1
|
Tan X, Zhou J, Yang L, Chang Q, Li SY, Rockenbauer A, Song Y, Liu Y. Simultaneous Quantitation of Persulfides, Biothiols, and Hydrogen Sulfide through Sulfur Exchange Reaction with Trityl Spin Probes. J Am Chem Soc 2024; 146:30422-30433. [PMID: 39431326 DOI: 10.1021/jacs.4c10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Reactive sulfur species (RSS) including persulfides (RSSHs), biothiols, and hydrogen sulfide (H2S) are key regulators in various physiological processes. To better understand the symbiotic relationship and interconversion of these RSS, it is highly desirable but challenging to develop analytical techniques that are capable of detecting and quantifying them. Herein, we report the rational design and synthesis of novel trityl-radical-based electron paramagnetic resonance (EPR) probes dubbed CT02-TNB and OX-TNB. CT02-TNB underwent fast sulfur exchange reactions with two reactive RSSHs (PS1 and PS2) which were released from their corresponding donors PSD1 and PSD2 to afford the specific conjugates. The resulting conjugates exhibit characteristic EPR spectra, thus enabling discriminative detection and quantitation of the two RSSHs. Moreover, CT02-TNB showed good response toward other RSS including glutathione (GSH), cysteine (Cys), H2S, and sulfite as well. Importantly, based on the updated EPR spectral simulation program, simultaneous quantitation of multiple RSS (e.g., PS1/GSH/Cys or PS1/GSH/H2S) by CT02-TNB was also achieved. Finally, the levels of released PS1 from PSD1 and endogenous GSH in isolated mouse livers were measured by the hydrophilic OX-TNB. This work represents the first study achieving discriminative and quantitative detection of different persulfides and other RSS by a spectroscopic method.
Collapse
Affiliation(s)
- Xiaoli Tan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Jiaxin Zhou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Luhua Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Qi Chang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Shao-Yong Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences and, Department of Physics, Budapest University of Technology and Economics, Budafoki ut 8, Budapest 1111, Hungary
| | - Yuguang Song
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Yangping Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| |
Collapse
|
2
|
Bogdanov A, Gao L, Dalaloyan A, Zhu W, Seal M, Su XC, Frydman V, Liu Y, Gronenborn AM, Goldfarb D. Spin labels for 19F ENDOR distance determination: resolution, sensitivity and distance predictability. Phys Chem Chem Phys 2024; 26:26921-26932. [PMID: 39417349 DOI: 10.1039/d4cp02996h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
19F electron-nuclear double resonance (ENDOR) has emerged as an attractive method for determining distance distributions in biomolecules in the range of 0.7-2 nm, which is not easily accessible by pulsed electron dipolar spectroscopy. The 19F ENDOR approach relies on spin labeling, and in this work, we compare various labels' performance. Four protein variants of GB1 and ubiquitin bearing fluorinated residues were labeled at the same site with nitroxide and trityl radicals and a Gd(III) chelate. Additionally, a double-histidine variant of GB1 was labeled with a Cu(II) nitrilotriacetic acid chelate. ENDOR measurements were carried out at W-band (95 GHz) where 19F signals are well separated from 1H signals. Differences in sensitivity were observed, with Gd(III) chelates providing the highest signal-to-noise ratio. The new trityl label, OXMA, devoid of methyl groups, exhibited a sufficiently long phase memory time to provide an acceptable sensitivity. However, the longer tether of this label effectively reduces the maximum accessible distance between the 19F and the Cα of the spin-labeling site. The nitroxide and Cu(II) labels provide valuable additional geometric insights via orientation selection. Prediction of electron-nuclear distances based on the known structures of the proteins were the closest to the experimental values for Gd(III) labels, and distances obtained for Cu(II) labeled GB1 are in good agreement with previously published NMR results. Overall, our results offer valuable guidance for selecting optimal spin labels for 19F ENDOR distance measurement in proteins.
Collapse
Affiliation(s)
- Alexey Bogdanov
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, P. O. Box 26, Rehovot, 7610001, Israel.
| | - Longfei Gao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Arina Dalaloyan
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, P. O. Box 26, Rehovot, 7610001, Israel.
| | - Wenkai Zhu
- Department of Structural Biology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA
| | - Manas Seal
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, P. O. Box 26, Rehovot, 7610001, Israel.
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Veronica Frydman
- Department of Chemical Research Support, The Weizmann Institute of Science, P. O. Box 26, Rehovot, 7610001, Israel
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, P. O. Box 26, Rehovot, 7610001, Israel.
| |
Collapse
|
3
|
Ovcherenko SS, Raizvich AE, Rogozhnikova OY, Tormyshev VM, Trukhin DV, Koval VV, Salnikov GE, Genaev AM, Shernyukov AV, Bagryanskaya EG. Redox Transformations of the OX063 Radical in Biological Media: Oxidative Decay of Initial Trityl with Further Formation of Structurally-Modified TAM. Chemistry 2024; 30:e202400718. [PMID: 39003595 DOI: 10.1002/chem.202400718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024]
Abstract
Being a low-toxic and hydrophilic representative of TAM, OX063 has shown its suitability for in-vivo and in-cell EPR experiments and design of spin labels. Using 13C labeling, we investigated the course of oxidative degradation of OX063 into quinone-methide (QM) under the influence of superoxide as well as further thiol-promoted reduction of QM into TAM radical, which formally corresponds to substitution of a carboxyl function by a hydroxyl group. We found these transformations being quantitative in model reactions mimicking specific features of biological media and confirmed the presence of these reactions in the blood and liver homogenate of mice in vitro. The emergence of the trityl with the hydroxyl group can be masked by an initial TAM in EPR spectra and may introduce distortions into EPR-derived oximetry data if they have been obtained for objects under hypoxia. 13C labeling allows one to detect its presence, considering its different hyperfine splitting constant on 13C1 (2.04 mT) as compared to OX063 (2.30 mT). The potential involvement of these reactions should be considered when using TAM in spin-labeling of biopolymers intended for subsequent EPR experiments, as well as in the successful application of TAM in experiments in vivo and in cell.
Collapse
Affiliation(s)
- Sergey S Ovcherenko
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russian Federation
| | - Arthur E Raizvich
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russian Federation
| | - Olga Yu Rogozhnikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Victor M Tormyshev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Dmitry V Trukhin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Vladimir V Koval
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Georgii E Salnikov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Alexander M Genaev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Andrey V Shernyukov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
4
|
Pierro A, Bonucci A, Magalon A, Belle V, Mileo E. Impact of Cellular Crowding on Protein Structural Dynamics Investigated by EPR Spectroscopy. Chem Rev 2024; 124:9873-9898. [PMID: 39213496 DOI: 10.1021/acs.chemrev.3c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The study of how the intracellular medium influences protein structural dynamics and protein-protein interactions is a captivating area of research for scientists aiming to comprehend biomolecules in their native environment. As the cellular environment can hardly be reproduced in vitro, direct investigation of biomolecules within cells has attracted growing interest in the past two decades. Among magnetic resonances, site-directed spin labeling coupled to electron paramagnetic resonance spectroscopy (SDSL-EPR) has emerged as a powerful tool for studying the structural properties of biomolecules directly in cells. Since the first in-cell EPR experiment was reported in 2010, substantial progress has been made, and this Review provides a detailed overview of the developments and applications of this spectroscopic technique. The strategies available for preparing a cellular sample and the EPR methods that can be applied to cells will be discussed. The array of spin labels available, along with their strengths and weaknesses in cellular contexts, will also be described. Several examples will illustrate how in-cell EPR can be applied to different biological systems and how the cellular environment affects the structural and dynamic properties of different proteins. Lastly, the Review will focus on the future developments expected to expand the capabilities of this promising technique.
Collapse
Affiliation(s)
- Annalisa Pierro
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Alessio Bonucci
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| | - Axel Magalon
- Aix Marseille University, CNRS, Laboratoire de Chimie Bactérienne (LCB), IMM, IM2B, Marseille, France
| | - Valérie Belle
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| | - Elisabetta Mileo
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| |
Collapse
|
5
|
Li S, Deng P, Chang Q, Feng M, Shang Y, Song Y, Liu Y. In Situ Generation and High Bioresistance of Trityl-based Semiquinone Methide Radicals Under Anaerobic Conditions in Cellular Systems. Chemistry 2024; 30:e202400985. [PMID: 38932665 DOI: 10.1002/chem.202400985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Bioreduction of spin labels and polarizing agents (generally stable radicals) has been an obstacle limiting the in-cell applications of pulsed electron paramagnetic resonance (EPR) spectroscopy and dynamic nuclear polarization (DNP). In this work, we have demonstrated that two semiquinone methide radicals (OXQM⋅ and CTQM⋅) can be easily produced from the trityl-based quinone methides (OXQM and CTQM) via reduction by various reducing agents including biothiols and ascorbate under anaerobic conditions. Both radicals have relatively low pKa's and exhibit EPR single line signals at physiological pH. Moreover, the bioreduction of OXQM in three cell lysates enables quantitative generation of OXQM⋅ which was most likely mediated by flavoenzymes. Importantly, the resulting OXQM⋅ exhibited extremely high stability in the E.coli lysate under anaerobic conditions with 76- and 14.3-fold slower decay kinetics as compared to the trityl OX063 and a gem-diethyl pyrrolidine nitroxide, respectively. Intracellular delivery of OXQM into HeLa cells was also achieved by covalent conjugation with a cell-permeable peptide as evidenced by the stable intracellular EPR signal from the OXQM⋅ moiety. Owing to extremely high resistance of OXQM⋅ towards bioreduction, OXQM and its derivatives show great application potential in in-cell EPR and in-cell DNP studies for various cells which can endure short-term anoxic treatments.
Collapse
Affiliation(s)
- Shuai Li
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Peng Deng
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Qi Chang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Meirong Feng
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yixuan Shang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yuguang Song
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yangping Liu
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| |
Collapse
|
6
|
Shaw MA, Poncelet M, Viswakarma N, Vallerini GP, Hameed S, Gluth TD, Geldenhuys WJ, Hoblitzell EH, Eubank TD, Epel B, Kotecha M, Driesschaert B. SOX71, A Biocompatible Succinyl Derivative of the Triarylmethyl Radical OX071 for In Vivo Quantitative Oxygen Mapping Using Electron Paramagnetic Resonance. Mol Imaging Biol 2024; 26:542-552. [PMID: 37945971 PMCID: PMC11078887 DOI: 10.1007/s11307-023-01869-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE This study aimed to develop a biocompatible oximetric electron paramagnetic resonance (EPR) spin probe with reduced self-relaxation, and sensitivity to oxygen for a higher signal-to-noise ratio and longer relaxation times at high oxygen concentration, compared to the reference spin probe OX071. PROCEDURES SOX71 was synthesized by succinylation of the twelve alcohol groups of OX071 spin probe and characterized by EPR at X-Band (9.5 GHz) and at low field (720 MHz). The biocompatibility of SOX71 was tested in vitro and in vivo in mice. A pharmacokinetic study was performed to determine the best time frame for EPR imaging. Finally, a proof-of-concept EPR oxygen imaging was performed on a mouse model of a fibrosarcoma tumor. RESULTS SOX71 was synthesized in one step from OX071. SOX71 exhibits a narrow line EPR spectrum with a peak-to-peak linewidth of 66 mG, similar to OX071. SOX71 does not bind to albumin nor show cell toxicity for the concentrations tested up to 5 mM. No toxicity was observed after systemic delivery via intraperitoneal injection in mice at twice the dose required for EPR imaging. After the injection, the probe is readily absorbed into the bloodstream, with a peak blood concentration half an hour, post-injection. Then, the probe is quickly cleared by the kidney with a half-life of ~ 45 min. SOX71 shows long relaxation times under anoxic condition (T1e = 9.5 µs and T2e = 5.1 µs; [SOX71] = 1 mM in PBS at 37 °C, pO2 = 0 mmHg, 720 MHz). Both the relaxation rates R1e and R2e show a decreased sensitivity to pO2, leading to twice longer relaxation times under room air conditions (pO2 = 159 mmHg) compared to OX071. This is ideal for oxygen imaging in samples with a wide range of pO2. Both the relaxation rates R1e and R2e show a decreased sensitivity to self-relaxation compared to OX071, with a negligible effect of the probe concentration on R1e. SOX71 was successfully applied to image oxygen in a tumor. CONCLUSION SOX71, a succinylated derivative of OX071 was synthesized, characterized, and applied for in vivo EPR tumor oxygen imaging. SOX71 is highly biocompatible, and shows decreased sensitivity to oxygen and self-relaxation. This first report suggests that SOX71 is superior to OX071 for absolute oxygen mapping under a broad range of pO2 values.
Collapse
Affiliation(s)
- Misa A Shaw
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- West Virginia Clinical and Translational Sciences Institute, Morgantown, WV, 26506, USA
| | - Martin Poncelet
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Navin Viswakarma
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL, 60612, USA
| | | | - Safa Hameed
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL, 60612, USA
| | - Teresa D Gluth
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Emily H Hoblitzell
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- West Virginia Clinical and Translational Sciences Institute, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA
| | - Boris Epel
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Mrignayani Kotecha
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL, 60612, USA.
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA.
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
- West Virginia Clinical and Translational Sciences Institute, Morgantown, WV, 26506, USA.
- Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
7
|
Eubank TD, Bobko AA, Hoblitzell EH, Gencheva M, Driesschaert B, Khramtsov VV. In Vivo Electron Paramagnetic Resonance Molecular Profiling of Tumor Microenvironment upon Tumor Progression to Malignancy in an Animal Model of Breast Cancer. Mol Imaging Biol 2024; 26:424-434. [PMID: 37610610 PMCID: PMC10884355 DOI: 10.1007/s11307-023-01847-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE Hypoxia and acidosis are recognized tumor microenvironment (TME) biomarkers of cancer progression. Alterations in cancer redox status and metabolism are also associated with elevated levels of intracellular glutathione (GSH) and interstitial inorganic phosphate (Pi). This study aims to evaluate the capability of these biomarkers to discriminate between stages and inform on a switch to malignancy. PROCEDURES These studies were performed using MMTV-PyMT( +) female transgenic mice that spontaneously develop breast cancer and emulate human tumor staging. In vivo assessment of oxygen concentration (pO2), extracellular acidity (pHe), Pi, and GSH was performed using L-band electron paramagnetic resonance spectroscopy and multifunctional trityl and GSH-sensitive nitroxide probes. RESULTS Profiling of the TME showed significant deviation of measured biomarkers upon tumor progression from pre-malignancy (pre-S4) to the malignant stage (S4). For the combined marker, HOP: (pHe × pO2)/Pi, a value > 186 indicated that the tumors were pre-malignant in 85% of the mammary glands analyzed, and when < 186, they were malignant 42% of the time. For GSH, a value < 3 mM indicated that the tumors were pre-malignant 74% of the time, and when > 3 mM, they were malignant 80% of the time. The only marker that markedly deviated as early as stage 1 (S1) from its value in pre-S1 was elevated Pi, followed by a decrease of pHe and pO2 and increase in GSH at later stages. CONCLUSION Molecular TME profiling informs on alteration of tumor redox and metabolism during tumor staging. Early elevation of interstitial Pi at S1 may reflect tumor metabolic alterations that demand elevated phosphorus supply in accordance with the high rate growth hypothesis. These metabolic changes are supported by the following decrease of pHe due to a high tumor reliance on glycolysis and increase of intracellular GSH, a major intracellular redox buffer. The appreciable decrease in TME pO2 was observed only at malignant S4, apparently as a consequence of tumor mass growth and corresponding decrease in perfusion efficacy and increase in oxygen consumption as the tumor cells proliferate.
Collapse
Affiliation(s)
- Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
| | - Andrey A Bobko
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - E Hannah Hoblitzell
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Marieta Gencheva
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Valery V Khramtsov
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
8
|
Epel B, Viswakarma N, Sundramoorthy SV, Pawar NJ, Kotecha M. Oxygen Imaging of a Rabbit Tumor Using a Human-Sized Pulse Electron Paramagnetic Resonance Imager. Mol Imaging Biol 2024; 26:403-410. [PMID: 37715089 DOI: 10.1007/s11307-023-01852-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023]
Abstract
PURPOSE Spatial heterogeneity in tumor hypoxia is one of the most important factors regulating tumor growth, development, aggressiveness, metastasis, and affecting treatment outcome. Most solid tumors are known to have hypoxia or low oxygen levels (pO2 ≤10 torr). Electron paramagnetic resonance oxygen imaging (EPROI) is an emerging oxygen mapping technology. EPROI utilizes the linear relationship between the relaxation rates of the injectable OX071 trityl spin probe and the partial oxygen pressure (pO2). However, most of the EPROI studies have been limited to mouse models of solid tumors because of the instrument-size limitations. The purpose of this work was to develop a human-sized 9-mT (250 MHz resonance frequency, 60 cm bore size) pulse EPROI instrument and evaluate its performance with rabbit VX-2 tumor oxygen imaging. METHODS A New Zealand white rabbit with a 3.2-cm VX-2 tumor in the calf muscle was imaged using the human-sized EPROI instrument and a 2.25-in. ID volume coil. The animal received a ~8-min intravenous injection of OX071 (5.2 mL total volume at 72 mM concentration) and, after 75 min, an intratumoral injection (120 μL total at 5 mM OX071 concentration) and underwent EPROI. At the end of the experiments, MRI was performed using a preclinical 9.4-T MRI system to outline the tumor boundaries. RESULTS For the first time, a human-sized pulse EPROI instrument with a 60-cm bore size/250-MHz frequency was built and evaluated using rabbit tumor oxygen imaging. For the first time, the systemic IV injection of the oxygen-sensitive trityl OX071 spin probe was used for an animal of this size. The resulting EPROI image from the IV injection showed complete tumor coverage. The image obtained after intratumoral injection showed localized coverage in the upper lobe of the tumor, demonstrating the need for improved intratumoral injection protocol. CONCLUSIONS This study demonstrates the performance of the world's first human-sized pulse EPROI instrument. It also demonstrates that the EPROI of larger animals can be performed using the systemic injection of a manageable amount of the spin probe. This brings EPROI one step closer to clinical applications in cancer therapies. Oxygen imaging is a platform technology, and the instrument and techniques developed here will also be useful for other clinical applications.
Collapse
Affiliation(s)
- Boris Epel
- O2M Technologies, LLC, Chicago, IL, 60612, USA.
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, 60637, USA.
| | | | | | | | | |
Collapse
|
9
|
Li T, Murley GA, Liang X, Chin RL, de la Cerda J, Schuler FW, Pagel MD. Evaluations of an Early Change in Tumor Pathophysiology in Response to Radiotherapy with Oxygen Enhanced Electron Paramagnetic Resonance Imaging (OE EPRI). Mol Imaging Biol 2024; 26:448-458. [PMID: 38869818 DOI: 10.1007/s11307-024-01925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Electron Paramagnetic Resonance Imaging (EPRI) can image the partial pressure of oxygen (pO2) within in vivo tumor models. We sought to develop Oxygen Enhanced (OE) EPRI that measures tumor pO2 with breathing gases of 21% O2 (pO221%) and 100% O2 (pO2100%), and the differences in pO2 between breathing gases (ΔpO2). We applied OE EPRI to study the early change in tumor pathophysiology in response to radiotherapy in two tumor models of pancreatic cancer. PROCEDURES We developed a protocol that intraperitoneally administered OX071, a trityl radical contrast agent, and then acquired anatomical MR images to localize the tumor. Subsequently, we acquired two pO221% and two pO2100% maps using the T1 relaxation time of OX071 measured with EPRI and a R1-pO2 calibration of OX071. We studied 4T1 flank tumor model to evaluate the repeatability of OE EPRI. We then applied OE EPRI to study COLO 357 and Su.86.86 flank tumor models treated with 10 Gy radiotherapy. RESULTS The repeatability of mean pO2 for individual tumors was ± 2.6 Torr between successive scans when breathing 21% O2 or 100% O2, representing a precision of 9.6%. Tumor pO221% and pO2100% decreased after radiotherapy for both models, although the decreases were not significant or only moderately significant, and the effect sizes were modest. For comparison, ΔpO2 showed a large, highly significant decrease after radiotherapy, and the effect size was large. MANOVA and analyses of the HF10 hypoxia fraction provided similar results. CONCLUSIONS EPRI can evaluate tumor pO2 with outstanding precision relative to other imaging modalities. The change in ΔpO2 before vs. after treatment was the best parameter for measuring the early change in tumor pathophysiology in response to radiotherapy. Our studies have established ΔpO2 from OE EPRI as a new parameter, and have established that OE EPRI is a valuable new methodology for molecular imaging.
Collapse
Affiliation(s)
- Tianzhe Li
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas Health Science Center, Houston, TX, 77030, USA
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, 68105, USA
| | - Grace A Murley
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Xiaofei Liang
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Renee L Chin
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Jorge de la Cerda
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - F William Schuler
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark D Pagel
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Medical Physics, University of Wisconsin, Madison, WI, 53705, USA.
| |
Collapse
|
10
|
Petryakov SV, Kmiec MM, Ubert CS, Kassey VB, Schaner PE, Kuppusamy P. Surface dielectric resonator for in vivo EPR measurements. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107690. [PMID: 38692250 PMCID: PMC11102834 DOI: 10.1016/j.jmr.2024.107690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
This research report describes a novel surface dielectric resonator (SDR) with a flexible connector for in vivo electron paramagnetic resonance (EPR) spectroscopy. Contrary to the conventional cavity or surface loop-gap resonators, the newly developed SDR is constructed from a ceramic dielectric material, and it is tuned to operate at the L-band frequency band (1.15 GHz) in continuous-wave mode. The SDR is designed to be critically coupled and capable of working with both very lossy samples, such as biological tissues, and non-lossy materials. The SDR was characterized using electromagnetic field simulations, assessed for sensitivity with a B1 field-perturbation method, and validated with tissue phantoms using EPR measurements. The results showed remarkably higher sensitivity in lossy tissue phantoms than the previously reported multisegment surface-loop resonators. The new SDR can provide potential new insights for advancements in the application of in vivo EPR spectroscopy for biological measurements, including clinical oximetry.
Collapse
Affiliation(s)
- Sergey V Petryakov
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Maciej M Kmiec
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Conner S Ubert
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Victor B Kassey
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Philip E Schaner
- Department of Radiation Oncology and Applied Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Periannan Kuppusamy
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Department of Radiation Oncology and Applied Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
11
|
Fabri B, Funaioli T, Frédéric L, Elsner C, Bordignon E, Zinna F, Di Bari L, Pescitelli G, Lacour J. Triple para-Functionalized Cations and Neutral Radicals of Enantiopure Diaza[4]helicenes. J Am Chem Soc 2024; 146:8308-8319. [PMID: 38483324 DOI: 10.1021/jacs.3c13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Modulation of absorbance and emission is key for the design of chiral chromophores. Accessing a series of compounds absorbing and emitting (circularly polarized) light over a wide spectral window and often toward near-infrared is of practical value in (chir)optical applications. Herein, by late-stage functionalization on derivatives bridging triaryl methyl and helicene domains, we have achieved the regioselective triple introduction of para electron-donating or electron-withdrawing substituents. Extended tuning of electronic (e.g., E1/2red -1.50 V → -0.68 V) and optical (e.g., emission covering from 550 to 850 nm) properties is achieved for the cations and neutral radicals; the latter compounds being easily prepared by mono electron reductions under electrochemical or chemical conditions. While luminescence quantum yields can be increased up to 70% in the cationic series, strong Cotton effects are obtained for certain radicals at low energies (λabs ∼ 700-900 nm) with gabs values above 10-3. The open-shell electronic nature of the radicals was further characterized by electron paramagnetic resonance revealing an important spin density delocalization that contributes to their persistence.
Collapse
Affiliation(s)
- Bibiana Fabri
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
| | - Tiziana Funaioli
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Lucas Frédéric
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
| | - Christina Elsner
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
| |
Collapse
|
12
|
Kishimoto S, Devasahayam N, Chandramouli GVR, Murugesan R, Otowa Y, Yamashita K, Yamamoto K, Brender JR, Krishna MC. Evaluation of a deuterated triarylmethyl spin probe for in vivo R 2 ∗-based EPR oximetric imaging with enhanced dynamic range. Magn Reson Med 2024; 91:413-423. [PMID: 37676121 PMCID: PMC10841161 DOI: 10.1002/mrm.29811] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE In this study, we compared two triarylmethyl (TAM) spin probes, Ox071 and Ox063 for their efficacy in measuring tissue oxygen levels under hypoxic and normoxic conditions by R2 *-based EPR oximetry. METHODS The R2 * dependencies on the spin probe concentration and oxygen level were calibrated using deoxygenated 1, 2, 5, and 10 mM standard solutions and 2 mM solutions saturated at 0%, 2%, 5%, 10%, and 21% of oxygen. For the hypoxic model, in vivo imaging of a MIA PaCa-2 tumor implanted in the hind leg of a mouse was performed on successive days by R2 *-based EPR oximetry using either Ox071 or Ox063. For the normoxic model, renal imaging of healthy athymic mice was performed using both spin probes. The 3D images were reconstructed by single point imaging and multi-gradient technique was used to determine R2 * maps. RESULTS The signal intensities of Ox071 were approximately three times greater than that of Ox063 in the entire partial pressure of oxygen (pO2 ) range investigated. The histograms of the tumor pO2 images were skewed for both spin probes, and Ox071 showed more frequency counts at pO2 > 32 mm Hg. In the normoxic kidney model, there was a clear delineation between the high pO2 cortex and the low pO2 medulla regions. The histogram of high-resolution kidney oximetry image using Ox071 was nearly symmetrical and frequency counts were seen up to 55 mm Hg, which were missed in Ox063 imaging. CONCLUSION As an oximetric probe, Ox071 has clear advantages over Ox063 in terms of sensitivity and the pO2 dynamic range.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
- Urologic Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | | | | | - Ramachandran Murugesan
- Karpaga Vinayaga Institute of Medical Sciences and Research Center, Chengalpattu, Tamil Nadu, India
| | - Yasunori Otowa
- Radiation Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Kota Yamashita
- Radiation Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Jeffrey R Brender
- Radiation Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Mihalik NE, Steinberger KJ, Stevens AM, Bobko AA, Hoblitzell EH, Tseytlin O, Akhter H, Dziadowicz SA, Wang L, O’Connell RC, Monaghan KL, Hu G, Mo X, Khramtsov VV, Tseytlin M, Driesschaert B, Wan EC, Eubank TD. Dose-Specific Intratumoral GM-CSF Modulates Breast Tumor Oxygenation and Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1589-1604. [PMID: 37756529 PMCID: PMC10656117 DOI: 10.4049/jimmunol.2300326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
GM-CSF has been employed as an adjuvant to cancer immunotherapy with mixed results based on dosage. We previously showed that GM-CSF regulated tumor angiogenesis by stimulating soluble vascular endothelial growth factor (VEGF) receptor-1 from monocytes/macrophages in a dose-dependent manner that neutralized free VEGF, and intratumoral injections of high-dose GM-CSF ablated blood vessels and worsened hypoxia in orthotopic polyoma middle T Ag (PyMT) triple-negative breast cancer (TNBC). In this study, we assessed both immunoregulatory and oxygen-regulatory components of low-dose versus high-dose GM-CSF to compare effects on tumor oxygen, vasculature, and antitumor immunity. We performed intratumoral injections of low-dose GM-CSF or saline controls for 3 wk in FVB/N PyMT TNBC. Low-dose GM-CSF uniquely reduced tumor hypoxia and normalized tumor vasculature by increasing NG2+ pericyte coverage on CD31+ endothelial cells. Priming of "cold," anti-PD1-resistant PyMT tumors with low-dose GM-CSF (hypoxia reduced) sensitized tumors to anti-PD1, whereas high-dose GM-CSF (hypoxia exacerbated) did not. Low-dose GM-CSF reduced hypoxic and inflammatory tumor-associated macrophage (TAM) transcriptional profiles; however, no phenotypic modulation of TAMs or tumor-infiltrating lymphocytes were observed by flow cytometry. In contrast, high-dose GM-CSF priming increased infiltration of TAMs lacking the MHC class IIhi phenotype or immunostimulatory marker expression, indicating an immunosuppressive phenotype under hypoxia. However, in anti-PD1 (programmed cell death 1)-susceptible BALB/c 4T1 tumors (considered hot versus PyMT), high-dose GM-CSF increased MHC class IIhi TAMs and immunostimulatory molecules, suggesting disparate effects of high-dose GM-CSF across PyMT versus 4T1 TNBC models. Our data demonstrate a (to our knowledge) novel role for low-dose GM-CSF in reducing tumor hypoxia for synergy with anti-PD1 and highlight why dosage and setting of GM-CSF in cancer immunotherapy regimens require careful consideration.
Collapse
Affiliation(s)
- Nicole E. Mihalik
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
| | - Kayla J. Steinberger
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
| | - Alyson M. Stevens
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
| | - Andrey A. Bobko
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - E. Hannah Hoblitzell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Oxana Tseytlin
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - Halima Akhter
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
- Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506
| | - Sebastian A. Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
| | - Lei Wang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
| | - Ryan C. O’Connell
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - Kelly L. Monaghan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
| | - Xiaokui Mo
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, 1585 Neil Ave, Columbus, OH 43210, USA
| | - Valery V. Khramtsov
- West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - Mark Tseytlin
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506
- West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
- C. Eugene Bennet Department of Chemistry, West Virginia University, Morgantown, WV, 26505, United States
| | - Edwin C.K. Wan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26505
| | - Timothy D. Eubank
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
14
|
Shu C, Yang Z, Rajca A. From Stable Radicals to Thermally Robust High-Spin Diradicals and Triradicals. Chem Rev 2023; 123:11954-12003. [PMID: 37831948 DOI: 10.1021/acs.chemrev.3c00406] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Stable radicals and thermally robust high-spin di- and triradicals have emerged as important organic materials due to their promising applications in diverse fields. New fundamental properties, such as SOMO/HOMO inversion of orbital energies, are explored for the design of new stable radicals, including highly luminescent ones with good photostability. A relation with the singlet-triplet energy gap in the corresponding diradicals is proposed. Thermally robust high-spin di- and triradicals, with energy gaps that are comparable to or greater than a thermal energy at room temperature, are more challenging to synthesize but more rewarding. We summarize a number of high-spin di- and triradicals, based on nitronyl nitroxides that provide a relation between the experimental pairwise exchange coupling constant J/k in the high-spin species vs experimental hyperfine coupling constants in the corresponding monoradicals. This relation allows us to identify outliers, which may correspond to radicals where J/k is not measured with sufficient accuracy. Double helical high-spin diradicals, in which spin density is delocalized over the chiral π-system, have been barely explored, with the sole example of such high-spin diradical possessing alternant π-system with Kekulé resonance form. Finally, we discuss a high-spin diradical with electrical conductivity and derivatives of triangulene diradicals.
Collapse
Affiliation(s)
- Chan Shu
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Zhimin Yang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
15
|
Schäfter D, Wischnat J, Tesi L, De Sousa JA, Little E, McGuire J, Mas-Torrent M, Rovira C, Veciana J, Tuna F, Crivillers N, van Slageren J. Molecular One- and Two-Qubit Systems with Very Long Coherence Times. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302114. [PMID: 37289574 DOI: 10.1002/adma.202302114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/06/2023] [Indexed: 06/10/2023]
Abstract
General-purpose quantum computation and quantum simulation require multi-qubit architectures with precisely defined, robust interqubit interactions, coupled with local addressability. This is an unsolved challenge, primarily due to scalability issues. These issues often derive from poor control over interqubit interactions. Molecular systems are promising materials for the realization of large-scale quantum architectures, due to their high degree of positionability and the possibility to precisely tailor interqubit interactions. The simplest quantum architecture is the two-qubit system, with which quantum gate operations can be implemented. To be viable, a two-qubit system must possess long coherence times, the interqubit interaction must be well defined and the two qubits must also be addressable individually within the same quantum manipulation sequence. Here results are presented on the investigation of the spin dynamics of chlorinated triphenylmethyl organic radicals, in particular the perchlorotriphenylmethyl (PTM) radical, a mono-functionalized PTM, and a biradical PTM dimer. Extraordinarily long ensemble coherence times up to 148 µs are found at all temperatures below 100 K. Two-qubit and, importantly, individual qubit addressability in the biradical system are demonstrated. These results underline the potential of molecular materials for the development of quantum architectures.
Collapse
Affiliation(s)
- Dennis Schäfter
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Jonathan Wischnat
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Lorenzo Tesi
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - J Alejandro De Sousa
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
- Laboratorio de Electroquímica, Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Mérida, 5101, Venezuela
| | - Edmund Little
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jake McGuire
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Concepció Rovira
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Floriana Tuna
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Núria Crivillers
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Joris van Slageren
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
16
|
Abdullin D, Hett T, Fleck N, Kopp K, Cassidy S, Richert S, Schiemann O. Magneto-Structural Correlations in a Mixed Porphyrin(Cu 2+ )/Trityl Spin System: Magnitude, Sign, and Distribution of the Exchange Coupling Constant. Chemistry 2023; 29:e202203148. [PMID: 36519664 DOI: 10.1002/chem.202203148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Tetrathiatriarylmethyl radicals (TAM or trityl) are receiving increasing attention in various fields of magnetic resonance such as imaging, dynamic nuclear polarization, spin labeling, and, more recently, molecular magnetism and quantum information technology. Here, a trityl radical attached via a phenyl bridge to a copper(II)tetraphenylporphyrin was synthesized, and its magnetic properties studied by multi-frequency continuous-wave electron paramagnetic resonance (EPR) spectroscopy and magnetic measurements. EPR revealed that the electron spin-spin coupling constant J between the trityl and Cu2+ spin centers is ferromagnetic with a magnitude of -2.3 GHz (-0.077 cm-1 , + J S → 1 S → 2 ${+J{\vec{S}}_{1}{\vec{S}}_{2}}$ convention) and a distribution width of 1.2 GHz (0.040 cm-1 ). With the help of density functional theory (DFT) calculations, the obtained ferromagnetic exchange coupling, which is unusual for para-substituted phenyl-bridged biradicals, could be related to the almost perpendicular orientation of the phenyl linker with respect to the porphyrin and trityl ring planes in the energy minimum, while the J distribution was rationalized by the temperature weighted rotation of the phenyl bridge about the molecular axis connecting both spin centers. This study exemplifies the importance of molecular dynamics for the homogeneity (or heterogeneity) of the magnetic properties of trityl-based systems.
Collapse
Affiliation(s)
- Dinar Abdullin
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Tobias Hett
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Nico Fleck
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany.,Merck KGaA, Q20/001, Frankfurterstr. 250, 64293, Darmstadt, Germany
| | - Kevin Kopp
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Simon Cassidy
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Olav Schiemann
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany.,Department of Chemical and Biological Physics, Weizmann Institute of Science, 761001, Rehovot, Israel
| |
Collapse
|
17
|
Hasanbasri Z, Poncelet M, Hunter H, Driesschaert B, Saxena S. A new 13C trityl-based spin label enables the use of DEER for distance measurements. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 347:107363. [PMID: 36620971 PMCID: PMC9928843 DOI: 10.1016/j.jmr.2022.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Triarylmethyl (TAM)-based labels, while still underutilized, are a powerful class of labels for pulsed-Electron Spin Resonance (ESR) distance measurements. They feature slow relaxation rates for long-lasting signals, high stability for cellular experiments, and narrow spectral features for efficient excitation of the spins. However, the typical narrow line shape limits the available distance measurements to only single-frequency experiments, such as Double Quantum Coherence (DQC) and Relaxation Induced Dipolar Modulation Enhancement (RIDME), which can be complicated to perform or hard to process. Therefore, widespread usage of TAM labels can be enhanced by the use of Double Electron-Electron Resonance (DEER) distance measurements. In this work, we developed a new spin label, 13C1-mOX063-d24, with a 13C isotope as the radical center. Due to the resolved hyperfine splitting, the spectrum is sufficiently broadened to permit DEER-based experiments at Q-band spectrometers. Additionally, this new label can be incorporated orthogonally with Cu(II)-based protein label. The orthogonal labeling scheme enables DEER distance measurement at X-band frequencies. Overall, the new trityl label allows for DEER-based distance measurements that complement existing TAM-label DQC and RIDME experiments.
Collapse
Affiliation(s)
- Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Martin Poncelet
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, WV 26506, United States
| | - Hannah Hunter
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, WV 26506, United States; C. Eugene Bennett Department of Chemistry West Virginia University, Morgantown, WV 26506, United States.
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
18
|
Feng Y, Tan X, Shi Z, Villamena FA, Zweier JL, Song Y, Liu Y. Trityl Quinodimethane Derivatives as Unimolecular Triple-Function Extracellular EPR Probes for Redox, pH, and Oxygen. Anal Chem 2023; 95:1057-1064. [PMID: 36602544 DOI: 10.1021/acs.analchem.2c03754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy and imaging coupled with the use of suitable probes is a promising tool for assessment of the tumor microenvironment (TME). Measurement of multiple TME parameters by EPR is very desirable but challenging. Herein, we designed and synthesized a class of negative-charged trityl quinodimethane MTPs as unimolecular triple-function extracellular probes for redox, pH, and oxygen (O2) levels. Using the deuterated analogue, dMTP5, which has an optimal pKa as well as high sensitivity to bioreduction and O2, we reasonably evaluated pH effects on efflux of reducing agents from HepG2 cells and cellular O2 consumption.
Collapse
Affiliation(s)
- Yalan Feng
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| | - Xiaoli Tan
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| | - Zhaojun Shi
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| | - Frederick A Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio43210, United States
| | - Jay L Zweier
- Center for Biomedical EPR Spectroscopy and Imaging, the Division of Cardiovascular Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio43210, United States
| | - Yuguang Song
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| | - Yangping Liu
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| |
Collapse
|
19
|
Gluth TD, Poncelet M, Gencheva M, Hoblitzell EH, Khramtsov VV, Eubank TD, Driesschaert B. Biocompatible Monophosphonated Trityl Spin Probe, HOPE71, for In Vivo Measurement of pO 2, pH, and [P i] by Electron Paramagnetic Resonance Spectroscopy. Anal Chem 2023; 95:946-954. [PMID: 36537829 PMCID: PMC9852220 DOI: 10.1021/acs.analchem.2c03476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hypoxia, acidosis, and elevated inorganic phosphate concentration are characteristics of the tumor microenvironment in solid tumors. There are a number of methods for measuring each parameter individually in vivo, but the only method to date for noninvasive measurement of all three variables simultaneously in vivo is electron paramagnetic spectroscopy paired with a monophosphonated trityl radical, pTAM/HOPE. While HOPE has been successfully used for in vivo studies upon intratissue injection, it cannot be delivered intravenously due to systemic toxicity and albumin binding, which causes significant signal loss. Therefore, we present HOPE71, a monophosphonated trityl radical derived from the very biocompatible trityl probe, Ox071. Here, we describe a straightforward synthesis of HOPE71 starting with Ox071 and report its EPR sensitivities to pO2, pH, and [Pi] with X-band and L-band EPR spectroscopy. We also confirm that HOPE71 lacks albumin binding, shows low cytotoxicity, and has systemic tolerance. Finally, we demonstrate its ability to profile the tumor microenvironment in vivo in a mouse model of breast cancer.
Collapse
Affiliation(s)
- Teresa D. Gluth
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Martin Poncelet
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Marieta Gencheva
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Emily H. Hoblitzell
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Valery V. Khramtsov
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Timothy D. Eubank
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
20
|
Poncelet M, Ngendahimana T, Gluth TD, Hoblitzell EH, Eubank TD, Eaton GR, Eaton SS, Driesschaert B. Synthesis and characterization of a biocompatible 13C 1 isotopologue of trityl radical OX071 for in vivo EPR viscometry. Analyst 2022; 147:5643-5648. [PMID: 36373434 PMCID: PMC9729415 DOI: 10.1039/d2an01527g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
We describe the synthesis, characterization, and application of an isotopologue of the trityl radical OX071, labeled with 13C at the central carbon (13C1). This spin probe features large anisotropy of the hyperfine coupling with the 13C1 (I = 1/2), leading to an EPR spectrum highly sensitive to molecular tumbling. The high biocompatibility and lack of interaction with blood albumin allow for systemic delivery and in vivo measurement of tissue microviscosity by EPR.
Collapse
Affiliation(s)
- Martin Poncelet
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
| | - Thacien Ngendahimana
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Teresa D Gluth
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
| | - Emily H Hoblitzell
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
- Eugene Bennett Department of Chemistry, West Virginia University, WV, 26506, USA
| |
Collapse
|
21
|
O'Connell RC, Tseytlin O, Bobko AA, Eubank TD, Tseytlin M. Rapid scan EPR: Automated digital resonator control for low-latency data acquisition. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 345:107308. [PMID: 36356489 PMCID: PMC10266206 DOI: 10.1016/j.jmr.2022.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/05/2023]
Abstract
Automation has become an essential component of modern scientific instruments which often capture large amounts of complex dynamic data. Algorithms are developed to read multiple sensors in parallel with data acquisition and to adjust instrumental parameters on the fly. Decisions are made on a time scale unattainable to the human operator. In addition to speed, automation reduces human error, improves the reproducibility of experiments, and improves the reliability of acquired data. An automatic digital control (ADiC) was developed to reliably sustain critical coupling of a resonator over a wide range of time-varying loading conditions. The ADiC uses the computational power of a microcontroller that directly communicates with all system components independent of a personal computer (PC). The PC initiates resonator tuning and coupling by sending a command to MC via serial port. After receiving the command, ADiC establishes critical coupling conditions within approximately 5 ms. A printed circuit board resonator was designed to permit digital control. The performance of the resonator together with the ADiC was evaluated by varying the resonator loading from empty to heavily loaded. For the loading, samples containing aqueous sodium chloride that strongly absorb electromagnetic waves were used. A previously reported rapid scan (RS) electron paramagnetic resonance (EPR) imaging instrument was upgraded by the incorporation of ADiC. RS spectra and an in vivo image of oxygen in a mouse tumor model have been acquired using the upgraded system. ADiC robustly sustained critical coupling of the resonator to the transmission line during these measurements. The design implemented in this study can be used in slow-scan and pulsed EPR with modifications.
Collapse
Affiliation(s)
- Ryan C O'Connell
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Oxana Tseytlin
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Andrey A Bobko
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Mark Tseytlin
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA; West Virginia University Cancer Institute, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
22
|
|
23
|
Chen L, Wu L, Tan X, Rockenbauer A, Song Y, Liu Y. Synthesis and Redox Properties of Water-Soluble Asymmetric Trityl Radicals. J Org Chem 2021; 86:8351-8364. [PMID: 34043350 DOI: 10.1021/acs.joc.1c00766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tetrathiatriarylmethyl (trityl) radicals have been recently shown to react with biological oxidoreductants including glutathione (GSH), ascorbic acid (Asc), and superoxide anion radical (O2•-). However, how the substituents affect the reactivity of trityl radicals is still unknown. In this work, five asymmetric trityl radicals were synthesized and their reactivities with GSH, Asc, and O2•- investigated. Under aerobic conditions, GSH induces fast decays for the thioether- (TSA) and N-methyleneglycine-substituted (TGA) derivatives and slow decay for the 4-carboxyphenyl-containing one (TPA). Under anaerobic conditions, the direct reduction of these radicals by GSH also occurs with rate constants (kGSH) from 1.8 × 10-4 M-1 s-1 for TPA to 1.0 × 10-2 M-1 s-1 for TGA. Moreover, these radicals can also react with O2•- with rate constants (kSO) from 1.2 × 103 M-1 s-1 for ET-01 to 1.6 × 104 M-1 s-1 for TGA. Surprisingly, these radicals are completely inert to Asc in both aerobic and anaerobic conditions. Additionally, the substituents exert an important effect on redox potentials of these trityl radicals. This work demonstrates that the redox properties of the trityl radicals strongly depend on their substituents, and TPA with high stability toward GSH shows great potential for intracellular applications.
Collapse
Affiliation(s)
- Li Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Lanlan Wu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.,Department of Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111 Budapest, Hungary
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| |
Collapse
|
24
|
Hasanbasri Z, Singewald K, Gluth TD, Driesschaert B, Saxena S. Cleavage-Resistant Protein Labeling With Hydrophilic Trityl Enables Distance Measurements In-Cell. J Phys Chem B 2021; 125:5265-5274. [PMID: 33983738 DOI: 10.1021/acs.jpcb.1c02371] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sensitive in-cell distance measurements in proteins using pulsed-electron spin resonance (ESR) require reduction-resistant and cleavage-resistant spin labels. Among the reduction-resistant moieties, the hydrophilic trityl core known as OX063 is promising due to its long phase-memory relaxation time (Tm). This property leads to a sufficiently intense ESR signal for reliable distance measurements. Furthermore, the Tm of OX063 remains sufficiently long at higher temperatures, opening the possibility for measurements at temperatures above 50 K. In this work, we synthesized deuterated OX063 with a maleimide linker (mOX063-d24). We show that the combination of the hydrophilicity of the label and the maleimide linker enables high protein labeling that is cleavage-resistant in-cells. Distance measurements performed at 150 K using this label are more sensitive than the measurements at 80 K. The sensitivity gain is due to the significantly short longitudinal relaxation time (T1) at higher temperatures, which enables more data collection per unit of time. In addition to in vitro experiments, we perform distance measurements in Xenopus laevis oocytes. Interestingly, the Tm of mOX063-d24 is sufficiently long even in the crowded environment of the cell, leading to signals of appreciable intensity. Overall, mOX063-d24 provides highly sensitive distance measurements both in vitro and in-cells.
Collapse
Affiliation(s)
- Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kevin Singewald
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Teresa D Gluth
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
25
|
Velayutham M, Poncelet M, Eubank TD, Driesschaert B, Khramtsov VV. Biological Applications of Electron Paramagnetic Resonance Viscometry Using a 13C-Labeled Trityl Spin Probe. Molecules 2021; 26:molecules26092781. [PMID: 34066858 PMCID: PMC8125944 DOI: 10.3390/molecules26092781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/27/2022] Open
Abstract
Alterations in viscosity of biological fluids and tissues play an important role in health and diseases. It has been demonstrated that the electron paramagnetic resonance (EPR) spectrum of a 13C-labeled trityl spin probe (13C-dFT) is highly sensitive to the local viscosity of its microenvironment. In the present study, we demonstrate that X-band (9.5 GHz) EPR viscometry using 13C-dFT provides a simple tool to accurately measure the microviscosity of human blood in microliter volumes obtained from healthy volunteers. An application of low-field L-band (1.2 GHz) EPR with a penetration depth of 1–2 cm allowed for microviscosity measurements using 13C-dFT in the living tissues from isolated organs and in vivo in anesthetized mice. In summary, this study demonstrates that EPR viscometry using a 13C-dFT probe can be used to noninvasively and rapidly measure the microviscosity of blood and interstitial fluids in living tissues and potentially to evaluate this biophysical marker of microenvironment under various physiological and pathological conditions in preclinical and clinical settings.
Collapse
Affiliation(s)
- Murugesan Velayutham
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; (M.V.); (M.P.); (T.D.E.)
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Martin Poncelet
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; (M.V.); (M.P.); (T.D.E.)
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Timothy D. Eubank
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; (M.V.); (M.P.); (T.D.E.)
- Department of Microbiology, Immunology & Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; (M.V.); (M.P.); (T.D.E.)
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
- Correspondence: (B.D.); (V.V.K.); Tel.: +1-304-293-7401 (B.D.); +1-304-293-4470 (V.V.K.)
| | - Valery V. Khramtsov
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; (M.V.); (M.P.); (T.D.E.)
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Correspondence: (B.D.); (V.V.K.); Tel.: +1-304-293-7401 (B.D.); +1-304-293-4470 (V.V.K.)
| |
Collapse
|
26
|
Fleck N, Heubach C, Hett T, Spicher S, Grimme S, Schiemann O. Ox-SLIM: Synthesis of and Site-Specific Labelling with a Highly Hydrophilic Trityl Spin Label. Chemistry 2021; 27:5292-5297. [PMID: 33404074 PMCID: PMC8048664 DOI: 10.1002/chem.202100013] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Indexed: 01/04/2023]
Abstract
The combination of pulsed dipolar electron paramagnetic resonance spectroscopy (PDS) with site-directed spin labelling is a powerful tool in structural biology. Rational design of trityl-based spin labels has enabled studying biomolecular structures at room temperature and within cells. However, most current trityl spin labels suffer either from aggregation with proteins due to their hydrophobicity, or from bioconjugation groups not suitable for in-cell measurements. Therefore, we introduce here the highly hydrophilic trityl spin label Ox-SLIM. Engineered as a short-linked maleimide, it combines the most recent developments in one single molecule, as it does not aggregate with proteins, exhibits high resistance under in-cell conditions, provides a short linker, and allows for selective and efficient spin labelling via cysteines. Beyond establishing synthetic access to Ox-SLIM, its suitability as a spin label is illustrated and ultimately, highly sensitive PDS measurements are presented down to protein concentrations as low as 45 nm resolving interspin distances of up to 5.5 nm.
Collapse
Affiliation(s)
- Nico Fleck
- University of BonnInstitute of Physical and Theoretical ChemistryWegelerstr. 1253115BonnGermany
| | - Caspar Heubach
- University of BonnInstitute of Physical and Theoretical ChemistryWegelerstr. 1253115BonnGermany
| | - Tobias Hett
- University of BonnInstitute of Physical and Theoretical ChemistryWegelerstr. 1253115BonnGermany
| | - Sebastian Spicher
- University of BonnInstitute of Physical and Theoretical ChemistryBeringstr. 453115BonnGermany
| | - Stefan Grimme
- University of BonnInstitute of Physical and Theoretical ChemistryBeringstr. 453115BonnGermany
| | - Olav Schiemann
- University of BonnInstitute of Physical and Theoretical ChemistryWegelerstr. 1253115BonnGermany
| |
Collapse
|
27
|
Poncelet M, Driesschaert B. A 13 C-Labeled Triarylmethyl Radical as an EPR Spin Probe Highly Sensitive to Molecular Tumbling. Angew Chem Int Ed Engl 2020; 59:16451-16454. [PMID: 32542924 PMCID: PMC7901239 DOI: 10.1002/anie.202006591] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 12/21/2022]
Abstract
A stable triarylmethyl spin probe whose electron paramagnetic resonance (EPR) spectrum is highly sensitive to molecular tumbling is reported. The strong anisotropy of the hyperfine coupling tensor with the central carbon of a 13 C1 -labeled triarylmethyl radical enables the measurement of the probe rotational correlation time with applications to measure microviscosity and molecular dynamics.
Collapse
Affiliation(s)
- Martin Poncelet
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
28
|
Sanzhaeva U, Poncelet M, Tseytlin O, Tseytlin M, Gencheva M, Eubank TD, Khramtsov VV, Driesschaert B. Synthesis, Characterization, and Application of a Highly Hydrophilic Triarylmethyl Radical for Biomedical EPR. J Org Chem 2020; 85:10388-10398. [PMID: 32698583 DOI: 10.1021/acs.joc.0c00557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stable tetrathiatriarylmethyl radicals have significantly contributed to the recent progress in biomedical electron paramagnetic resonance (EPR) due to their unmatched stability in biological media and long relaxation times. However, the lipophilic core of the most commonly used structure (Finland trityl) is responsible for its interaction with plasma biomacromolecules, such as albumin, and self-aggregation at high concentrations and/or low pH. While Finland trityl is generally considered inert toward many reactive radical species, we report that sulfite anion radical efficiently substitutes the three carboxyl moieties of Finland trityl with a high rate constant of 3.53 × 108 M-1 s-1, leading to a trisulfonated Finland trityl radical. This newly synthesized highly hydrophilic trityl radical shows an ultranarrow linewidth (ΔBpp = 24 mG), a lower affinity for albumin than Finland trityl, and a high aqueous solubility even at acidic pH. Therefore, this new tetrathiatriarylmethyl radical can be considered as a superior spin probe in comparison to the widely used Finland trityl. One of its potential applications was demonstrated by in vivo mapping oxygen in a mouse model of breast cancer. Moreover, we showed that one of the three sulfo groups can be easily substituted with S-, N-, and P-nucleophiles, opening access to various monofunctionalized sulfonated trityl radicals.
Collapse
Affiliation(s)
- Urikhan Sanzhaeva
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, West Virginia 26506, United States
| | - Martin Poncelet
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, West Virginia 26506, United States
| | - Oxana Tseytlin
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, West Virginia 26506, United States
| | - Mark Tseytlin
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, West Virginia 26506, United States
| | - Marieta Gencheva
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, West Virginia 26506, United States
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, West Virginia 26506, United States
| | - Valery V Khramtsov
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, West Virginia 26506, United States
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, West Virginia 26506, United States
| |
Collapse
|
29
|
Poncelet M, Driesschaert B. A
13
C‐Labeled Triarylmethyl Radical as an EPR Spin Probe Highly Sensitive to Molecular Tumbling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Poncelet
- Department of Pharmaceutical SciencesSchool of PharmacyWest Virginia University Morgantown WV 26506 USA
- In Vivo Multifunctional Magnetic Resonance CenterRobert C. Byrd Health Sciences CenterWest Virginia University Morgantown WV 26506 USA
| | - Benoit Driesschaert
- Department of Pharmaceutical SciencesSchool of PharmacyWest Virginia University Morgantown WV 26506 USA
- In Vivo Multifunctional Magnetic Resonance CenterRobert C. Byrd Health Sciences CenterWest Virginia University Morgantown WV 26506 USA
| |
Collapse
|
30
|
Wang X, Peng C, He K, Ji K, Tan X, Han G, Liu Y, Liu Y, Song Y. Intracellular delivery of liposome-encapsulated Finland trityl radicals for EPR oximetry. Analyst 2020; 145:4964-4971. [PMID: 32510063 DOI: 10.1039/d0an00108b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tetrathiatriarylmethyl (TAM, trityl) radicals have found wide applications in electron paramagnetic resonance (EPR) oximetry. However, the biomedical applications of TAM radicals were exclusively limited to an extracellular region owing to their negatively charged nature. The intracellular delivery of TAM radicals still remains a challenge. In the present work, we report a liposome-based method to encapsulate the water-soluble Finland trityl radical CT-03 for its intracellular delivery. Using the thin lipid film hydration method, CT-03-loaded liposomes were prepared from DSPC/cholesterol/DOTAP with a mean size of 167.5 ± 2.4 nm and a zeta potential of 27.8 ± 0.8 mV. EPR results showed that CT-03 was entrapped into the liposomes and still exhibited good oxygen (O2) sensitivity. Moreover, CT-03 was successfully delivered into HepG2 cells and HUVECs using the CT-03-loaded liposomes. Importantly, the combination of the liposome-encapsulated radical CT-03 and the other TAM radical CT02-H enabled simultaneous measurements of the intracellular and extracellular O2 concentrations and O2 consumption rates in HepG2 cells. Our present study provides a new approach for intracellular delivery of TAM radicals and could significantly expand their biomedical applications.
Collapse
Affiliation(s)
- Xing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|