1
|
Zhao Y, Merino-Garcia I, Albo J, Kaiser A. A Zero-Gap Gas Phase Photoelectrolyzer for CO 2 Reduction with Porous Carbon Supported Photocathodes. CHEMSUSCHEM 2024; 17:e202400518. [PMID: 38687205 DOI: 10.1002/cssc.202400518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
A modified Metal-Organic Framework UiO-66-NH2-based photocathode in a zero-gap gas phase photoelectrolyzer was applied for CO2 reduction. Four types of porous carbon fiber layers with different wettability were employed to tailor the local environment of the cathodic surface reactions, optimizing activity and selectivity towards formate, methanol, and ethanol. Results are explained by mass transport through the different type and arrangement of carbon fiber support layers in the photocathodes and the resulting local environment at the UiO-66-NH2 catalyst. The highest energy-to-fuel conversion efficiency of 1.06 % towards hydrocarbons was achieved with the most hydrophobic carbon fiber (H23C2). The results are a step further in understanding how the design and composition of the photoelectrodes in photoelectrochemical electrolyzers can impact the CO2 reduction efficiency and selectivity.
Collapse
Affiliation(s)
- Yujie Zhao
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Ivan Merino-Garcia
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n., 39005, Santander, Spain
| | - Jonathan Albo
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n., 39005, Santander, Spain
| | - Andreas Kaiser
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Rosales-Martínez C, Assis M, Castillo-Blas C, Abánades Lázaro I. Tuning the electronic properties of Zr UiO-66 through defect-functionalised multivariate modulation. Chem Commun (Camb) 2024; 60:8280-8283. [PMID: 39016000 DOI: 10.1039/d4cc02581d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The multivariate modulation of Metal-Organic Frameworks is presented as a valuable tool to introduce multiple functional units into UiO-66 while increasing its porosity. This manuscript encloses a comprehensive study using p-functionalised benzoate -NO2, -SO3 and -SH modulators, rationalizing the defects introduced and their impact on properties.
Collapse
Affiliation(s)
- Carmen Rosales-Martínez
- Instituto de Ciencia Molecular, Universitat de Valencia, Calle catedrático José Beltrán Martínez, 46980, Paterna, Valencia, Spain.
| | - Marcelo Assis
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Universidad Catolica de Valencia San Vicente Mártir (UCV), Spain
| | - Celia Castillo-Blas
- Department of Materials Science and Metallurgy, 27 Charles Babbage road, University of Cambridge, CB30FS, Cambridge, UK
| | - Isabel Abánades Lázaro
- Instituto de Ciencia Molecular, Universitat de Valencia, Calle catedrático José Beltrán Martínez, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
3
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
4
|
Yaseen M, Li J, Jiang H, Ashfaq Ahmad M, Khan I, Tang L, Wu C, Ali A, Liu Q. Efficient structure tuning over the defective modulated zirconium metal organic framework with active coordinate surface for photocatalyst CO 2 reduction. J Colloid Interface Sci 2024; 653:370-379. [PMID: 37717437 DOI: 10.1016/j.jcis.2023.09.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Structure engineering of zirconium-based metal organic frameworks (MOFs) aims to develop efficient catalysts for transforming intermittent renewable energy into value-added chemical fuels. In order to have a deeper understanding of industrial scaling, it is vital to ascertain the favourable operational parameters that are necessary for projecting at the atomic level. The proposed paradigm provides a robust basis for the efficient design of MOFs based heterogeneous photocatalysts. In this study, set of defective MOF (D-NUiO66) was effectively produced using a modular acidic method. Afterwards, the D-NUiO66 was combined with CeO2 to form the D-CeNUiO66 heterojunction for the purpose of carbon dioxide reduction. The morphological aspect of the composite investigation suggested that D-CeNUiO66 had a mesoporous structure with favourable adsorption properties. The optimized D-CeNUiO66 photocatalyst showed the high activity for the reduction of CO2 to CO, with a rate of 38.6 µmolg-1h-1 and demonstrated remarkable repeatability in terms of CO production. The incorporation of defect sites in the D-NUiO66 enhanced the light response to visible light, resulting in reduced band gap of 2.9 eV. The photoelectrochemical tests indicated that the introduction of defects in the UiO66 and coupling CeO2 in the D-CeNUiO66 composite induced fast charge transfer, therefore suppressing the charge recombination rate. This study provides valuable insights into the use of defective engineering and heterojunction approaches to metal-organic frameworks for photocatalytic applications.
Collapse
Affiliation(s)
- Maria Yaseen
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Jinhe Li
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haopeng Jiang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - M Ashfaq Ahmad
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore Pakistan
| | - Iltaf Khan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Liyong Tang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunxia Wu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Amjid Ali
- Research School of Polymeric Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Chemistry, University of Silesia, Szkolan 9, Katowice 40-600, Poland
| | - Qinqin Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
5
|
Tatay S, Martínez-Giménez S, Rubio-Gaspar A, Gómez-Oliveira E, Castells-Gil J, Dong Z, Mayoral Á, Almora-Barrios N, M Padial N, Martí-Gastaldo C. Synthetic control of correlated disorder in UiO-66 frameworks. Nat Commun 2023; 14:6962. [PMID: 37907508 PMCID: PMC10618523 DOI: 10.1038/s41467-023-41936-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
Changing the perception of defects as imperfections in crystalline frameworks into correlated domains amenable to chemical control and targeted design might offer opportunities for the design of porous materials with superior performance or distinctive behavior in catalysis, separation, storage, or guest recognition. From a chemical standpoint, the establishment of synthetic protocols adapted to control the generation and growth of correlated disorder is crucial to consider defect engineering a practicable route towards adjusting framework function. By using UiO-66 as experimental platform, we systematically explored the framework chemical space of the corresponding defective materials. Periodic disorder arising from controlled generation and growth of missing cluster vacancies can be chemically controlled by the relative concentration of linker and modulator, which has been used to isolate a crystallographically pure "disordered" reo phase. Cs-corrected scanning transmission electron microscopy is used to proof the coexistence of correlated domains of missing linker and cluster vacancies, whose relative sizes are fixed by the linker concentration. The relative distribution of correlated disorder in the porosity and catalytic activity of the material reveals that, contrarily to the common belief, surpassing a certain defect concentration threshold can have a detrimental effect.
Collapse
Affiliation(s)
- Sergio Tatay
- Instituto de Ciencia Molecular, Universitat de València, Paterna, 46980, Spain.
| | | | - Ana Rubio-Gaspar
- Instituto de Ciencia Molecular, Universitat de València, Paterna, 46980, Spain
| | - Eloy Gómez-Oliveira
- Instituto de Ciencia Molecular, Universitat de València, Paterna, 46980, Spain
| | - Javier Castells-Gil
- Instituto de Ciencia Molecular, Universitat de València, Paterna, 46980, Spain
| | - Zhuoya Dong
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, P. R. China
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - Álvaro Mayoral
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
| | | | - Natalia M Padial
- Instituto de Ciencia Molecular, Universitat de València, Paterna, 46980, Spain
| | | |
Collapse
|
6
|
Du Y, Jie G, Jia H, Liu J, Wu J, Fu Y, Zhang F, Zhu W, Fan M. Visible-light-induced photocatalytic CO 2 reduction over zirconium metal organic frameworks modified with different functional groups. J Environ Sci (China) 2023; 132:22-30. [PMID: 37336607 DOI: 10.1016/j.jes.2022.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/21/2023]
Abstract
The reduction of CO2 into high value-added chemicals and fuels by a photocatalytic technology can relieve energy shortages and the environmental problems caused by greenhouse effects. In the current work, an amino-functionalized zirconium metal organic framework (Zr-MOF) was covalently modified with different functional groups via the condensation of Zr-MOF with 2-pyridinecarboxaldehyde (PA), salicylaldehyde (SA), benzaldehyde (BA), and trifluoroacetic acid (TA), named Zr-MOF-X (X = PA, SA, BA, and TA), respectively, through the post-synthesis modification. Compared with Zr-MOF and Zr-MOF-TA, the introduction of PA, SA, or BA into the framework of Zr-MOF can not only enhance the visible-light harvesting and CO2 capture, but also accelerate the photogenerated charge separation and transfer, thereby improving the photocatalytic ability of Zr-MOF for CO2 reduction. These results indicate that the modification of Zr-MOF with electron-donating groups can promote the photocatalytic CO2 reduction. Therefore, the current work provides an instructive approach to improve the photocatalytic efficiency of CO2 reduction through the covalent modification of MOFs.
Collapse
Affiliation(s)
- Yuexian Du
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Guang'an Jie
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Huilin Jia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jiahui Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jieyu Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yanghe Fu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China.
| | - Fumin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Weidong Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China.
| | - Maohong Fan
- Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
7
|
Guo K, Hussain I, Jie GA, Fu Y, Zhang F, Zhu W. Strategies for improving the photocatalytic performance of metal-organic frameworks for CO 2 reduction: A review. J Environ Sci (China) 2023; 125:290-308. [PMID: 36375915 DOI: 10.1016/j.jes.2022.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 06/16/2023]
Abstract
Photocatalytic CO2 reduction is an appealing strategy for mitigating the environmental effects of greenhouse gases while simultaneously producing valuable carbon-neutral fuels. Numerous attempts have been made to produce effective and efficient photocatalysts for CO2 reduction. In contrast, the selection of competitive catalysts continues to be a substantial hindrance and a considerable difficulty in the development of photocatalytic CO2 reduction. It is vital to emphasize different techniques for building effective photocatalysts to improve CO2 reduction performance in order to achieve a long-term sustainability. Metal-organic frameworks (MOFs) are recently emerging as a new type of photocatalysts for CO2 reduction due to their excellent CO2 adsorption capability and unique structural characteristics. This review examines the most recent breakthroughs in various techniques for modifying MOFs in order to improve their efficiency of photocatalytic CO2 reduction. The advantages of MOFs using as photocatalysts are summarized, followed by different methods for enhancing their effectiveness for photocatalytic CO2 reduction via partial ion exchange of metal clusters, design of bimetal clusters, the modification of organic linkers, and the embedding of metal complexes. For integrating MOFs with semiconductors, metallic nanoparticles (NPs), and other materials, a number of different approaches have been also reviewed. The final section of this review discusses the existing challenges and future prospects of MOFs as photocatalysts for CO2 reduction. Hopefully, this review can stimulate intensive research on the rational design and development of more effective MOF-based photocatalysts for visible-light driven CO2 conversion.
Collapse
Affiliation(s)
- Ke Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Ijaz Hussain
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Guang An Jie
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yanghe Fu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China.
| | - Fumin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Weidong Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
8
|
Mao J, Wang L, Qu S, Zhang Y, Huang J, She H, Bai Y, Wang Q. Defect Engineering in CuS x/COF Hybridized Heterostructures: Synergistic Facilitation of the Charge Migration for an Efficacious Photocatalytic Conversion of CO 2 into CO. Inorg Chem 2022; 61:20064-20072. [PMID: 36449266 DOI: 10.1021/acs.inorgchem.2c03481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The photocatalytic CO2 reduction reaction (CO2RR) provides an attractive approach to tackling environmental issues. To actualize the optimal catalytic efficiency, one efficacious strategy is to rationally modulate the charge migration for the adopted heterogeneous catalysts. Herein, by virtue of a one-step hydrothermal method, Cu2S nanospheres and defect-rich Cu2S (CuSx) nanosheets are wrapped by a triazine-containing covalent framework (TP-TA COF), resulting in CuSx/TP-TA and Cu2S/TP-TA. Owing to the heterojunction construction that suppresses the carrier recombination, both hybridized structures present enhanced charge migration in comparison to that of their corresponding sulfides and COF constituents. It is worth emphasizing that CuSx/TP-TA proffers a significantly greater photocurrent than Cu2S/TP-TA. The subsequent photocatalytic reduction of CO2 also exhibits an apparently higher CO evolution rate, about 2.8 times higher than the Cu2S/TP-TA photocatalyst. The above evident improvement owes much to the heterostructure establishment between CuSx and TP-TA COF, as well as the synergistic effect provided by the defect engineering for CuSx, both of which are able to enhance the separation efficiency of photoinduced carriers. Our work sheds light on the rational construction of heterogeneous structures between organic and inorganic photocatalysts, which emphasizes the possible synergistic effect of defect centers for enhancing photocatalytic performance.
Collapse
Affiliation(s)
- Jiaxin Mao
- Key Laboratory of Eco-Environment-Related Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Lei Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Siyan Qu
- Key Laboratory of Eco-Environment-Related Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yang Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jingwei Huang
- Key Laboratory of Eco-Environment-Related Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Houde She
- Key Laboratory of Eco-Environment-Related Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yan Bai
- Key Laboratory of Eco-Environment-Related Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Qizhao Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.,School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| |
Collapse
|
9
|
Kouser S, Hezam A, Ara Khanum S. Final Rational Design and Engineering of Efficient Metal Organic Framework for Visible Light-driven Photocatalytic carbon-di-oxide Reduction. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
A novel visible-light-induced double Z-scheme photocatalytic system: NH2-UiO-66/BiOBr/Bi2S3 for degradation of tetracycline hydrochloride and rhodamine B. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Mahmoud LAM, Telford R, Livesey TC, Katsikogianni M, Kelly AL, Terry LR, Ting VP, Nayak S. Zirconium-Based MOFs and Their Biodegradable Polymer Composites for Controlled and Sustainable Delivery of Herbicides. ACS APPLIED BIO MATERIALS 2022; 5:3972-3981. [PMID: 35905450 PMCID: PMC9382672 DOI: 10.1021/acsabm.2c00499] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Adsorption and controlled release of agrochemicals has
been studied
widely using different nanomaterials and a variety of formulations.
However, the potential for application of high surface-area metal–organic
frameworks (MOFs) for the controlled release of agrochemicals has
not been thoroughly explored. Herein, we report controlled and sustainable
release of a widely used herbicide (2-methyl-4-chlorophenoxyacetic
acid, MCPA) via incorporation in a range of zirconium-based MOFs and
their biodegradable polymer composites. Three Zr-based MOFs, viz.,
UiO-66, UiO-66-NH2, and UiO-67 were loaded with MCPA either
postsynthetically or in situ during synthesis of the MOFs. The MCPA-loaded
MOFs were then incorporated into a biodegradable polycaprolactone
(PCL) composite membrane. All three MOFs and their PCL composites
were thoroughly characterized using FT-IR, TGA, SEM, PXRD, BET, and
mass spectrometry. Release of MCPA from each of these MOFs and their
PCL composites was then studied in both distilled water and in ethanol
for up to 72 h using HPLC. The best performance for MCPA release was
observed for the postsynthetically loaded MOFs, with PS-MCPA@UiO-66-NH2 showing the highest MCPA concentrations in ethanol and water
of 0.056 and 0.037 mg/mL, respectively. Enhanced release of MCPA was
observed in distilled water when the MOFs were incorporated in PCL.
The concentrations of herbicides in the release studies provide us
with a range of inhibitory concentrations that can be utilized depending
on the crop, making this class of composite materials a promising
new route for future agricultural applications.
Collapse
Affiliation(s)
- Lila A M Mahmoud
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, United Kingdom.,School of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Richard Telford
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Tayah C Livesey
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Maria Katsikogianni
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Adrian L Kelly
- Polymer IRC, Faculty of Engineering and Informatics, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Lui R Terry
- Bristol Composites Institute, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, United Kingdom
| | - Valeska P Ting
- Bristol Composites Institute, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, United Kingdom
| | - Sanjit Nayak
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| |
Collapse
|
12
|
Chung WC, Hsu SY, Pao CW, Chuang YC, Lu KT, Chen JM. Correlation of photocatalytic CO2 conversion and electronic structure of UiO-66 and Cu-UiO-66-NH2 under irradiation studied by in-situ X-ray absorption spectroscopy. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Copper(II) invigorated EHU-30 for continuous electroreduction of CO 2 into value-added chemicals. Sci Rep 2022; 12:8505. [PMID: 35595765 PMCID: PMC9123010 DOI: 10.1038/s41598-022-11846-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
The doping of zirconium based EHU-30 and EHU-30-NH2 metal-organic frameworks with copper(II) yielded a homogeneous distribution of the dopant with a copper/zirconium ratio of 0.04-0.05. The doping mechanism is analysed by chemical analysis, microstructural analysis and pair distribution function (PDF) analysis of synchrotron total scattering data in order to get deeper insight into the local structure. According to these data, the Cu(II) atoms are assembled within the secondary building unit by a transmetalation reaction, contrarily to UiO-66 series in which the post-synthetic metalation of the MOF takes place through chemical anchorage. The resulting materials doubled the overall performance of the parent compounds for the CO2 electroreduction, while retained stable the performance during continuous transformation reaction.
Collapse
|
14
|
He Y, Tan Y, Song M, Tu Q, Fu M, Long L, Wu J, Xu M, Liu X. Switching on photocatalytic NO oxidation and proton reduction of NH 2-MIL-125(Ti) by convenient linker defect engineering. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128468. [PMID: 35180523 DOI: 10.1016/j.jhazmat.2022.128468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Photocatalysis technology has been widely adopted to abate typical air pollutants. Nevertheless, developing photocatalysts aimed at improving photocatalytic efficiency is a challenge. Herein, the linker-defect NH2-MIL-125(Ti) photocatalyst was synthesized through a convenient one-step heating-stirring method (just adjusting multiple temperatures) to firstly realize efficient photocatalytic performances of NO removal and hydrogen evolution. The optimal sample (named 65-NMIL) with a linker-defect content of 32.08% exhibited a NO removal ratio of 65.49%, which was 37.57% higher than that of pristine NH2-MIL-125(Ti), and displayed better H2-production activity. Through ESR, it was confirmed that 65-NMIL can generate more •O2- and •OH under visible light, and the radical trapping experiment further proved that •O2- played a more important role in photocatalytic activity. Moreover, the photocatalytic NO oxidation process was also monitored by in situ DRIFTS, it was found that the defective samples could promote the oxidation of NO and intermediates to the final product (NO3-). On the basis of the above-mentioned photocatalytic experimental results and characterization, a possible mechanism or pathway was proposed and illustrated. This work can provide a new strategy for the subsequent defect engineering for photocatalytic MOFs materials to further solve environmental and energy crises.
Collapse
Affiliation(s)
- Youzhou He
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yuwei Tan
- School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000, Sichuan, China.
| | - Mengyu Song
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Qingli Tu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Min Fu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Liangjun Long
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jie Wu
- National-local Joint Engineering Laboratory for Road Engineering and Disaster Prevention and Mitigation Technology in Mountainous Areas, China Merchants Chongqing Communications Technology Research & Design Institute CO., LTD., Chongqing 400067, China.
| | - Mengmeng Xu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xingyan Liu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| |
Collapse
|
15
|
Liu H, Cheng M, Liu Y, Zhang G, Li L, Du L, Li B, Xiao S, Wang G, Yang X. Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214428] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Liu X, Hu C, Wu J, Cui P, Wei F. Defective NH2-UiO-66 (Zr) effectively converting CO2 into cyclic carbonate under ambient pressure, solvent-free and co-catalyst-free conditions. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
|
18
|
Swaroopa Datta Devulapalli V, McDonnell RP, Ruffley JP, Shukla PB, Luo TY, De Souza ML, Das P, Rosi NL, Karl Johnson J, Borguet E. Identifying UiO-67 Metal-Organic Framework Defects and Binding Sites through Ammonia Adsorption. CHEMSUSCHEM 2022; 15:e202102217. [PMID: 34725931 DOI: 10.1002/cssc.202102217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Ammonia is a widely used toxic industrial chemical that can cause severe respiratory ailments. Therefore, understanding and developing materials for its efficient capture and controlled release is necessary. One such class of materials is 3D porous metal-organic frameworks (MOFs) with exceptional surface areas and robust structures, ideal for gas storage/transport applications. Herein, interactions between ammonia and UiO-67-X (X: H, NH2 , CH3 ) zirconium MOFs were studied under cryogenic, ultrahigh vacuum (UHV) conditions using temperature-programmed desorption mass spectrometry (TPD-MS) and in-situ temperature-programmed infrared (TP-IR) spectroscopy. Ammonia was observed to interact with μ3 -OH groups present on the secondary building unit of UiO-67-X MOFs via hydrogen bonding. TP-IR studies revealed that under cryogenic UHV conditions, UiO-67-X MOFs are stable towards ammonia sorption. Interestingly, an increase in the intensity of the C-H stretching mode of the MOF linkers was detected upon ammonia exposure, attributed to NH-π interactions with linkers. These same binding interactions were observed in grand canonical Monte Carlo simulations. Based on TPD-MS, binding strength of ammonia to three MOFs was determined to be approximately 60 kJ mol-1 , suggesting physisorption of ammonia to UiO-67-X. In addition, missing linker defect sites, consisting of H2 O coordinated to Zr4+ sites, were detected through the formation of nNH3 ⋅H2 O clusters, characterized through in-situ IR spectroscopy. Structures consistent with these assignments were identified through density functional theory calculations. Tracking these bands through adsorption on thermally activated MOFs gave insight into the dehydroxylation process of UiO-67 MOFs. This highlights an advantage of using NH3 for the structural analysis of MOFs and developing an understanding of interactions between ammonia and UiO-67-X zirconium MOFs, while also providing directions for the development of stable materials for efficient toxic gas sorption.
Collapse
Affiliation(s)
| | - Ryan P McDonnell
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
- Present Address: Department of Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Jonathan P Ruffley
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Priyanka B Shukla
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tian-Yi Luo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mattheus L De Souza
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Prasenjit Das
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - J Karl Johnson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
19
|
Feng X, Jena HS, Krishnaraj C, Leus K, Wang G, Chen H, Jia C, Van Der Voort P. Generating Catalytic Sites in UiO-66 through Defect Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60715-60735. [PMID: 34874167 DOI: 10.1021/acsami.1c13525] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
UiO-66 is regarded as an epitome of metal-organic frameworks (MOFs) because of its stability. Defect engineering has been used as a toolbox to alter the performance of MOFs. UiO-66 is among the most widely explored MOFs because of its capability to bear a high number of defects without undergoing structural collapse. Several representative works in the field of MOF-based defect engineering are available based on UiO-66. In this review, more emphasis is given toward the construction of catalytic sites by engineering defects in UiO-66 as a representative including all the detailed synthesis procedures for inducing defects, and the characterization techniques used to analyze these defects in UiO-66 are discussed. Furthermore, a comprehensive review for the defects themselves and the support using defects in catalysis is provided to accentuate the importance of defect engineering.
Collapse
Affiliation(s)
- Xiao Feng
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, 281 Krijgslaan (S3), B-9000 Ghent, Belgium
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Himanshu Sekhar Jena
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, 281 Krijgslaan (S3), B-9000 Ghent, Belgium
| | - Chidharth Krishnaraj
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, 281 Krijgslaan (S3), B-9000 Ghent, Belgium
| | - Karen Leus
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, 281 Krijgslaan (S3), B-9000 Ghent, Belgium
| | - Guangbo Wang
- Chemical Engineering and Materials Science, College of Chemistry, Shandong Normal University, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Jinan 250014, China
| | - Hui Chen
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, 281 Krijgslaan (S3), B-9000 Ghent, Belgium
| | - Chunmei Jia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, 281 Krijgslaan (S3), B-9000 Ghent, Belgium
| |
Collapse
|
20
|
Chu L, Guo J, Wang L, Liu H, Yan J, Wu L, Yang M, Wang G. Synthesis of defected UIO‐66 with boosting the catalytic performance via rapid crystallization. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Liang Chu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Junzhen Guo
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Liyan Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Huiyang Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Jiamin Yan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Lingmei Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Mu Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| |
Collapse
|
21
|
Vo TK, Kim J. Facile synthesis of magnetic framework composite MgFe 2O 4@UiO-66(Zr) and its applications in the adsorption-photocatalytic degradation of tetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68261-68275. [PMID: 34268686 DOI: 10.1007/s11356-021-15423-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Recently, metal-organic framework (MOF)-based hybrid composites have attracted significant attention in photocatalytic applications. In this work, MgFe2O4@UiO-66(Zr) (MFeO@UiO) composites with varying compositions were successfully synthesized via facile in situ assemblies. Depositing the UiO-66(Zr) framework onto ferrite nanoparticles yielded a composite structure having a lower bandgap energy (2.28-2.60 eV) than that of the parent UiO-66(Zr) (~3.8 eV). Moreover, the MFeO@UiO composite exhibited magnetic separation property and improved porosity. The removal experiment for tetracycline (TC) in aqueous media revealed that the MFeO@UiO composite exhibited a high total TC removal efficiency of ca. ~94% within 45-min preadsorption and 120-min visible-light illumination, which is higher than that of pristine ferrite and UiO-66(Zr). The enhanced photodegradation efficiency of MFeO@UiO is attributed to efficient interfacial charge transfer at the heterojunction and the synergistic effect between the semiconductors. Radical scavenging experiments revealed that photogenerated holes (h+) and hydroxyl radicals (·OH) were the major reactive species involved in TC photodegradation. Moreover, the prepared MFeO@UiO nanocomposite showed good recyclability and renewability, making it a potential material for wastewater treatments.
Collapse
Affiliation(s)
- The Ky Vo
- Chemical Engineering Department, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Go Vap, Ho Chi Minh City, Vietnam.
| | - Jinsoo Kim
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
22
|
Ali S, Zuhra Z, Abbas Y, Shu Y, Ahmad M, Wang Z. Tailoring Defect Density in UiO-66 Frameworks for Enhanced Pb(II) Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13602-13609. [PMID: 34767379 DOI: 10.1021/acs.langmuir.1c02032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Defect engineering of metal organic frameworks offers potential prospects for tuning their features toward particular applications. Herein, two series of defective UiO-66 frameworks were synthesized via changing the concentration of the linker and synthetic temperature of the reaction. These defective materials showed a significant improvement in the capability of Pb(II) removal from wastewater. This strategy for defect engineering not only created additional active sites, more open framework, and enhanced porosity but also exposed more oxygen groups, which served as the adsorption sites to improve Pb(II) adsorption. A relationship among degree of defects, texture features, and performances for Pb(II) removal was successfully developed as a proof-of-concept, highlighting the importance of defect engineering in heavy metal remediation. To investigate the kinetic and adsorption isotherms, we performed adsorption experiments influenced by the time and concentration of the adsorbate, respectively. For the practicality of the materials, the most significant parameters such as pH, temperature, adsorbent concentration, selectivity, and recyclability as well as simulated natural surface water were also examined. This study provides a clue for the researchers to design other advanced defective materials for the enhancement of adsorption performance by tuning the defect engineering.
Collapse
Affiliation(s)
- Shafqat Ali
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, P. R. China
| | - Zareen Zuhra
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, P. R. China
| | - Yasir Abbas
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, P. R. China
| | - Yufei Shu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, P. R. China
| | - Muhammad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 00000, Hong Kong
| | - Zhongying Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, P. R. China
| |
Collapse
|
23
|
Jiang D, Huang C, Zhu J, Wang P, Liu Z, Fang D. Classification and role of modulators on crystal engineering of metal organic frameworks (MOFs). Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214064] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Cao Y, Mi X, Li X, Wang B. Defect Engineering in Metal‒Organic Frameworks as Futuristic Options for Purification of Pollutants in an Aqueous Environment. Front Chem 2021; 9:673738. [PMID: 34485241 PMCID: PMC8415362 DOI: 10.3389/fchem.2021.673738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Clean water scarcity is becoming an increasingly important worldwide issue. The water treatment industry is demanding the development of novel effective materials. Defect engineering in nanoparticles is among the most revolutionary of technologies. Because of their high surface area, structural diversity, and tailorable ability, Metal‒Organic Frameworks (MOFs) can be used for a variety of purposes including separation, storage, sensing, drug delivery, and many other issues. The application in wastewater treatment associated with water stable MOF‒based materials has been an emerging research topic in recent decades. Defect engineering is a sophisticated technique used to manufacture defects and to change the geometric framework of target compounds. Since MOFs have a series of designable structures and active sites, tailoring properties in MOFs by defect engineering is a novel concept. Defect engineering can excavate hidden active sites in MOFs, which can lead to better performance in many fields. Therefore, this technology will open new opportunities in water purification processes. However, there has been little effort to comprehensively discuss this topic. In this review, we provide an overview of the development of defect engineered MOFs for water purification processes. Furthermore, we discuss the potential applications of defect engineered materials.
Collapse
Affiliation(s)
| | | | - Xiang Li
- School of Chemistry, China School of Chemistry, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Bo Wang
- School of Chemistry, China School of Chemistry, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
25
|
Zhao X, Li J, Li X, Huo P, Shi W. Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63715-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Gogoi C, Nagarjun N, Roy S, Mostakim SK, Volkmer D, Dhakshinamoorthy A, Biswas S. A Zr-Based Metal-Organic Framework with a DUT-52 Structure Containing a Trifluoroacetamido-Functionalized Linker for Aqueous Phase Fluorescence Sensing of the Cyanide Ion and Aerobic Oxidation of Cyclohexane. Inorg Chem 2021; 60:4539-4550. [PMID: 33703899 DOI: 10.1021/acs.inorgchem.0c03472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A zirconium (Zr) metal-organic framework having a DUT-52 (DUT stands for Dresden University of Technology) structure with face-centered cubic topology and bearing the rigid 1-(2,2,2-trifluoroacetamido) naphthalene-3,7-dicarboxylic acid (H2NDC-NHCOCF3) ligand was prepared, and its solid structure was characterized with the help of the X-ray powder diffraction (XRPD) technique. Other characterization methods like thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy were applied to verify the phase purity of the compound. In order to get the solvent-free compound (1'), 1 was stirred with methanol for overnight and subsequently heated at 100 °C overnight under vacuum. As-synthesized (1) and activated (1') compounds are thermally stable up to 300 °C. The Brunsuer Emmett-Teller (BET) surface area of 1' was found to be 1105 m2 g-1. Fluorescence titration experiments showed that 1' exhibits highly selective and sensitive fluorescence turn-on behavior toward cyanide (CN-) anion. The interference experiments suggested that other anions did not interfere in the detection of CN-. Moreover, a very short response time (2 min) was shown by probe 1' for CN- detection. The detection limit was found to be 0.23 μM. 1' can also be effectively used for CN- detection in real water samples. The mechanism for the selective detection of CN- was investigated systematically. Furthermore, the aerobic oxidation of cyclohexane was performed with 1' under mild reaction conditions, observing higher activity than the analogous DUT-52 solid under identical conditions. These experiments clearly indicate the benefits of hydrophobic cavities of 1' in achieving higher conversion of cyclohexane and cyclohexanol/cyclohexanone selectivity. Catalyst stability was proved by two consecutive reuses and comparing the structural integrity of 1' before and after reuses by the XRPD study.
Collapse
Affiliation(s)
- Chiranjib Gogoi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039 Assam, India
| | | | - Shubasis Roy
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039 Assam, India
| | - S K Mostakim
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039 Assam, India
| | - Dirk Volkmer
- Institute of Physics, Chair of Solid State and Materials Chemistry, University of Augsburg, Universitaetsstrasse 1, 86159 Augsburg, Germany
| | | | - Shyam Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039 Assam, India
| |
Collapse
|
27
|
Bian L, Ma J, Feng X, Wang Y, Zhao L, Zhao L, Wang X, Guo G, Pu Q. Wavelength selective photoactivated autocatalytic oxidation of 5,12-dihydrobenzo[ b]phenazine and its application in metal-free synthesis. RSC Adv 2020; 10:9949-9954. [PMID: 35498597 PMCID: PMC9050338 DOI: 10.1039/d0ra01495h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/02/2020] [Indexed: 01/25/2023] Open
Abstract
Photochemical stability of 5,12-dihydrobenzo[b]phenazine (DHBP) was investigated with LEDs with central emission wavelengths in a range of 365 to 595 nm. Photochemical conversion of DHBP to benzo[b]phenazine (BP) was observed with wavelengths upto 516 nm. Light of 490 and 516 nm is not absorbed by DHBP, but photoactivated autocatalytic oxidation of DHBP to BP with these wavelengths was confirmed. The reaction rate is in a range of 111-208 μg min-1 with these LEDs. The mechanism of the reaction was examined and the experimental results exclude the intermolecular interaction such as the Förster resonance energy transfer, the intermolecular charge transfer, the photoinduced electron transfer and the formation of an exciplex. The formation of the reactive oxygen species was verified with electron paramagnetic resonance, which indicates its potential in the synthesis. When sunlight was used as the light source, the oxidation rate of 1 mg mL-1 DHBP was 393 μg min-1. Same autocatalytic oxidation was also observed on similar compounds and it can be used for producing metal-free organic substances for semiconductors.
Collapse
Affiliation(s)
- Lei Bian
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Jie Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
- College of Chemical Engineering and Technology, Tianshui Normal University Tianshui 741001 China
| | - Xiaotong Feng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Yuanhang Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Lizhi Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Lei Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Xiayan Wang
- Department of Chemistry and Chemical Engineering, Beijing University of Technology Beijing 100124 China
| | - Guangsheng Guo
- Department of Chemistry and Chemical Engineering, Beijing University of Technology Beijing 100124 China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
28
|
Wei D, Tang W, Gan Y, Xu X. Graphene quantum dot-sensitized Zn-MOFs for efficient visible-light-driven carbon dioxide reduction. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00842g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A new hybrid Zn-Bim-His-1@GQD nanoparticle has been successfully developed for high selectivity of CO2 reduction to yield CH4.
Collapse
Affiliation(s)
- Ding Wei
- Xi'an Modern Chemistry Research Institute
- Xi'an
- P. R. China
| | - Wang Tang
- Xi'an Modern Chemistry Research Institute
- Xi'an
- P. R. China
| | - Yundan Gan
- Xi'an Modern Chemistry Research Institute
- Xi'an
- P. R. China
| | - Xiqing Xu
- School of Materials Science & Engineering
- Chang'an University
- Xi'an
- P. R. China
| |
Collapse
|
29
|
Bhattacharya M, Chandler KJ, Geary J, Saouma CT. The role of leached Zr in the photocatalytic reduction of CO2 to formate by derivatives of UiO-66 metal organic frameworks. Dalton Trans 2020; 49:4751-4757. [DOI: 10.1039/d0dt00524j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Photoreduction of CO2 to formate by UiO-66 Zr MOF derivatives is explained by Zr leaching.
Collapse
Affiliation(s)
| | | | - Jackson Geary
- Department of Chemistry
- University of Utah
- Salt Lake City
- USA
| | | |
Collapse
|