhu W, Hou R, Yue Y, Feng J, Ishag A, Wang X, Qin Y, Sun Y. Recent advances of application of bentonite-based composites in the environmental remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121341. [PMID: 38824894 DOI: 10.1016/j.jenvman.2024.121341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Bentonite-based composites have been widely utilized in the removal of various pollutants due to low cost, environmentally friendly, ease-to-operate, whereas the recent advances concerning the application of bentonite-based composites in environmental remediation were not available. Herein, the modification (i.e., acid/alkaline washing, thermal treatment and hybrids) of bentonite was firstly reviewed; Then the recent advances of adsorption of environmental concomitants (e.g., organic (dyes, microplastics, phenolic and other organics) and inorganic pollutants (heavy metals, radionuclides and other inorganic pollutants)) on various bentonite-based composites were summarized in details. Meanwhile, the effect of environmental factors and interaction mechanism between bentonite-based composites and contaminants were also investigated. Finally, the conclusions and prospective of bentonite-based composites in the environmental remediation were proposed. It is demonstrated that various bentonite-based composites exhibited the high adsorption/degradation capacity towards environmental pollutants under the specific conditions. The interaction mechanism involved the mineralization, physical/chemical adsorption, co-precipitation and complexation. This review highlights the effect of different functionalization of bentonite-based composites on their adsorption capacity and interaction mechanism, which is expected to be helpful to environmental scientists for applying bentonite-based composites into practical environmental remediation.
Collapse
Affiliation(s)
- Bo Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China; Research Center of Applied Geology of China Geological Survery, Chengdu, 610036, PR China
| | - Weiyu Zhu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Rongbo Hou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yanxue Yue
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Jiashuo Feng
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Alhadi Ishag
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China; Department of Chemical Engineering, Faculty of Engineering and Technical Studies, University of Kordofan, El Obeid, 51111, Sudan
| | - Xiao Wang
- Research Center of Applied Geology of China Geological Survery, Chengdu, 610036, PR China
| | - Yan Qin
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, PR China.
| | - Yubing Sun
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
9
|
Ahmed S, Shahriar A, Rahman N, Alam MZ, Nurnabi M. Synthesis of gamma irradiated acrylic acid-grafted-sawdust (SD-g-AAc) for trivalent chromium adsorption from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2024; 14:None. [PMID: 38933367 PMCID: PMC11200213 DOI: 10.1016/j.hazadv.2024.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 06/28/2024]
Abstract
Water pollution caused by chromium released from tannery is a serious concern to the environment and public health. Chromium removal from tannery effluent is a crying need before discharging to the surface water. In this study, acrylic acid-grafted sawdust was prepared by Tectona grandis sawdust grafting with acrylic acid employing gamma irradiation in the presence of air and Mohr's salt. It was treated with NaOH and the characterization of surface morphology and functional groups of modified sawdust was studied by SEM and FTIR.. The effects of solution pH, adsorbent dosage, adsorption time, and initial Cr(III) ion concentration were investigated by batch sorption studies. The process was found to be pH, temperature and concentration dependent. Langmuir and Freundlich isotherms were applied to realize the adsorption process in depth, and it was found that the Langmuir isotherm model fitted well with experimental data (R2 value of 0.983). The maximum monolayer adsorption capacity of acrylic acid-grafted sawdust for Cr(III) from aquous solution was found to be 21.55 mg g-1 at 25 °C. Pseudo-first-order and pseudo-second-order kinetic models were employed to analyze the kinetics of the process, and it was found that the experimental process followed the pseudo-second-order kinetic model, i.e. chemisorption. This study revealed that acrylic acid-grafted sawdust has a decent potential for the removal of Cr(III) from tannery effluents.
Collapse
Affiliation(s)
- Sobur Ahmed
- Institute of Leather Engineering and Technology, University of Dhaka, 44-50, Hazaribagh, Dhaka, 1209, Bangladesh
| | - Abrar Shahriar
- Institute of Leather Engineering and Technology, University of Dhaka, 44-50, Hazaribagh, Dhaka, 1209, Bangladesh
| | - Nazia Rahman
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Dhaka, 3787, Bangladesh
| | - Md. Zahangir Alam
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Nurnabi
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
10
|
Xu J, Li B, Zhang XD, Wu D, Zhao JL, Chen K. Selective removal of Cr 2O 72- in aqueous solution by nonporous pure crystals of cucurbit[6]uril. Dalton Trans 2024; 53:6168-6172. [PMID: 38488062 DOI: 10.1039/d4dt00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cucurbit[6]uril (Q[6]) could serve as a selective absorbent for the toxic anion Cr2O72-, which was demonstrated by the results of UV-vis, ICP, XPS, SEM, and EDS experiments. Single-crystal X-ray diffraction analysis revealed that capture capacity could be attributed to the outer-surface interactions of cucurbit[n]uril between Cr2O72- and the outer surface of Q[6].
Collapse
Affiliation(s)
- Jing Xu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Bin Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xiu-Du Zhang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, China
| | - Dong Wu
- Computer Aided Drug Discovery Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519003, China.
| | - Jiang-Lin Zhao
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519080, Guangdong, China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
11
|
Alterary SS, Al-Alshaikh MA, Elhadi AM, Cao W. Design, Synthesis, and Evaluation of Novel Magnetic Nanoparticles Combined with Thiophene Derivatives for the Removal of Cr(VI) from an Aqueous Solution. ACS OMEGA 2024; 9:7835-7849. [PMID: 38405514 PMCID: PMC10883020 DOI: 10.1021/acsomega.3c07517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
Most heavy metals are harmful to human health and the environment, even at extremely low concentrations. In natural waters, they are usually found only in trace amounts. Researchers are paying great attention to nanotechnology and nanomaterials as viable solutions to the problem of water pollution. This research focuses on the synthesis of organic thiophene derivatives that can be used as grafted ligands on the surface of silica-coated iron oxide nanoparticles to remove Cr(VI) chromium ions from water. The Vilsmeier-Haack reaction allows the formation of aldehyde groups in thiophene derivatives, and the resulting products were characterized by the FT-IR, NMR, and GC-MS. Schiff base is used as a binder between organic compounds and nanoparticles by the reaction of aldehyde groups in thiophene derivatives and amine groups on the surface of coated iron oxide nanoparticles. Schiff base functionalized Fe3O4 composites (MNPs@SiO2-SB-THCA) and (MNPs@SiO2-SB-THCTA) were successfully synthesized by homogeneous and heterogeneous methods and characterized by a combination of FT-IR, transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The adsorption studies, kinetic modeling, adsorption isotherms, and thermodynamics of the two materials, MNPs@SiO2-SB-THCA and MNPs@SiO2-SB-THCTA, were investigated for the removal of Cr(VI) from water at room temperature and at 50 mg/L. The high adsorption capacity at pH 6 for MNPs@SiO2-SB-THCTA was 15.53 mg/g, and for MNPs@SiO2-SB-THCA, it was 14.31 mg/g.
Collapse
Affiliation(s)
- Seham S. Alterary
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 11495 Riyadh, Saudi
Arabia
| | - Monirah A. Al-Alshaikh
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 11495 Riyadh, Saudi
Arabia
| | - Athar M. Elhadi
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 11495 Riyadh, Saudi
Arabia
| | - Wenjie Cao
- Scientific
Design Company Incorporated, 49 Industrial Avenue, Little Ferry, 07643 New Jersey, United States
| |
Collapse
|
12
|
Ge R, E T, Cheng Y, Wang Y, Yu J, Li Y, Yang S. NaH 2PO 4 synergizes with organic matter to stabilize chromium in tannery sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119843. [PMID: 38128209 DOI: 10.1016/j.jenvman.2023.119843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Heavy metal stabilization is an effective method to treat chromium in tannery sludge. Here we show that mainly investigated NaH2PO4 (MSP) and organic matter (OM) to stabilize chromium in tannery sludge. The experimental investigation revealed that the addition of montmorillonite (MMT) and MSP samples showed a significant increase in the percentage of reducible and oxidizable Cr in the former compared to the samples with the addition of MMT. This is attributed to the formation of Cr-O bond, which allows the MSP to undergo an inner-sphere complexation reaction with the metal oxide of Cr via ligand exchange. Significantly, the MSP moiety adsorbs on the surface of OM through monodentate, which increases the adsorption sites of OM for Cr6+ and promotes the reduction of Cr6+ to Cr3+. Moreover, PO43- reacts with Cr3+ to produce CrPO4 precipitation, thus reducing the free Cr3+ content. Finally, DFT calculations confirmed that a ternary system is formed between PO43-, OM, and Cr, and the binding energy is negative, which indicated that PO43- could co-stabilize Cr with OM.
Collapse
Affiliation(s)
- Ruijie Ge
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Tao E
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Ying Cheng
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Yuanfei Wang
- Liaoning Huadian Environmental Testing Co., LTD, Jinzhou, 121013, Liaoning, China
| | - Jia Yu
- Environmental Protection Monitoring Station of Haining, Haining, 330481, Zhejiang, China
| | - Yun Li
- Chemistry & Chemical Engineering of College Yantai University, Yantai, 264005, Shandong, China.
| | - Shuyi Yang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China.
| |
Collapse
|
13
|
Priya VS, Basha SK, Kumari VS. Sustainable removal of hexavalent chromium using graphene oxide - Iron oxide reinforced pectin/polyvinyl alcohol magnetic gel beads. Int J Biol Macromol 2024; 257:128542. [PMID: 38056747 DOI: 10.1016/j.ijbiomac.2023.128542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/15/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
The study investigated removal of hexavalent chromium Cr (VI) from aqueous solution using graphene oxide‑iron oxide reinforced pectin/polyvinyl alcohol magnetic gel beads prepared through co-precipitation and freeze-drying technique. Scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, N2 adsorption-desorption isotherm, and zeta potential are used for characterization. The surface area of magnetic gel beads calculated by BET method was determined to be 100.95 m2/g, significantly higher than that of GO and GO-Fe3O4. The optimum removal efficiency of GO-Fe3O4/Pec/PVA was assessed by batch method at variables such as pH(1-6), adsorption time(0-180 min), and temperature(25-35 °C). Accordingly, 0.2 g GO-Fe3O4/Pec/PVA dose, pH 2, contact time: 120 min at 25 °C were found to be the optimal conditions, and maximum adsorption capacity of GO, GO-Fe3O4 and GO-Fe3O4/Pec/PVA toward Cr(VI) removal was found to be 39.5, 62.5 and 78.55 mg g-1, respectively. Kinetic and isotherm studies indicate adsorption data follow pseudo-second-order kinetic and Langmuir isotherm models. Thermodynamic studies showed adsorption capacities of adsorbents decreased when temperature increased which indicated adsorption for Cr (VI) was an exothermic process. The activation energies were found to be 34.92, 26.57, and 35.23 KJ mol-1 for GO, GO-Fe3O4, and GO-Fe3O4/Pec/PVA, respectively, which illustrated adsorption of Cr(VI) onto the surface of adsorbents was a physical process. The beads exhibit excellent recoverability and reusability over five cycles. Overall, GO-Fe3O4/Pec/PVA demonstrates exceptional adsorption properties and can serve as an efficient, stable, less toxic, and magnetically separable adsorbent for removal of Cr(VI) from aqueous solution.
Collapse
Affiliation(s)
- V Shanmuga Priya
- PG and Research Department of Chemistry, Auxilium College (Autonomous), Vellore 632006, Tamil Nadu, India
| | - S Khaleel Basha
- Department of Chemistry, C. Abdul Hakeem College, Melvisharam 632509, Tamil Nadu, India
| | - V Sugantha Kumari
- PG and Research Department of Chemistry, Auxilium College (Autonomous), Vellore 632006, Tamil Nadu, India.
| |
Collapse
|
14
|
Konradt D, Schroden D, Hagemann U, Heidelmann M, Rohns HP, Wagner C, Konradt N. Kinetics of Direct Reaction of Vanadate, Chromate, and Permanganate with Graphene Nanoplatelets for Use in Water Purification. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:140. [PMID: 38251105 PMCID: PMC10819118 DOI: 10.3390/nano14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
Oxometalates of vanadium(V), chromium(VI), and manganese(VII) have negative impacts on water resources due to their toxicity. To remove them, the kinetics of 0.04 mM oxometalates in natural and synthetic water were studied using graphene nanoplatelets (GNP). The GNP were dispersible in water and formed aggregates >15 µm that could be easily separated. Within 30 min, the GNP were covered with ~0.4 mg/g vanadium and ~1.0 mg/g chromium as Cr(OH)3. The reaction of 0.04 mM permanganate with 50 mg of GNP resulted in a coverage of 10 mg/g in 5 min, while the maximum value was 300 mg/g manganese as Mn2O3/MnO. TEM showed a random metal distribution on the surfaces; no clusters or nanoparticles were detected. The rate of disappearance in aerated water followed a pseudo second-order adsorption kinetics (PSO) for V(V), a pseudo second-order reaction for Cr(VI), and a pseudo first-order reaction for Mn(VII). For Cr(VI) and Mn(VII), the rate constants were found to depend on the GNP mass. Oxygen sorption occurred with PSO kinetics as a parallel slow process upon contact of GNP with air-saturated water. For thermally regenerated GNP, the rate constant decreased for V(V) but increased for Cr(VI), while no effect was observed for Mn(VII). GNP capacity was enhanced through regeneration for V(V) and Cr(VI); no effect was observed for Mn(VII). The reactions are well-suited for use in water purification processes and the reaction products, GNP, decorated with single metal atoms, are of great interest for the construction of sensors, electronic devices, and for application in single-atom catalysis (SAC).
Collapse
Affiliation(s)
- Daniel Konradt
- Ruhr-Universität Bochum, Fakultät für Maschinenbau und Fakultät für Chemie und Biochemie, Universitätsstraße 150, 44801 Bochum, Germany
| | - Detlef Schroden
- Department of Waterworks, Stadtwerke Düsseldorf AG, Wiedfeld 50, 40589 Düsseldorf, Germany; (D.S.); (H.-P.R.); (C.W.)
| | - Ulrich Hagemann
- ICAN, NETZ Building, Carl-Benz-Straße 199, 47057 Duisburg, Germany; (U.H.); (M.H.)
| | - Markus Heidelmann
- ICAN, NETZ Building, Carl-Benz-Straße 199, 47057 Duisburg, Germany; (U.H.); (M.H.)
| | - Hans-Peter Rohns
- Department of Waterworks, Stadtwerke Düsseldorf AG, Wiedfeld 50, 40589 Düsseldorf, Germany; (D.S.); (H.-P.R.); (C.W.)
| | - Christoph Wagner
- Department of Waterworks, Stadtwerke Düsseldorf AG, Wiedfeld 50, 40589 Düsseldorf, Germany; (D.S.); (H.-P.R.); (C.W.)
| | - Norbert Konradt
- Department of Waterworks, Stadtwerke Düsseldorf AG, Wiedfeld 50, 40589 Düsseldorf, Germany; (D.S.); (H.-P.R.); (C.W.)
| |
Collapse
|
15
|
Ramli NN, Kurniawan SB, Ighalo JO, Mohd Said NS, Marsidi N, Buhari J, Ramli Shah RA, Zulkifli M, Alias J, Daud NM, Ahmad J, Othman AR, Sheikh Abdullah SR, Abu Hasan H. A review of the treatment technologies for hexavalent chromium contaminated water. Biometals 2023; 36:1189-1219. [PMID: 37209220 DOI: 10.1007/s10534-023-00512-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
The toxicity of hexavalent chromium (Cr(VI)) present in the environment has exceeded the current limits or standards and thus may lead to biotic and abiotic catastrophes. Accordingly, several treatments, including chemical, biological, and physical approaches, are being used to reduce Cr(VI) waste in the surrounding environment. This study compares the Cr(VI) treatment approaches from several areas of science and their competence in Cr(VI) removal. As an effective combination of physical and chemical approaches, the coagulation-flocculation technique removes more than 98% of Cr(VI) in less than 30 min. Most membrane filtering approaches can remove up to 90% of Cr(VI). Biological approaches that involve the use of plants, fungi, and bacteria also successfully eliminate Cr(VI) but are difficult to scale up. Each of these approaches has its benefits and drawbacks, and their applicability is determined by the research aims. These approaches are also sustainable and environmentally benign, thus limiting their effects on the ecosystem.
Collapse
Affiliation(s)
- Nur Nadhirah Ramli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Setyo Budi Kurniawan
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81, Třeboň, Czech Republic
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, P. M. B., 5025, Nigeria
| | - Nor Sakinah Mohd Said
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nuratiqah Marsidi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Junaidah Buhari
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Radhiatul Atiqah Ramli Shah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Maryam Zulkifli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Jahira Alias
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nurull Muna Daud
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Jamilah Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
16
|
Liang H, Ma K, Zhao X, Geng Z, She D, Hu H. Enhancement of Cr(VI) adsorption on lignin-based carbon materials by a two-step hydrothermal strategy: Performance and mechanism. Int J Biol Macromol 2023; 252:126432. [PMID: 37604414 DOI: 10.1016/j.ijbiomac.2023.126432] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Cr(VI) is a carcinogenic heavy metal that forms an oxygen-containing anion, which is difficult to remove from water by adsorbents. Here, industrial alkali lignin was transformed into a Cr(VI) adsorbent (N-LC) by using a two-step hydrothermal strategy. The characterization results of the adsorbent showed that O and N were uniformly distributed on the surface of the adsorbent, resulting in a favorable morphology and structure. The Cr(VI) adsorption of N-LC was 13.50 times that of alkali lignin, and the maximum was 326.10 mg g-1, which confirmed the superiority of the two-step hydrothermal strategy. After 7 cycles, the adsorption of N-LC stabilized at approximately 62.18 %. In addition, in the presence of coexisting ions, N-LC showed a selective adsorption efficiency of 85.47 % for Cr(VI), which is sufficient to support its application to actual wastewaters. Model calculations and characterization showed that N and O groups were the main active factors in N-LC, and CO, -OH and pyridinic-N were the main active sites. This study provides a simple and efficient method for the treatment of heavy metals and the utilization of waste lignin, which is expected to be widely applied in the environmental, energy and chemical industries.
Collapse
Affiliation(s)
- Hongxu Liang
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Kaiyue Ma
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xinkun Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250300, China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Diao She
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongxiang Hu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
17
|
Sun XD, Song J, Duan Z, Feng D, Tian Z, Gao D. Poly(2-vinylpyridine)/MCM-41 Composites with Micropores and Switchable Mesopores for the Removal of Cr(VI). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38016011 DOI: 10.1021/acs.langmuir.3c02744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Porous structure design and reversible regulation of pore size during adsorption-desorption are crucial to the removal of pollutants in water such as Cr(VI). In this paper, micropores and switchable mesopores were constructed on MCM-41 to further improve adsorption-desorption performance of Cr(VI) via the confinement effect of micropores and opening and closing of mesopores. 2-Vinylpyridine was introduced and polymerized into the pores and on the pore mouth of MCM41 modified by C═C group (AM41) under the irradiation of ultraviolet light. The obtained samples (PM41) possessed mesopores (2.73 nm) and micropores (1.36 nm), where mesopores could open or close under different pH and micropores showed the confinement effect because their pore size is close to Cr(VI) diameter (0.87 nm). Compared with MCM-41, the introduction of poly(2-vinylpyridine) enhanced obviously its adsorptive ability and it trapped most of the Cr(VI) (99%) in solution, 12 times higher than that of the parent sample. The change of pore size is favorable to the cycle performance, and after 3 times recycling, the removal rate of Cr(VI) by PM41-20 remained above 88%. Langmuir isotherm showed a better data correlation than the Freundlich model. Cr(VI) in solution was removed by electrostatic interaction between the pyridine group and Cr(VI) and the confinement effect from micropores.
Collapse
Affiliation(s)
- Xiao Dan Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Jingjing Song
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhangxin Duan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Dawei Feng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhenhua Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Dangge Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| |
Collapse
|
18
|
Behera A, Sahu S, Pahi S, Patel RK. Synthesis and characterization of PANI-ZrWPO 4 nanocomposite: adsorption-reduction efficiency and regeneration potential for Cr(VI) removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105627-105645. [PMID: 37715040 DOI: 10.1007/s11356-023-29440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/17/2023] [Indexed: 09/17/2023]
Abstract
A novel polyaniline zirconium tungstophosphate (PANI-ZrWPO4) nanocomposite was successfully synthesized through an in situ oxidative polymerization reaction followed by a microwave irradiation process. The synthesized nanocomposite was characterized by using FESEM, EDX, TEM, XRD, FTIR, Raman, TGA-DTA, XPS, and N2 adsorption-desorption analysis and chemical analysis to know about the formation of material. The results of the FTIR and Raman spectra confirmed that the conducting PANI polymer interacted with ZrWPO4 to form the PANI-ZrWPO4 nanocomposite. The XRD data showed that the composite had a crystalline nature. The TEM and FESEM images revealed that polyaniline had formed on the exterior of the PANI-ZrWPO4 nanocomposite. Further investigation was done on the efficiency of the PANI-ZrWPO4 nanocomposite as an adsorbent for Cr(VI) removal through batch adsorption experiments. The maximum Langmuir adsorption capacity of PANI-ZrWPO4 was found to be 71.4 mg g-1. The removal of Cr(VI) was optimized with the six variables namely adsorbent dose, initial concentration, Time, pH, Temperature, and stirring rate using the Box-Behnken design (BBD) model. The XPS spectra confirmed simultaneously adsorption reduction occurs Cr(VI) to Cr(III) through in situ chemical reduction. Moreover, the regeneration efficiency of PANI-ZrWPO4 was studied, and it was found to be able to remove around 80% of Cr(VI) even after five cycles, demonstrating its potential as an effective and reusable adsorbent.
Collapse
Affiliation(s)
- Abhijit Behera
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sumanta Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
- Ben-Gurion University of the Negev, 8499000, Beersheba, Israel
| | - Souman Pahi
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Raj Kishore Patel
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
19
|
Basheer AO, Abu Odeh A, Al-Douri Y. Structural analysis and characterization of date palm fiber-based low-cost carbon nanotubes and nanostructured powder activated carbon. Heliyon 2023; 9:e18811. [PMID: 37576214 PMCID: PMC10412843 DOI: 10.1016/j.heliyon.2023.e18811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
The structural properties and characteristics of date palm fiber-based low-cost carbon nanotubes (CNTs) and nanostructured powder activated carbon (DP-NPAC) are investigated. The DP-NPAC and CNTs are prepared using an environmentally friendly method, and characterized and analyzed using field emission-scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results have showed that both DP-NPAC and CNTs possess crystallite structure, nano-scale, high capacity, cost-effective for multi-application that make them efficient for future fabrication and manufacturing. It is supposed that DP-NPAC biomass is to be used as potential and cost-effective precursor for synthesized CNTs.
Collapse
Affiliation(s)
- Alfarooq O. Basheer
- Department for Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ali Abu Odeh
- Academic Support Department, Abu Dhabi Polytechnic, P.O. Box 111499, Al Ain, United Arab Emirates
| | - Y. Al-Douri
- Nanotechnology and Catalysis Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Applied Physics and Astronomy, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Department of Mechanical Engineering, Faculty of Engineering, Piri Reis University, Eflatun Sk. No:8, 34940, Tuzla, Istanbul, Turkey
- Department of Physics, Faculty of Science, Sana'a University, Sana'a, Yemen
| |
Collapse
|
20
|
Raie DS, Tsonas I, Canales M, Mourdikoudis S, Simeonidis K, Makridis A, Karfaridis D, Ali S, Vourlias G, Wilson P, Bozec L, Ciric L, Kim Thanh NT. Enhanced detoxification of Cr 6+ by Shewanella oneidensis via adsorption on spherical and flower-like manganese ferrite nanostructures. NANOSCALE ADVANCES 2023; 5:2897-2910. [PMID: 37260478 PMCID: PMC10228370 DOI: 10.1039/d2na00691j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/16/2023] [Accepted: 12/31/2022] [Indexed: 06/02/2023]
Abstract
Maximizing the safe removal of hexavalent chromium (Cr6+) from waste streams is an increasing demand due to the environmental, economic and health benefits. The integrated adsorption and bio-reduction method can be applied for the elimination of the highly toxic Cr6+ and its detoxification. This work describes a synthetic method for achieving the best chemical composition of spherical and flower-like manganese ferrite (MnxFe3-xO4) nanostructures (NS) for Cr6+ adsorption. We selected NS with the highest adsorption performance to study its efficiency in the extracellular reduction of Cr6+ into a trivalent state (Cr3+) by Shewanella oneidensis (S. oneidensis) MR-1. MnxFe3-xO4 NS were prepared by a polyol solvothermal synthesis process. They were characterised by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectrometry (XPS), dynamic light scattering (DLS) and Fourier transform-infrared (FTIR) spectroscopy. The elemental composition of MnxFe3-xO4 was evaluated by inductively coupled plasma atomic emission spectroscopy. Our results reveal that the oxidation state of the manganese precursor significantly affects the Cr6+ adsorption efficiency of MnxFe3-xO4 NS. The best adsorption capacity for Cr6+ is 16.8 ± 1.6 mg Cr6+/g by the spherical Mn0.22+Fe2.83+O4 nanoparticles at pH 7, which is 1.4 times higher than that of Mn0.8Fe2.2O4 nanoflowers. This was attributed to the relative excess of divalent manganese in Mn0.22+Fe2.83+O4 based on our XPS analysis. The lethal concentration of Cr6+ for S. oneidensis MR-1 was 60 mg L-1 (determined by flow cytometry). The addition of Mn0.22+Fe2.83+O4 nanoparticles to S. oneidensis MR-1 enhanced the bio-reduction of Cr6+ 2.66 times compared to the presence of the bacteria alone. This work provides a cost-effective method for the removal of Cr6+ with a minimum amount of sludge production.
Collapse
Affiliation(s)
- Diana S Raie
- Biophysics Group, Department of Physics and Astronomy, University College London Gower Street London WC1E 6BT UK http://www.ntk-thanh.co.uk
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories 21 Albemarle Street London W1S 4BS UK
| | - Ioannis Tsonas
- UCL Electronic and Electrical Engineering, UCL Gower Street London WC1E 7JE UK
| | - Melisa Canales
- Healthy Infrastructure Research Group, Department of Civil, Environmental & Geomatic Engineering, UCL Gower Street London WC1E 6BT UK
| | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London Gower Street London WC1E 6BT UK http://www.ntk-thanh.co.uk
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories 21 Albemarle Street London W1S 4BS UK
| | | | - Antonis Makridis
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Dimitrios Karfaridis
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Shanom Ali
- Environmental Research Laboratory, ClinicalMicrobiology and Virology, University College London Hospitals NHS Foundation Trust London UK
| | - Georgios Vourlias
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Peter Wilson
- Environmental Research Laboratory, ClinicalMicrobiology and Virology, University College London Hospitals NHS Foundation Trust London UK
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto Toronto Ontario Canada
| | - Lena Ciric
- Healthy Infrastructure Research Group, Department of Civil, Environmental & Geomatic Engineering, UCL Gower Street London WC1E 6BT UK
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London Gower Street London WC1E 6BT UK http://www.ntk-thanh.co.uk
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories 21 Albemarle Street London W1S 4BS UK
| |
Collapse
|
21
|
Kang M, Yu SH, Baek KY, Sung MM, Cho S. MIL-101-NH 2(Fe)-Coated Nylon Microfibers for Immobilized Photocatalysts in RhB and Cr(VI) Removal. ACS OMEGA 2023; 8:15298-15305. [PMID: 37151491 PMCID: PMC10157658 DOI: 10.1021/acsomega.3c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
MIL-101-NH2(Fe) is one of the effective photocatalytic metal-organic frameworks (MOFs) working under visible light. However, its powder-type form inhibits reusability in practical applications. In this study, we immobilized MIL-101-NH2(Fe) on a polymeric microfiber mesh to improve reusability while minimizing the loss of catalytic performance. To overcome the lack of surface functionality of the nylon fibers, an atomic layer deposition Al2O3 layer and NH2-BDC linker were introduced to facilitate uniform coating of the MOF on the fiber surface. The reactions of the metal precursor to the nylon substrate and NH2-BDC ligand of the MOF allow chemical bonding from the core to the shell of the entire hybrid catalytic materials. The resulting fiber-immobilized MOFs (Nylon@Al2O3@MOF) demonstrated high photocatalytic performance in the removal of RhB and Cr(VI) as representatives of organic dyes and heavy metals, respectively, while retaining over 85% of its efficiency after five cycles.
Collapse
Affiliation(s)
- Munchan Kang
- Materials
Architecturing Research Center, Korea Institute
of Science and Technology, Seoul 02792, Republic of Korea
- Department
of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Sung Ho Yu
- Materials
Architecturing Research Center, Korea Institute
of Science and Technology, Seoul 02792, Republic of Korea
- Department
of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyung-Youl Baek
- Materials
Architecturing Research Center, Korea Institute
of Science and Technology, Seoul 02792, Republic of Korea
- Division
of Nano and Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST
Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic
of Korea
| | - Myung Mo Sung
- Department
of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Sangho Cho
- Materials
Architecturing Research Center, Korea Institute
of Science and Technology, Seoul 02792, Republic of Korea
- Division
of Nano and Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
22
|
Ayati A, Tanhaei B, Beiki H, Krivoshapkin P, Krivoshapkina E, Tracey C. Insight into the adsorptive removal of ibuprofen using porous carbonaceous materials: A review. CHEMOSPHERE 2023; 323:138241. [PMID: 36841446 DOI: 10.1016/j.chemosphere.2023.138241] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Over the last decade, the removal of pharmaceuticals from aquatic bodies has garnered substantial attention from the scientific community. Ibuprofen (IBP), a non-steroidal anti-inflammatory drug, is released into the environment in pharmaceutical waste as well as medical, hospital, and household effluents. Adsorption technology is a highly efficient approach to reduce the IBP in the aquatic environment, particularly at low IBP concentrations. Due to the exceptional surface properties of carbonaceous materials, they are considered ideal adsorbents for the IBP removal of, with high binding capacity. Given the importance of the topic, the adsorptive removal of IBP from effluent using various carbonaceous adsorbents, including activated carbon, biochar, graphene-based materials, and carbon nanostructures, has been compiled and critically reviewed. Furthermore, the adsorption behavior, binding mechanisms, the most effective parameters, thermodynamics, and regeneration methods as well as the cost analysis were comprehensively reviewed for modified and unmodified carbonaceous adsorbents. The compiled studies on the IBP adsorption shows that the IBP uptake of some carbon-based adsorbents is significantly than that of commercial activated carbons. In the future, much attention is needed for practical utilization and upscaling of the research findings to aid the management and sustainability of water resource.
Collapse
Affiliation(s)
- Ali Ayati
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia.
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Hossein Beiki
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Pavel Krivoshapkin
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Elena Krivoshapkina
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Chantal Tracey
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
23
|
Anjum A, Mazari SA, Hashmi Z, Jatoi AS, Abro R, Bhutto AW, Mubarak NM, Dehghani MH, Karri RR, Mahvi AH, Nasseri S. A review of novel green adsorbents as a sustainable alternative for the remediation of chromium (VI) from water environments. Heliyon 2023; 9:e15575. [PMID: 37153391 PMCID: PMC10160521 DOI: 10.1016/j.heliyon.2023.e15575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
The presence of heavy metal, chromium (VI), in water environments leads to various diseases in humans, such as cancer, lung tumors, and allergies. This review comparatively examines the use of several adsorbents, such as biosorbents, activated carbon, nanocomposites, and polyaniline (PANI), in terms of the operational parameters (initial chromium (VI) concentration (Co), temperature (T), pH, contact time (t), and adsorbent dosage) to achieve the Langmuir's maximum adsorption capacity (qm) for chromium (VI) adsorption. The study finds that the use of biosorbents (fruit bio-composite, fungus, leave, and oak bark char), activated carbons (HCl-treated dry fruit waste, polyethyleneimine (PEI) and potassium hydroxide (KOH) PEI-KOH alkali-treated rice waste-derived biochar, and KOH/hydrochloric acid (HCl) acid/base-treated commercial), iron-based nanocomposites, magnetic manganese-multiwalled carbon nanotubes nanocomposites, copper-based nanocomposites, graphene oxide functionalized amino acid, and PANI functionalized transition metal are effective in achieving high Langmuir's maximum adsorption capacity (qm) for chromium (VI) adsorption, and that operational parameters such as initial concentration, temperature, pH, contact time, and adsorbent dosage significantly affect the Langmuir's maximum adsorption capacity (qm). Magnetic graphene oxide functionalized amino acid showed the highest experimental and pseudo-second-order kinetic model equilibrium adsorption capacities. The iron oxide functionalized calcium carbonate (IO@CaCO3) nanocomposites showed the highest heterogeneous adsorption capacity. Additionally, Syzygium cumini bark biosorbent is highly effective in treating tannery industrial wastewater with high levels of chromium (VI).
Collapse
Affiliation(s)
- Amna Anjum
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
- Corresponding author.
| | - Zubair Hashmi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Abdul Sattar Jatoi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Rashid Abro
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Abdul Waheed Bhutto
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
- Corresponding author.
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
- Corresponding author. Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Nasseri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Li Y, Gao C, Shuai K, Hashan D, Liu J, She D. Performance and mechanism of starch-based porous carbon capture of Cr(VI) from water. Int J Biol Macromol 2023; 241:124597. [PMID: 37116837 DOI: 10.1016/j.ijbiomac.2023.124597] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Cr(VI) pollution has seriously affected the survival of biological organisms and humans, so reducing the harm of Cr(VI) pollution is a significant scientific goal. Natural starch exhibits a low adsorption capacity for Cr(VI); thus, physical or chemical modification is needed to improve the adsorption and regeneration performance of starch. In this study, a novel starch-based porous carbon (SPC) was prepared to remove Cr(VI) from water by using soluble starch as a raw material. The characterization results show that the SPC shows a ratio surface area of 1325.39 m2/g. Kinetics suggest that the adsorption of Cr(VI) on SPC is dominated by chemisorption. The isotherm data demonstrated that the adsorption of Cr(VI) by SPC adhered to the Freundlich model. SPC exhibits a multimolecular layer adsorption structure, and the highest amount of adsorbed Cr(VI) in SPC was 777.89 mg/g (25 °C). Ion competition experiments show that SPC exhibits significant selectivity for Cr(VI) adsorption. In addition, the adsorption cycle experiment shows that SPC maintains a 63 % removal rate after 7 cycles. In this study, starch was transformed into high-quality adsorbent materials by hydrothermal and activation strategies, offering a new innovation for the optimization of starch-based adsorbents.
Collapse
Affiliation(s)
- Yanyang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Chunli Gao
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Kewei Shuai
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Dana Hashan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jing Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation CAS&MWR, Yangling 712100, China.
| |
Collapse
|
25
|
Boussouga YA, Okkali T, Luxbacher T, Schäfer AI. Chromium (III) and chromium (VI) removal and organic matter interaction with nanofiltration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163695. [PMID: 37100133 DOI: 10.1016/j.scitotenv.2023.163695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
Chromium (Cr) is a toxic inorganic contaminant for drinking water, in which the concentration has to be controlled for human health and safety. Cr retention was investigated with stirred cell experiments using sulphonated polyethersulfone nanofiltration (NF) membranes of different molecular weight cut-off (MWCO). Cr(III) and Cr(VI) retention follow the order of the MWCO of the studied NF membranes; HY70-720 Da > HY50-1000 Da > HY10-3000 Da with a pH dependency, especially for Cr(III). The importance of the charge exclusion was highlighted when Cr(OH)4- (for Cr(III)) and CrO42- (for Cr(VI)) was the predominant species in the feed solution. In presence of organic matter, namely humic acid (HA), Cr(III) retention increased by 60 %, while no influence of HA was observed for Cr(VI). HA did not induce major modifications on the membrane surface charge for these membranes. Solute-solute interaction, in particular Cr(III)-HA complexation, was the responsible mechanism for the increase in Cr(III) retention. This was confirmed by asymmetric flow field-flow fractionation, coupled with inductively coupled plasma mass spectrometry (FFFF-ICP-MS) analysis. Cr(III)-HA complexation was significant at HA concentrations as low as 1 mgC/L. The chosen NF membranes were able to achieve the EU guideline (25 μg/L) for Cr in drinking water for a feed concentration of 250 μg/L.
Collapse
Affiliation(s)
- Youssef-Amine Boussouga
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Timur Okkali
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
26
|
Malhotra M, Pal M, Chakrabortty S, Pal P. A single functionalized graphene nanocomposite in cross flow module for removal of multiple toxic anionic contaminants from drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65250-65266. [PMID: 37081367 DOI: 10.1007/s11356-023-26937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Polyether sulfone (PES)-based thin-film nanofiltration (TFN) membranes embedded with ferric hydroxide (FeIII(OH)x) functionalized graphene oxide (GO) nanoparticles were fabricated through interfacial polymerization for a generalized application in removal of a plethora of anionic and toxic water contaminants. Following the most relevant characterization, the newly synthesized membranes were fitted in a novel flat sheet cross-flow module, for experimental investigation on purification of live contaminated groundwater collected from different affected areas. The separation performances of the membranes in the flat sheet cross-flow module demonstrated that GOF membranes had higher selectivity for monovalent and divalent salt rejections than pristine GO membranes. Furthermore, both membranes were tested for simultaneously removing widely occurring hazardous ions of heavy metals and metalloids in groundwater, such as arsenic, selenium, chromium, and fluoride. Compared to the pristine GO and the reported membranes in the literature, the GOF membrane exhibited remarkable performance in terms of rejection efficiency (Cr (VI): 97.2%, Se (IV): 96.6%, As(V): 96.3%, F- 88.4%) and sustained flux of 184 LMH (Lm-2 h-1) at an optimum transmembrane pressure of 16 bar. The investigated membrane module equipped with the GOF membrane proved to be a low-cost system with higher anionic rejection and sustained high flux at a comprehensive pH range, as evident over long hours of study vis-à-vis reported systems.
Collapse
Affiliation(s)
- Meenakshi Malhotra
- Environment and Membrane Technology Laboratory, Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, India
| | - Madhubonti Pal
- Environment and Membrane Technology Laboratory, Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, India
| | - Sankha Chakrabortty
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Parimal Pal
- Environment and Membrane Technology Laboratory, Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, India.
| |
Collapse
|
27
|
Liang X, Li Q, Fang Y. Preparation and Characterization of Modified Kaolin by a Mechanochemical Method. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3099. [PMID: 37109935 PMCID: PMC10145449 DOI: 10.3390/ma16083099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
A mechanochemical approach was utilized to prepare modified kaolin, and the hydrophobic modification of kaolin was realized. The study aims to investigate the changes in particle size, specific surface area, dispersion ability, and adsorption performance of kaolin. The structure of kaolin was analyzed using infrared spectroscopy, scanning electron microscopy, and X-ray diffraction, and the alterations to the kaolin microstructure were thoroughly researched and discussed. The results demonstrated that this modification method can effectively improve the dispersion and adsorption capacities of kaolin. Mechanochemical modification can increase the specific surface area of kaolin particles, reduce their particle size, and improve their agglomeration behavior. The layered structure of the kaolin was partially destroyed, the degree of order was debased, and the activity of its particles was enhanced. Furthermore, organic compounds were adsorbed on the surface of the particles. The appearance of new infrared peaks in the modified kaolin's infrared spectrum suggested that the kaolin has undergone a chemical modification process, introducing new functional groups.
Collapse
|
28
|
Dragan ES, Humelnicu D, Dinu MV. Sustainable Multi-Network Cationic Cryogels for High-Efficiency Removal of Hazardous Oxyanions from Aqueous Solutions. Polymers (Basel) 2023; 15:polym15040885. [PMID: 36850169 PMCID: PMC9966014 DOI: 10.3390/polym15040885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
It is still a challenge to develop advanced materials able to simultaneously remove more than one pollutant. Exclusive cationic composite double- and triple-network cryogels, with adequate sustainability in the removal of Cr2O72- and H2PO4- oxyanions, were developed in this work starting from single-network (SN) sponges. Chitosan (CS), as the only polycation originating from renewable resources, and poly(N,N-dimethylaminoethylmethacrylate) (PDMAEMA) and polyethyleneimine (PEI), as synthetic polycations, were employed to construct multi-network cationic composite cryogels. The properties of the composites were tailored by the cross-linking degree of the first network (SN5 and SN20, which means CS with 5 or 20 mole % of glutaraldehyde, respectively) and by the order of the successive networks. FTIR, SEM-EDX, equilibrium water content and compressive tests were used in the exhaustive characterization of these polymeric composites. The sorption performances towards Cr2O72- and H2PO4- anions were evaluated in batch mode. The pseudo-first-order, pseudo-second-order (PSO) and Elovich kinetics models, and the Langmuir, Freundlich and Sips isotherm models were used to interpret the experimental results. The adsorption data were the best fitted by the PSO kinetic model and by the Sips isotherm model, indicating that the sorption mechanism was mainly controlled by chemisorption, irrespective of the structure and number of networks. The maximum sorption capacity for both oxyanions increased with the increase in the number of networks, the highest values being found for the multi-network sponges having SN5 cryogel as the first network. In binary systems, all sorbents preferred Cr2O72- ions, the selectivity coefficient being the highest for TN sponges. The high sorption capacity and remarkable reusability, with only a 4-6% drop in the sorption capacity after five sorption-desorption cycles, recommend these composite cryogels in the removal of two of the most dangerous pollutants represented by Cr2O72- and H2PO4-.
Collapse
Affiliation(s)
- Ecaterina Stela Dragan
- Department of Functional Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
- Correspondence: ; Tel.: +40-232217454; Fax: +40-232211299
| | - Doina Humelnicu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Carol I Bd. 11, 700506 Iasi, Romania
| | - Maria Valentina Dinu
- Department of Functional Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| |
Collapse
|
29
|
Campisi S, Leone M, Papacchini M, Evangelisti C, Polito L, Postole G, Gervasini A. Multifunctional interfaces for multiple uses: Tin(II)-hydroxyapatite for reductive adsorption of Cr(VI) and its upcycling into catalyst for air protection reactions. J Colloid Interface Sci 2023; 630:473-486. [PMID: 36334484 DOI: 10.1016/j.jcis.2022.10.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/21/2022]
Abstract
Evidence collected to date by our group has demonstrated that tin(II)-functionalized hydroxyapatites (Sn/HAP) are a newly discovered class of ecofriendly reductive adsorbents for Cr(VI) removal from wastewaters. In this work an upgraded series of Sn/HAP materials assured a maximum removal capacity of ≈ 20 mgCr/g, doubling the previously reported value for Sn/HAP materials, thanks to higher Sn-dispersion as proved by X-ray photoelectron spectroscopy and electron microscopy. Insights on kinetics and thermodynamics of the reductive adsorption process are provided and the influence of pH, dosage, and nature of Cr(VI) precursors on chromium removal performances have been investigated. Pseudo-second-order kinetics described the interfacial reductive adsorption process on Sn/HAP, characterized by low activation energy (21 kJ mol-1), when measured in the 278-318 K range. Tests performed in the 2-6 pH interval showed similar efficiency in terms of Cr(VI) removal. Conventional procedures of recycling and regeneration resulted ineffective in restoring the pristine performances of the samples due to surface presence of both Sn(IV) and Cr(III). To overcome these weaknesses, the used samples (Sn + Cr/HAP) were upcycled into catalysts in a circular economy perspective. Used samples were tested as catalysts in gas-phase catalytic processes for air pollution remediation: selective catalytic reduction of NOx (NH3-SCR), NH3 selective catalytic Oxidation (NH3-SCO), and selective catalytic oxidation of methane to CO2. Catalytic tests enlightened the interesting activity of the upcycled Sn + Cr/HAP samples in catalytic oxidation processes, being able to selectively oxidize methane to CO2 at relatively low temperature.
Collapse
Affiliation(s)
- Sebastiano Campisi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| | - Mirko Leone
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Maddalena Papacchini
- Department of Technological Innovations and Safety of Plants, INAIL, Products and Anthropic Settlements, Via di Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Claudio Evangelisti
- CNR - ICCOM - Istituto di Chimica dei Composti OrganoMetallici, Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Laura Polito
- CNR - Consiglio Nazionale delle Ricerche, SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Via G. Fantoli 16/15, 20138 Milano, Italy
| | - Georgeta Postole
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Antonella Gervasini
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
30
|
Zulfiqar U, Haider FU, Ahmad M, Hussain S, Maqsood MF, Ishfaq M, Shahzad B, Waqas MM, Ali B, Tayyab MN, Ahmad SA, Khan I, Eldin SM. Chromium toxicity, speciation, and remediation strategies in soil-plant interface: A critical review. FRONTIERS IN PLANT SCIENCE 2023; 13:1081624. [PMID: 36714741 PMCID: PMC9880494 DOI: 10.3389/fpls.2022.1081624] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
In recent decades, environmental pollution with chromium (Cr) has gained significant attention. Although chromium (Cr) can exist in a variety of different oxidation states and is a polyvalent element, only trivalent chromium [Cr(III)] and hexavalent chromium [Cr(VI)] are found frequently in the natural environment. In the current review, we summarize the biogeochemical procedures that regulate Cr(VI) mobilization, accumulation, bioavailability, toxicity in soils, and probable risks to ecosystem are also highlighted. Plants growing in Cr(VI)-contaminated soils show reduced growth and development with lower agricultural production and quality. Furthermore, Cr(VI) exposure causes oxidative stress due to the production of free radicals which modifies plant morpho-physiological and biochemical processes at tissue and cellular levels. However, plants may develop extensive cellular and physiological defensive mechanisms in response to Cr(VI) toxicity to ensure their survival. To cope with Cr(VI) toxicity, plants either avoid absorbing Cr(VI) from the soil or turn on the detoxifying mechanism, which involves producing antioxidants (both enzymatic and non-enzymatic) for scavenging of reactive oxygen species (ROS). Moreover, this review also highlights recent knowledge of remediation approaches i.e., bioremediation/phytoremediation, or remediation by using microbes exogenous use of organic amendments (biochar, manure, and compost), and nano-remediation supplements, which significantly remediate Cr(VI)-contaminated soil/water and lessen possible health and environmental challenges. Future research needs and knowledge gaps are also covered. The review's observations should aid in the development of creative and useful methods for limiting Cr(VI) bioavailability, toxicity and sustainably managing Cr(VI)-polluted soils/water, by clear understanding of mechanistic basis of Cr(VI) toxicity, signaling pathways, and tolerance mechanisms; hence reducing its hazards to the environment.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Muhammad Mohsin Waqas
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | | | - Syed Amjad Ahmad
- Department of Mechanical Engineering, NFC IEFR, Faisalabad, Pakistan
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Sayed M. Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
31
|
Peng X, Liu S, Luo Z, Yu X, Liang W. Selective Removal of Hexavalent Chromium by Novel Nitrogen and Sulfur Containing Cellulose Composite: Role of Counter Anions. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010184. [PMID: 36614522 PMCID: PMC9821927 DOI: 10.3390/ma16010184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 05/27/2023]
Abstract
Exploiting an adsorbent with superb selectivity is of utmost importance for the remediation of Cr (VI)-laden wastewater. In this work, a novel nitrogen and sulfur functionalized 3D macroporous cellulose material (MPS) was prepared by homogeneous cross-link cellulose and polyvinylimidazole, followed by ion exchange with MoS42-. MPS exhibited high removal efficiency at a broad pH range (1.0-8.0) and large adsorption capacity (379.78 mg/g) toward Cr (VI). Particularly, outstanding selectivity with an enormous partition coefficient (1.01 × 107 mL/g) was achieved on MPS. Replacing MoS42- with Cl- and MoO42- led to a sharp decline in adsorption selectivity, demonstrating that MoS42- contributed substantially to the selectivity. Results of FTIR, XPS, and apparent kinetic analysis revealed that Cr (VI) was first pre-enriched on the MPS surface via electrostatic and dispersion forces, and then reacted with MoS42- to generate Cr (III), which deposited on MPS by forming Cr(OH)3 and chromium(III) sulfide. This study provides a new idea for designing adsorbents with a superior selectivity for removing Cr (VI) from sewage.
Collapse
Affiliation(s)
- Xiong Peng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shujun Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhijia Luo
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiwen Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Wanwen Liang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
32
|
Effect of Poly-aniline coated iron ore mining waste (PANI@IOMW) as efficient adsorbent on mitigation of Cr (VI) from aqueous solution: Experimental and statistical investigation. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Khan MI, Almesfer MK, Elkhaleefa AM, Aamary A, Ali IH, Shamim MZ, Shoukry H, Rehan M. Efficient adsorption of hexavalent chromium ions onto novel ferrochrome slag/polyaniline nanocomposite: ANN modeling, isotherms, kinetics, and thermodynamic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86665-86679. [PMID: 35799000 DOI: 10.1007/s11356-022-21778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The current research is concerned with the adsorption behavior of chromium (IV) ions in an aqueous solution using a novel ferrochrome slag/polyaniline nanocomposite (FeCr-PANI) adsorbent. The effect of process parameters such as temperature, pH solution, initial Cr (VI) ions concentration, adsorbent dosage, and contact time on the adsorption process is experimentally investigated in this study. Furthermore, we have trained a multilayer artificial neural network (ANN) using the experimental data of various process parameters to successfully predict the adsorption behavior of chromium (IV) ions onto the FeCr-PANI adsorbent. The ANN model was trained using the Lavenberg-Marquardt algorithm and ten neurons in the hidden layer and was able to estimate the % removal efficiency of chromium (IV) under the influence of different process parameters (R2 = 0.991). Initial solution pH was observed to have a significant influence on the % removal efficiency. The % removal efficiency was found to be high at 97.10% for the solution with pH 3 but decreased to 64.40% for the solution with pH 11. Cr (VI) % removal efficiency was observed to increase with an increase in solution temperature, adsorbent dosage, and contact time. However, the % removal efficiency was found to decrease from 96.9 to 54.8% with increasing the initial dye concentration from 100 to 400 ppm. Furthermore, the adsorption capacity increased from 9.69 to 21.93 mg/g with an increase in the initial concentration from 100 to 400 ppm, as expected. The Langmuir isotherm model exhibited the best fit with the experimental data (R2 = 0.9977). The maximum adsorption capacity was found to be 22.523 mg g-1 at 298 K. The experimental data fitted well with the pseudo-second-order kinetic model.
Collapse
Affiliation(s)
- Mohammed Ilyas Khan
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia.
| | | | | | - Abdelfattah Aamary
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Ismat Hassan Ali
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Zubair Shamim
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
- Center for Artificial Intelligence, King Khalid University, Abha, Saudi Arabia
| | - Hamada Shoukry
- Housing and Building National Research Centre (HBRC), Building Physics (BPI), Cairo, Egypt
- Department of Civil and Architectural Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Mohmmad Rehan
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
34
|
de Borja Ojembarrena F, Sammaraie H, Campano C, Blanco A, Merayo N, Negro C. Hexavalent Chromium Removal from Industrial Wastewater by Adsorption and Reduction onto Cationic Cellulose Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234172. [PMID: 36500795 PMCID: PMC9736468 DOI: 10.3390/nano12234172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 05/12/2023]
Abstract
Cationic cellulose nanocrystals (CCNC) are lignocellulosic bio-nanomaterials that present large, specific areas rich with active surface cationic groups. This study shows the adsorption removal of hexavalent chromium (Cr(VI)) from industrial wastewaters by the CCNC. The CCNC were synthetized through periodate oxidation and Girard's reagent-T cationization. The high value of CCNCs cationic groups and anionic demand reveal probable nanocrystal-Cr(VI) attraction. Adsorption was performed with synthetic Cr(VI) water at different pH, dosage, Cr(VI) concentration and temperature. Fast removal of Cr(VI) was found while operating at pH 3 and 100 mg·L-1 of dosage. Nevertheless, a first slower complete removal of chromium was achieved by a lower CCNC dosage (40 mg·L-1). Cr(VI) was fully converted by CCNC into less-toxic trivalent species, kept mainly attached to the material surface. The maximum adsorption capacity was 44 mg·g-1. Two mechanisms were found for low chromium concentrations (Pseudo-first and pseudo-second kinetic models and continuous growth multi-step intraparticle) and for high concentrations (Elovich model and sequential fast growth-plateau-slow growth intraparticle steps). The Sips model was the best-fitting isotherm. Isotherm thermodynamic analysis indicated a dominant physical sorption. The Arrhenius equation revealed an activation energy between physical and chemical adsorption. CCNC application at selected conditions in industrial wastewater achieved a legal discharge limit of 40 min.
Collapse
Affiliation(s)
- Francisco de Borja Ojembarrena
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Correspondence: (F.d.B.O.); (C.N.)
| | - Hassan Sammaraie
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Cristina Campano
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Department of Microbial and Plant Biotechnology, Center for Biological Research Margarita Salas (CIB-CSIC), 28040 Madrid, Spain
| | - Angeles Blanco
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Noemi Merayo
- Department of Mechanical, Chemical and Industrial Design Engineering, ETSIDI, Polytechnic University of Madrid, Ronda de Valencia 3, 28012 Madrid, Spain
| | - Carlos Negro
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Correspondence: (F.d.B.O.); (C.N.)
| |
Collapse
|
35
|
KSHİF CHANNA M, BAİG J, AKHTAR K, JUNAİD M, KAZİ TG, AFRİDİ HI, AHMED SOLANGİ S, PERVEEN S, SARA B. Distribution of Chromium Species and Physico-Chemical Analysis of Various Industrial Effluents in Hyderabad and Jamshoro, Pakistan. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This research aimed to quantify the speciation of chromium in different industrial effluent samples of Hyderabad and Jamshoro, Pakistan. The hexavalent chromium (Cr(VI)) was determined by microsample injection system flame atomic absorption spectroscopy (MIS-FAAS). The total chromium was measured by MIS-FAAS after the oxidation of trivalent chromium (Cr(III)) to hexavalent chromium (Cr(VI)) by Ce(SO4)2 in an acidic medium (0.07 M H2SO4). The content of Cr(III) was measured by the difference method (total chromium – hexavalent chromium). In the effluent samples of textile and fabrics industries, the total Cr was observed 400 to 1600 times higher than the US-EPA and WHO regulatory limit (0.10 mg/L) in the industrial discharge. In the effluent of food and plastic industries, the Cr(VI) was found to be high as compared to the Cr(III), and the Cr(III) was observed high in the effluent samples of chemical as well as textile and fabrics industries. The Cr(VI) was higher than the US-EPA and WHO regulatory limit (0.05 mg/L) in the effluent samples of all selected industries, but the Cr(III) was within the US-EPA and WHO regulatory limit (170 mg/L) in the industrial discharges.
Collapse
Affiliation(s)
| | | | | | - Mirza JUNAİD
- University of Medical and Health Science for Women
| | | | | | | | | | | |
Collapse
|
36
|
Goudarzi MD, Khosroshahi N, Safarifard V. Exploring novel heterojunctions based on the cerium metal-organic framework family and CAU-1, as dissimilar structures, for the sake of photocatalytic activity enhancement. RSC Adv 2022; 12:32237-32248. [PMID: 36425724 PMCID: PMC9647877 DOI: 10.1039/d2ra06034e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/25/2022] [Indexed: 09/08/2024] Open
Abstract
Ce-based metal-organic frameworks (Ce-MOFs) are excellent photocatalysts due to their high efficiency in charge transportation. The integration of this family with CAU-1 (CAU standing for Christian-Albrechts-University), as a MOF benefiting from its ultra-high surface area, can remarkably enhance the properties of the structure. This research includes four new heterojunctions, namely CAU-1/Ce-BDC-NH2, CAU-1/Ce-UiO-66, CAU-1/Ce-MOF-808, and CAU-1/Ce-BDC, prepared by an innovative method, and several characterization techniques were employed to study the structural features of the frameworks. Their high surface area and low bandgap energy seemed appropriate for catalytic applications. Therefore, CAU-1/Ce-BDC was chosen for the photocatalytic removal of Cr(vi), a dangerous heavy metal, from aqueous systems. According to the results, a 96% reduction of Cr(vi) to Cr(iii) within 75 min was observed, and the catalyst retained its stability after four runs of reactions under acidic conditions.
Collapse
Affiliation(s)
- Moein Darabi Goudarzi
- Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Negin Khosroshahi
- Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
37
|
Almanassra IW, Al-Ansari T, Ihsanullah I, Kochkodan V, Chatla A, Atieh MA, Shanableh A, Laoui T. Carbide-derived carbon as an extraordinary material for the removal of chromium from an aqueous solution. CHEMOSPHERE 2022; 307:135953. [PMID: 35964727 DOI: 10.1016/j.chemosphere.2022.135953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
In the present work, the adsorptive removal of chromium (Cr) from water by carbide-derived carbon (CDC) was investigated. The morphology and structure of the CDC were characterized by using FTIR, SEM, TEM, XRD, and N2 adsorption-desorption measurements. The effect of adsorption parameters including contact time, initial Cr concentration, temperature, initial solution pH, and CDC dosage was examined on the removal of Cr ions. The kinetic analysis revealed that the experimental data on the removal of Cr ions on CDC is well correlated with the pseudo-second order kinetic model (with R2 > 0.999), while the equilibrium data were fitted by the Redlich-Peterson isotherm model (with R2 > 0.992). The Langmuir and Sips models were also in good compliance with the equilibrium data, indicating a monolayer coverage of Cr ions onto the CDC surface with some heterogeneous active adsorption sites. The CDC revealed a notable Langmuir adsorption capacity of 159.1 mg/g for Cr ions at pH 6 and room temperature. The thermodynamic analysis illustrated that the Cr ions elimination by CDC is a feasible adsorption process and endothermic in nature. After five adsorption/desorption cycles, less than 18% reduction in the adsorption capacity was obtained indicating the stability and reusability of the CDC. Moreover, the CDC demonstrated an excellent potential in removing the Cr ions from real brackish water. According to the adsorption data, both physical and chemical adsorption processes occurred, and the adsorption was mainly controlled by electrostatic interactions with a possible reduction of hexavalent Cr to trivalent Cr at acidic conditions.
Collapse
Affiliation(s)
- Ismail W Almanassra
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates.
| | - Tareq Al-Ansari
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Viktor Kochkodan
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Anjaneyulu Chatla
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Muataz Ali Atieh
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates; Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates; Department of Civil and Environmental Engineering, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Tahar Laoui
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates; Department of Mechanical and Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
38
|
Efficient Removal of Eriochrome Black T (EBT) Dye and Chromium (Cr) by Hydrotalcite-Derived Mg-Ca-Al Mixed Metal Oxide Composite. Catalysts 2022. [DOI: 10.3390/catal12101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Eriochrome Black T (EBT) and chromium (Cr) are considered to be potential pollutants due to their toxicity and severe impact on the environment. In the current study, hydrotalcite-derived Mg-Ca-Al-LDO mixed metal oxide composite was prepared using a conventional co-precipitation method and explored in terms of the removal of Cr and EBT dye from aqueous solution in a batch mode adsorption process. The prepared Mg-Ca-Al-LDH, Mg-Ca-Al-LDO and spent Mg-Ca-Al-LDO adsorbents were characterized to propose the adsorption mechanism. Different adsorption parameters were examined, such as adsorbent dosage, initial concentration, pH, reaction temperature and contact time. The EBT adsorption kinetic results matched strongly with the pseudo-second-order model for both Cr (R2 = 0.991) and EBT (R2 = 0.999). The Langmuir isotherm model exhibited a maximum adsorption capacity of 65.5 mg/g and 150.3 mg/g for Cr and EBT, respectively. The structure and morphology results obtained after Cr and EBT dye adsorption reveal that the adsorption mechanism is associated with electrostatic interactions and surface complexation of Cr and EBT dye with Mg-Ca-Al-LDO surface functional groups. Moreover, more than 84% of the initial adsorption capacity of EBT and Cr can be achieved on the Mg-Ca-Al-LDO surface after five adsorption/desorption cycles. Finally, the Mg-Ca-Al-LDO mixed metal oxide composite can be potentially used as a cost-effective adsorbent for wastewater treatment processes.
Collapse
|
39
|
Zhang Y, Yu Y, Qin H, Peng D, Chen X. Dynamic Adsorption Characteristics of Cr(VI) in Red-Mud Leachate onto a Red Clay Anti-Seepage Layer. TOXICS 2022; 10:606. [PMID: 36287886 PMCID: PMC9611786 DOI: 10.3390/toxics10100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Red-mud leachate from tailings ponds contains Cr(VI), which can pollute groundwater via infiltration through anti-seepage layers. This paper investigates leachate from a red-mud tailings pond in southwest China and the red clay in the surrounding area to simulate the adsorption of Cr(VI) onto clay at different pHs, using geochemical equilibrium software (Visual MINTEQ). We also performed dynamic adsorption testing of Cr(VI) on a clay anti-seepage layer. The dynamic adsorption behaviors and patterns in the dynamic column were predicted using the Thomas and Yoon-Nelson models. Visual MINTEQ predicted that Cr(VI) adsorption in red-mud leachate onto clay was 69.91%, increasing gradually with pH, i.e., adsorption increased under alkaline conditions. Cr(VI) concentration in the effluent was measured using the permeability test through a flexible permeameter when the adsorption saturation time reached 146 days. At a low seepage rate, Cr(VI) adsorption onto the clay anti-seepage layer took longer. Saturation adsorption capacity, q0, and adsorption rate constant, Kth, were determined using the Thomas model; the Yoon-Nelson model was used to determine when the effluent Cr(VI) concentration reached 50% of the initial concentration. The results provide parameters for the design and pollution prediction of the clay anti-seepage layer of red-mud tailings ponds.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Emergency Management, Xihua University, Chengdu 610039, China
| | - Yue Yu
- School of Emergency Management, Xihua University, Chengdu 610039, China
| | - Hao Qin
- School of Emergency Management, Xihua University, Chengdu 610039, China
| | - Daoping Peng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xing Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| |
Collapse
|
40
|
Song J, Meng Z, Wang X, Zhang G, Bi C, Hou J. One-step microwave method synthesis of Fe3O4 nanoribbon@ carbon composite for Cr (Ⅵ) removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Lourenço A, Kukić D, Vasić V, Costa RA, Antov M, Šćiban M, Gominho J. Valorisation of Lignocellulosic Wastes, the Case Study of Eucalypt Stumps Lignin as Bioadsorbent for the Removal of Cr(VI). Molecules 2022; 27:molecules27196246. [PMID: 36234783 PMCID: PMC9571115 DOI: 10.3390/molecules27196246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The main objective of this work was to assess Eucalyptus globulus lignin as an adsorbent and compare the results with kraft lignin, which has previously been demonstrated to be an effective adsorbent. Eucalypt lignin was extracted (by the dioxane technique), characterised, and its adsorption properties for Cr(VI) ions were evaluated. The monomeric composition of both types of lignin indicated a high content of guaiacyl (G) and syringyl (S) units but low content of p-hydroxyphenyl (H), with an H:G:S ratio of 1:50:146 (eucalypt lignin) and 1:16:26 (kraft lignin), as determined by Py-GC/MS. According to elemental analysis, sulphur (2%) and sodium (1%) were found in kraft lignin, but not in eucalypt lignin. The adsorption capacity of the eucalypt lignin was notably higher than the kraft lignin during the first 8 h, but practically all the ions had been absorbed by both the eucalypt and kraft lignin after 24 h (93.4% and 95%, respectively). Cr(VI) adsorption onto both lignins fitted well using the Langmuir adsorption isotherm model, with capacities of 256.4 and 303.0 mg/g, respectively, for eucalypt and kraft. The study’s overall results demonstrate the great potential of eucalypt lignin as a biosorbent for Cr(VI) removal from aqueous solutions.
Collapse
Affiliation(s)
- Ana Lourenço
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-17 Lisboa, Portugal
- Correspondence: ; Tel.: +351-213-653-384
| | - Dragana Kukić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21 000 Novi Sad, Serbia
| | - Vesna Vasić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21 000 Novi Sad, Serbia
| | - Ricardo A. Costa
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-17 Lisboa, Portugal
| | - Mirjana Antov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21 000 Novi Sad, Serbia
| | - Marina Šćiban
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21 000 Novi Sad, Serbia
| | - Jorge Gominho
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-17 Lisboa, Portugal
| |
Collapse
|
42
|
Cui J, Li X, Ma S, Wei W. Cellulose bridged carbonate hydroxyapatite nanoparticles as novel adsorbents for efficient Cr(VI) removal. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2122496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Jing Cui
- School of Environment, Nanjing Normal University, Nanjing, China
- Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| | - Xinying Li
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Shoucheng Ma
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Wei Wei
- School of Environment, Nanjing Normal University, Nanjing, China
- Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen, China
| |
Collapse
|
43
|
Wang Q, Shao Z, Jiang J, Liu Y, Wang X, Li W, Zheng G. One-Step Preparation of PVDF/GO Electrospun Nanofibrous Membrane for High-Efficient Adsorption of Cr(VI). NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183115. [PMID: 36144902 PMCID: PMC9503595 DOI: 10.3390/nano12183115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 06/02/2023]
Abstract
Mass loading of functional particles on the surface of nanofibers is the key to efficient heavy metal treatment. However, it is still difficult to prepare nanofibers with a large number of functional particle loads on the surface simply and efficiently, which hinders the further improvement of performance and increases the cost. Here, a new one-step strategy was developed to maximize the adhesion of graphene oxide (GO) particle to the surface of polyvinylidene fluoride (PVDF) nanofibers, which was combined with coaxial surface modification technology and blended electrospinning. The oxygen content on the as-prepared fiber surface increased from 0.44% to 9.32%, showing the maximized GO load. The increased adsorption sites and improved hydrophilicity greatly promoted the adsorption effect of Cr(VI). The adsorption capacity for Cr(VI) was 271 mg/g, and 99% removal rate could be achieved within 2 h for 20 mL Cr(VI) (100 mg/L), which was highly efficient. After five adsorption-desorption tests, the adsorption removal efficiency of the Cr(VI) maintained more than 80%, exhibiting excellent recycling performance. This simple method achieved maximum loading of functional particles on the fiber surface, realizing the efficient adsorption of heavy metal ions, which may promote the development of heavy-metal-polluted water treatment.
Collapse
Affiliation(s)
- Qingfeng Wang
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Zungui Shao
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Jiaxin Jiang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Yifang Liu
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Xiang Wang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Wenwang Li
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Gaofeng Zheng
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
44
|
Alluhaybi AA, Alharbi A, Hameed AM, Gouda AA, Hassen FS, El-Gendy HS, Atia BM, Salem AR, Gado MA, Ene A, Awad HA, Zakaly HMH. A Novel Triazole Schiff Base Derivatives for Remediation of Chromium Contamination from Tannery Waste Water. Molecules 2022; 27:molecules27165087. [PMID: 36014341 PMCID: PMC9415994 DOI: 10.3390/molecules27165087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 12/17/2022] Open
Abstract
Tannery industries are one of the extensive industrial activities which are the major source of chromium contamination in the environment. Chromium contamination has been an increasing threat to the environment and human health. Therefore, the removal of chromium ions is necessary to save human society. This study is oriented toward the preparation of a new triazole Schiff base derivatives for the remediation of chromium ions. 4,4′-((1E)-1,2-bis ((1H-1,2,4-triazol-3-yl) imino)ethane-1,2-diyl) diphenol was prepared by the interaction between 3-Amino-1H-1,2,4-triazole and 4,4′-Dihydroxybenzil. Then, the produced Schiff base underwent a phosphorylation reaction to produce the adsorbent (TIHP), which confirmed its structure via the different tools FTIR, TGA, 1HNMR, 13CNMR, GC-MS, and Phosphorus-31 nuclear magnetic resonance (31P-NMR). The newly synthesized adsorbent (TIHP) was used to remove chromium oxyanions (Cr(VI)) from an aqueous solution. The batch technique was used to test many controlling factors, including the pH of the working aqueous solution, the amount of adsorbent dose, the initial concentration of Cr(VI), the interaction time, and the temperature. The desorption behaviour of Cr(VI) changes when it is exposed to the suggested foreign ions. The maximum adsorption capacity for Cr(VI) adsorption on the new adsorbent was 307.07 mg/g at room temperature. Freundlich’s isotherm model fits the adsorption isotherms perfectly. The kinetic results were well-constrained by the pseudo-second-order equation. The thermodynamic studies establish that the adsorption type was exothermic and naturally spontaneous.
Collapse
Affiliation(s)
- Ahmad A. Alluhaybi
- Department of Chemistry, College of Science and Arts, King Abdulaziz University, Rabigh 22254, Saudi Arabia
| | - Ahmed Alharbi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed M. Hameed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ayman A. Gouda
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Fatma S. Hassen
- Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo 11936, Egypt
| | | | - Bahig M. Atia
- Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo 11936, Egypt
| | - Amany R. Salem
- Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo 11936, Egypt
| | - Mohamed A. Gado
- Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo 11936, Egypt
| | - Antoaneta Ene
- INPOLDE Research Center, Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
- Correspondence: (A.E.); (H.M.H.Z.)
| | - Hamdy A. Awad
- Geology Department, Faculty of Science, Al-Azhar University, Assiut Branch 71524, Egypt
| | - Hesham M. H. Zakaly
- Institute of Physics and Technology, Ural Federal University, Yekaterinburg 620002, Russia
- Physics Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
- Correspondence: (A.E.); (H.M.H.Z.)
| |
Collapse
|
45
|
Ekanayake A, Rajapaksha AU, Selvasembian R, Vithanage M. Amino-functionalized biochars for the detoxification and removal of hexavalent chromium in aqueous media. ENVIRONMENTAL RESEARCH 2022; 211:113073. [PMID: 35283075 DOI: 10.1016/j.envres.2022.113073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The objectives of the study were to evaluate and compare the efficacy of hexavalent chromium (Cr(VI)) removal by amino-modified (HDA-MPBC) and pristine biochar (MPBC) derived from an invasive plant Mimosa pigra. Prepared biochars were characterized and batch experiments were conducted to check the performance and the mechanisms of Cr(VI) removal. FTIR spectra revealed that the surface of HDA-MPBC is abundant with amino functional groups which was further confirmed by XPS analysis. The highest Cr(VI) removal for both HDA-MPBC (76%) and MPBC (62%) was observed at pH 3.0. The batch sorption data were well fitted to the Freundlich isotherm model and pseudo-second-order kinetic model, suggesting the involvement of both physisorption and chemisorption mechanisms for Cr(VI) removal. X-ray photoelectron spectroscopy studies showed that both Cr(VI) and Cr(III) were presented at the modified biochar surface after adsorption. These results indicated that the electrostatic attraction of Cr(VI) coupled with reduction of Cr(VI) to Cr(III) and complexation of Cr(III) ions with functional groups on HDA-MPBC as the most plausible mechanism for removal of Cr(VI) by modified biochar. Regeneration experiment concluded that adsorbed Cr(VI) onto the surface of HDA-MPBC had the least tendency of being desorbed in basic conditions. HDA-MPBC showed a high performance in adsorptive removal of Cr(VI) compared to pristine biochar signifying the amino modification to enhance adsorption performance of biochar in Cr(VI) removal from wastewater.
Collapse
Affiliation(s)
- Anusha Ekanayake
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, India
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
46
|
Lemma E, Kiflie Z, Kassahun SK. Adsorption of Cr (VI) ion from aqueous solution on acrylamide – grafted starch (Coccinia abyssinicca) – PVA/PVP/chitosan/graphene oxide blended hydrogel: isotherms, kinetics, and thermodynamics studies. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Endalu Lemma
- School of Chemical and Bio-Engineering, Environmental Engineering Chair, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Zebene Kiflie
- School of Chemical and Bio-Engineering, Environmental Engineering Chair, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Shimelis Kebede Kassahun
- School of Chemical and Bio-Engineering, Environmental Engineering Chair, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
47
|
Zhao R, Wang B, Zhang X, Lee X, Chen M, Feng Q, Chen S. Insights into Cr(VI) removal mechanism in water by facile one-step pyrolysis prepared coal gangue-biochar composite. CHEMOSPHERE 2022; 299:134334. [PMID: 35307391 DOI: 10.1016/j.chemosphere.2022.134334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The acceleration of industrialization has increased the discharge of chromium-containing wastewater, posing serious threat to the eco-environment and human health. To remove Cr(VI) in wastewater and improve resource utilization of solid waste, coal gangue and rape straw were initially used to prepare coal gangue-rape straw biochar (CG-RS) composite. The effects of pyrolysis temperatures, solution pH, coexisting ions of Cr(VI) adsorption were investigated. Different adsorption models combined with site energy analysis were used to explore the adsorption behaviors and mechanisms. The results showed higher pyrolysis temperature (600 °C) prepared CG-RS had a larger adsorption capacity (9.2 mg/g) for Cr(VI) (pH = 5.0). Analysis of XPS indicated that CG-RS successfully loaded with Fe-O and Al-O functional groups, which mainly participated in the reduction of Cr(VI). Site energy analysis further proved that reduction and surface complexation were the main adsorption mechanisms. This study shows an effective removal of Cr(VI) by CG-RS, providing a new way for resource utilization of solid waste.
Collapse
Affiliation(s)
- Ruohan Zhao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221000, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Shiwan Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
48
|
Amino-modified magnetic glucose-based carbon composites for efficient Cr(VI) removal. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
da Silva DJ, Rosa DS. Chromium removal capability, water resistance and mechanical behavior of foams based on cellulose nanofibrils with citric acid. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Vinayagam R, Dave N, Varadavenkatesan T, Rajamohan N, Sillanpää M, Nadda AK, Govarthanan M, Selvaraj R. Artificial neural network and statistical modelling of biosorptive removal of hexavalent chromium using macroalgal spent biomass. CHEMOSPHERE 2022; 296:133965. [PMID: 35181433 DOI: 10.1016/j.chemosphere.2022.133965] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
This study focused on the sustainable removal of chromium in its hexavalent form by adsorption using sugar-extracted spent marine macroalgal biomass - Ulva prolifera. The adsorption of Cr (VI) from aqueous solutions utilizing macroalgal biomass was studied under varying conditions of pH, adsorbent amount, agitation speed, and time to assess and optimize the process variables by using a statistical method - response surface methodology (RSM) to enhance the adsorption efficiency. The maximum adsorption efficiency of 99.11 ± 0.23% was obtained using U. prolifera under the optimal conditions: pH: 5.4, adsorbent dosage: 200 mg, agitation speed: 160 rpm, and time: 75 min. Also, a prediction tool - artificial neural network (ANN) model was developed using the RSM experimental data. Eight neurons in the hidden layer yielded the best network topology (4-8-1) with a high correlation coefficient (RANN: 0.99219) and low mean squared error (MSEANN: 0.99219). Various performance parameters were compared between RSM and ANN models, which confirmed that the ANN model was better in predicting the response with a high coefficient of determination value (R2ANN: 0.9844, R2RSM: 0.9721) and low MSE value (MSEANN: 3.7002, MSERSM: 6.2179). The adsorption data were analyzed by fitting to various equilibrium isotherms. The maximum adsorption capacity was estimated as 6.41 mg/g. Adsorption data was in line with Freundlich isotherm (R2 = 0.97) that confirmed the multilayer adsorption process. Therefore, the spent U. prolifera biomass can credibly be applied as a low-cost adsorbent for Cr (VI) removal, and the adsorption process can be modelled and predicted efficiently using ANN.
Collapse
Affiliation(s)
- Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Niyam Dave
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea.
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|