1
|
Sun L, Zhang Y, Wu B, Hu E, Li L, Qu L, Li S. Impact of particle size separation on the stabilisation efficiency of heavy-metal-contaminated soil: a meta-analysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1821-1835. [PMID: 39221488 DOI: 10.1039/d4em00308j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The separation of heavy-metal-contaminated soil by particle size is crucial for minimising the volume of contaminated soil because of the pronounced variability in the heavy-metal distribution among different soil particle sizes. However, relevant analyses on the effect of soil particle size sorting on stabilisation are limited. Therefore, we screened 2766 peer-reviewed papers published from January 2010 to April 2022 in the Web of Science database, of which 117 met the screening requirements, and conducted a meta-analysis to explore how soil particle size sorting and the interaction between sorting particle size and soil properties affect the stabilisation of heavy metals. The results showed that: (1) For fractionations ≤0.15 mm and from 0.15-2 mm, the materials demonstrating the highest average unit stabilisation efficiency were phosphate (45.0%/%) and organic matter (59.5%/%), respectively. (2) The smaller the size of soil particles, the greater the effect of the initial pH on stabilisation efficiency. (3) Similarly, for soil organic matter, smaller particle sizes (≤0.15 mm) combined with a lower initial content (≤1%) significantly increased the heavy metal stabilisation efficiency. (4) The impact of soil particle size fractionation on unit stabilisation efficiency was observed to be similar for typical heavy metals, specifically Cd and Pb. The relationship between particle size and unit stabilisation efficiency shows an inverted U shape. Particle size sorting can affect the distribution of heavy metals, but the type of stabilisation agent should also be considered in combination with the soil properties and heavy metal types.
Collapse
Affiliation(s)
- Lixia Sun
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R. China.
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang 110819, P.R. China
| | - Yunlong Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R. China.
- National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, P.R. China
| | - Enzhu Hu
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang 110819, P.R. China
| | - Linlin Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Longlong Qu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R. China.
| | - Shuqi Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
2
|
Wu L, Du W, Wang L, Cao Y, Lv J. Effects of freeze-thaw leaching on physicochemical properties and cadmium transformation in cadmium contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116935. [PMID: 39208583 DOI: 10.1016/j.ecoenv.2024.116935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
This study aims to investigate the effect of the combined method of freeze-thaw and leaching on the removal of cadmium (Cd) in soil and to provide a theoretical basis for the remediation of farmland soil polluted by heavy metals. The removal process and mechanism of Cd were deduced through oscillatory leaching experiments and freeze-thaw leaching simulation experiments, and the influence of the freeze-thaw leaching technology on the soil environment was evaluated. The results of oscillatory leaching showed that a mixture consisting of 0.80 mol/L citric acid and 0.80 mol/L ferric chloride in a 1:19 vol ratio effectively remove 47.75 % of Cd, indicating that the composite leaching agent could effectively remove Cd from the soil. The results of the freeze-thaw leaching simulation experiment showed that although the freeze-thaw leaching treatment increased the total Cd content in the 0-5 cm soil layer, the total Cd content in the 5-10 cm, 10-15 cm, and 15-20 cm soil layers decreased by 5.08 %, 2.39 %, and 5.68 %, respectively. The freeze-thaw leaching increased the content of exchangeable Cd (p<0.05), carbonate bound Cd, but decreased organic bound Cd and residual Cd (p<0.05), thereby increasing the bioavailability of Cd. Freeze-thaw leaching not only increased the competitive adsorption of Cd2+ by decreasing soil pH, cation exchange capacity, and increasing the content of exchangeable calcium and exchangeable magnesium, thus reducing the adsorption of Cd in soil. And the results of XPS and FTIR similarly showed that the freeze-thaw leaching could promote the chelation between Cd2+ and hydroxyl, carboxyl and carbonyl functional groups. Although the freeze-thaw leaching destroyed the large particle structure (0.05-2 mm) and large pores in the soil, and increased the clay content (<0.002 mm) and the proportion of small pores in the soil, the XRD results showed that freeze-thaw leaching had no significant effect on the minerals in the soil. In summary, this study shows that freeze-thaw leaching has a significant effect on the removal of soil heavy metals, suggesting that the synergistic effect of freeze-thaw and leaching should be considered in the process of removing soil pollutants in seasonal freeze-thaw zones, and that this method provides a new insight into the remediation of contaminated soils.
Collapse
Affiliation(s)
- Lulu Wu
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Xianyang 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Wei Du
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Xianyang 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Luping Wang
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Xianyang 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Yang Cao
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Xianyang 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Xianyang 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China.
| |
Collapse
|
3
|
Xu L, Dai H, Wei S, Skuza L, Shi J. High-efficiency combination washing agents with eco-friendliness simultaneously removing Cd, Cu and Ni from soil of e-waste recycling site: A lab-scale experiment. CHEMOSPHERE 2024; 357:142047. [PMID: 38621485 DOI: 10.1016/j.chemosphere.2024.142047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/17/2024] [Accepted: 04/13/2024] [Indexed: 04/17/2024]
Abstract
Soil washing technology plays an important role in the removal of heavy metals, and the efficacy of this process depends on the washing agent used. Due to the difficulty in treating soils contaminated by multiple heavy metals, there is still a need for further exploration of efficient washing agents with low environmental impact. Although single washing agents, such as chelators, can also effectively remove heavy metals from soil, combining efficient washing agents and determining their optimal washing conditions can effectively improve their removal efficiency for multiple heavy metals in soil simultaneously. Based on the previous research, the present study was carried out to combine different types of washing agents to remediate contaminated soils at a commonly e-waste recycling site. The objectives were to investigate their efficient washing conditions and assess the impact of the washing process on the speciation distribution and pollution level associated with heavy metals in soil. The results showed that the combination of HEDP (1-hydroxyethylidene-1,1-diphosphonic acid) and FeCl3 at a ratio of 6:4 exhibited the most effective removal of Cd, Cu and Ni from the contaminated soil at an e-waste recycling site. Under optimal washing conditions, with a soil-to-liquid ratio of 1:20 and a washing time of 48 h, the removal rates of Cd, Cu and Ni were 96.72%, 69.91% and 76.08%, respectively. It needed to be emphasized that the combination washing agents were able to remove most of the acid-soluble, reducible and oxidizable fractions of heavy metals, and even the removal rates of the stable residual fraction (e.g., of Cd) was at a relatively high level. In addition, the washing process significantly reduced the pollution level associated with heavy metals in soil. This study aid in the development of combined efficient washing agents and explores optimal washing strategies for the remediation of Cd, Cu, and Ni-contaminated soil at e-waste recycling sites. The findings may play a role in enhancing the remediation capabilities for soils contaminated with multiple heavy metals, due to its characteristics of and high-efficiency and environmental friendliness.
Collapse
Affiliation(s)
- Lei Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-Resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built by Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China.
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin, 71-415, Poland
| | - Jiachun Shi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Yuan Z, Peng A, Chu Z, Zhang X, Huang H, Mi Y, Xia D, Wu X, Ye Z, Tao Y, Yan X. Sustainable remediation of Cr(VI)-contaminated soil by soil washing and subsequent recovery of washing agents using biochar supported nanoscale zero-valent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171107. [PMID: 38387560 DOI: 10.1016/j.scitotenv.2024.171107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Soil contamination by Cr(VI) has attracted widespread attention globally in recent years, but it remains a significant challenge in developing an environmentally friendly and eco-sustainable technique for the disposal of Cr(VI)-contaminated soil. Herein, a sustainable cyclic soil washing system for Cr(VI)-polluted soil remediation and the recovery of washing agents using biochar supported nanoscale zero-valent iron (nZVI-BC) was established. Citric acid (CA) was initially screened to desorb Cr(VI) from contaminated soil, mobilizing Cr from the highly bioaccessible fractions. The nZVI-BC exhibited superior properties for Cr(VI) and Cr(total) removal from spent effluent, allowing effective recovery of the washing agents. The elimination mechanism of Cr(total) by nZVI-BC involved the coordinated actions of electrostatic adsorption, reduction, and co-precipitation. The contributions to Cr(VI) reduction by Fe0, surface-bound Fe(II), and soluble Fe(II) were 0.6 %, 39.8 %, and 59.6 %, respectively. Meanwhile, CA favored the activity of surface-bound Fe(II) and Fe0 in nZVI-BC, enhancing the production of soluble Fe(II) to strengthen Cr(VI) removal. Finally, the recovered washing agent was proven to be reused three times. This study showcases that the combined soil washing using biodegradable chelant CA and effluent treatment by nZVI-BC could be a sustainable and promising strategy for Cr(VI)-contaminated soil remediation.
Collapse
Affiliation(s)
- Zhe Yuan
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Aifang Peng
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Zhaopeng Chu
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Xinyi Zhang
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - He Huang
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Yuanzhu Mi
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Dongsheng Xia
- Engineering Research Center of Ministry of Education for Clean Production of Textile Printing and Dyeing, Wuhan 430200, China
| | - Xiaogang Wu
- School of Urban Construction, Yangtze University, Jingzhou 434103, PR China
| | - Zhihong Ye
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400000, China
| | - Yufang Tao
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.
| | - Xuemin Yan
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.
| |
Collapse
|
5
|
Seo C, Lee JW, Jeong JW, Kim TS, Lee Y, Gang G, Lee SG. Current technologies for heavy metal removal from food and environmental resources. Food Sci Biotechnol 2024; 33:287-295. [PMID: 38222907 PMCID: PMC10786761 DOI: 10.1007/s10068-023-01431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 01/16/2024] Open
Abstract
Exposure to heavy metals in water and food poses a significant threat to human well-being, necessitating the efficient removal of these contaminants. The process of urban development exacerbates heavy metal pollution, thereby increasing risks to both human health and ecosystems. Heavy metals have the capacity to enter the food chain, undergo bioaccumulation and magnify, ultimately resulting in adverse effects on human health. Therefore, implementing effective pollution control measures and adopting sustainable practices are crucial for mitigating exposure and associated health risks. Various innovative approaches, including adsorption, ion exchange, and electrochemical technology, are currently being actively investigated to cope with the issue of heavy metal contamination. These innovative methods offer benefits such as efficient recycling, cost-effectiveness and environmental friendliness. In this review, we summarize recent advances for removing heavy metals from water, soil and food, providing valuable guidance for environmental engineers and researchers seeking to address contamination challenges.
Collapse
Affiliation(s)
- Chan Seo
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea
- Division of Natural Products Research, Honam National Institute of Biological Resource, Mokpo, 58762 Korea
| | - Joo Won Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Korea
| | - Jin-Woo Jeong
- Division of Natural Products Research, Honam National Institute of Biological Resource, Mokpo, 58762 Korea
| | - Tae-Su Kim
- Division of Natural Products Research, Honam National Institute of Biological Resource, Mokpo, 58762 Korea
| | - Yoonmi Lee
- Food Safety and Processing Research Division, National Institute Fisheries Science, Busan, 46083 Korea
| | - Gyoungok Gang
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea
| | - Sang Gil Lee
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Korea
| |
Collapse
|
6
|
Jiang X, Zhang X, Cheng G, Liu J. Assessing the potential of red mud and dehydrated mineral mud mixtures as soil matrix for revegetation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118393. [PMID: 37384988 DOI: 10.1016/j.jenvman.2023.118393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023]
Abstract
The disposal of red mud (RM) and dehydrated mineral mud (DM) presents a significant challenge for the global alumina industry. This study proposes a novel disposal method for RM and DM, which uses mixtures of RM and DM as a soil matrix for revegetation in the mining area. RM mixed with DM effectively alleviated its salinity and alkalinity. X-ray diffraction analysis indicated that reduction of salinity and alkalinity may be due to the release of chemical alkali from sodalite and cancrinite. Applications of ferric chloride (FeCl3), gypsum, and organic fertilizer (OF) improved the physicochemical properties of the RM-DM mixtures. FeCl3 significantly reduced available Cd, As, Cr, and Pb content in the RM-DM, while OF significantly increased the cation exchange capacity, microbial carbon and nitrogen, and aggregate stability (p < 0.05). Micro-computed tomography and nuclear magnetic resonance analysis showed that amendment with OF and FeCl3 increased the porosity, pore diameter, and hydraulic conductivity in the RM-DM mixture. The RM-DM mixtures had low leaching of toxic elements, indicating low environmental risk. Ryegrass grew well in the RM-DM mixture at a ratio of 1:3. OF and FeCl3 significantly increased the ryegrass biomass (p < 0.05). These results suggested that RM-DM amended with OF and FeCl3 has a potential application in the revegetation of areas after bauxite mining.
Collapse
Affiliation(s)
- Xusheng Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Xuehong Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Guanwen Cheng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Jie Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin, 541004, China.
| |
Collapse
|
7
|
Jiang Z, Nie K, Yu L, Arinzechi C, Zhao F, Liao Q, Yang Z, Si M, Yang W. Synchronous stabilization of As, Cd, and Pb in soil by sustained-release of iron-phosphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161369. [PMID: 36626993 DOI: 10.1016/j.scitotenv.2022.161369] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Anionic arsenic (As) exhibits geochemical behavior opposite to those of cationic cadmium (Cd), and lead (Pb), which makes the synchronous remediation of As, Cd, and Pb challenging. The synchronous stabilization of As, Cd, and Pb to form Cd/Pb-phosphate and iron‑arsenic precipitates is a promising strategy. However, the effectiveness of soluble phosphate or iron-based materials is limited by the activation of Cd, Pb, or As, while low mobility hinders insoluble particles. In this study, we developed an amorphous structure that releases iron and phosphate at a sustained rate. Thus, the stabilization efficiencies of NaHCO3-extractable As, DTPA-extractable Cd and Pb reached 44.6 %, 40.8 %, and 48.1 %, respectively. The proportion of residual fraction of As, Cd, and Pb increased by 12.1 %, 14.5 %, and 36.4 %, respectively, after 28 d. Ferrihydrite was chosen as the soil component to monitor the chemical behavior and speciation transformation of As, Cd, and Pb in the reaction. During the process, the released iron directly reacted with dissolved As to form iron‑arsenic precipitation and phosphate directly reacted with Cd/Pb to form Cd/Pb-phosphate precipitation. Simultaneously, phosphate replaced the adsorbed As and transformed into a dissolved state, which could be re-precipitated with the released iron ions. Thus, this study provides a reliable strategy for the remediation of As, Cd, and Pb combined pollution in soil.
Collapse
Affiliation(s)
- Zhi Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Kai Nie
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Lin Yu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chukwuma Arinzechi
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China.
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China.
| |
Collapse
|
8
|
Washing Bottom Sediment for The Removal of Arsenic from Contaminated Italian Coast. Processes (Basel) 2023. [DOI: 10.3390/pr11030902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Among various forms of anthropogenic pollution, the release of toxic metals in the environment is a global concern due to the high toxicity of these metals towards living organisms. In the last 20 years, sediment washing has gained increasing attention thanks to its capability to remove toxic metals from contaminated matrices. In this paper, we propose a Response Surface Methodology method for the washing of selected marine sediments of the Bagnoli-Coroglio Bay (Campania region, Italy) polluted with arsenic and other contaminants. We focused our attention on different factors affecting the clean-up performance (i.e., liquid/solid ratio, chelating concentration, and reaction time). The highest As removal efficiency (i.e., >30 μg/g) was obtained at a liquid/solid ratio of 10:1 (v/w), a citric acid concentration of 1000 mM, and a washing time of 94.22 h. Based on these optimum results, ecotoxicological tests were performed and evaluated in two marine model species (i.e., Phaeodactylum tricornutum and Aliivibrio fischeri), which were exposed to the washing solutions. Reduced inhibition of the model species was observed after nutrient addition. Overall, this study provides an effective tool to quickly assess the optimum operating conditions to be set during the washing procedures of a broad range of marine sediments with similar physicochemical properties (i.e., grain size and type of pollution).
Collapse
|
9
|
Tindanzor E, Guo Z, Li T, Xu R, Xiao X, Peng C. Leaching and characterization studies of heavy metals in contaminated soil using sequenced reagents of oxalic acid, citric acid, and a copolymer of maleic and acrylic acid instead of ethylenediaminetetraacetic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6919-6934. [PMID: 36018405 DOI: 10.1007/s11356-022-22634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
In this work, the removal performance of three environmentally friendly reagents, oxalic acid (OA), citric acid (CA), and a copolymer of maleic and acrylic acid (PMAA), on heavy metals in polluted soil was studied at the optimum conditions and compared their sequenced performance. The results showed that the consecutive washing with the individual acids significantly improved the removal percentage of heavy metals in the soil compared to that of EDTA (10.2%, 71.3%, 29.8%, 61.6%, and 52.4% removal for As, Cd, Cu, Pb, and Zn, respectively). The removal of As, Cd, Cu, Pb, and Zn in the sequence of CA-OA was 65.6%, 79%, 59.1%, 64.6%, and 63.5%, respectively. In addition, the organic acids had little influence on the soil physicochemical properties after washing with slight reductions of acidity (pH) and soil organic matter (SOM), which are the major determinants of the usability of washed soils for plant growth. The germination rate of Sorghum bicolor in CA-OA-washed soils reached over 70% on the 7th day. CA-OA-washed soils collectively stand out in using washed soils for plant growth with the following advantages: simultaneous removal of cationic and anionic metals, less harmful impact on soil properties, and successful support for the germination of crops. Based on the findings, we recommend the CA-OA sequence as the best alternative to EDTA with higher metal removal efficiency and germination success.
Collapse
Affiliation(s)
- Eric Tindanzor
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China.
| | - Tianshuang Li
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| |
Collapse
|
10
|
Li H, Xiao J, Zhao Z, Zhong D, Chen J, Xiao B, Xiao W, Wang W, Crittenden JC, Wang L. Reduction of cadmium bioavailability in paddy soil and its accumulation in brown rice by FeCl 3 washing combined with biochar: A field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158186. [PMID: 36007639 DOI: 10.1016/j.scitotenv.2022.158186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) removal from paddy soil to reduce Cd accumulation in brown rice is essential for agroecology, food safety, and human health. In this study, we demonstrate that ferric chloride (FeCl3) washing combined with biochar treatment efficiently remediates Cd-contaminated paddy soil in field trials. Our results showed that 30.9 % of total Cd and 41.6 % of bioavailable Cd were removed by the addition of 0.03 M FeCl3 at a liquid/soil ratio of 1.5:1. The subsequent addition of 1 % biochar further reduced bioavailable Cd by 36.5 and 41.5 %, compared with FeCl3 washing or biochar treatment alone. The principal component regression analysis showed that the Cd content in brown rice was primarily affected by the bioavailable Cd in soil. The combined remediation contributed to the decreased Cd contents in brown rice by 45.5-62.5 %, as well as a 2.7-11.8 % increase in rice yield. The Cd contents in brown rice decreased to 0.12 and 0.04 mg kg-1 in two cultivars of rice (Zhuliangyou189 and Zhuliangyou929), lower than the national food safety standard limit value of China (0.2 mg kg-1). Meanwhile, the combined remediation promoted the restoration of soil pH and organic matter as well as the improvement of available nutrients. This finding suggests that the combination of FeCl3 washing and biochar is an effective remediation strategy to minimize Cd bioavailability in paddy soil, and improves soil quality, thus contributing to food safety.
Collapse
Affiliation(s)
- Hongbo Li
- School of Environmental Science and Engineering Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinguang Xiao
- PowerChina Environmental Engineering Corporation Limited, Changsha, 410000, China
| | - Zezhou Zhao
- School of Environmental Science and Engineering Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Delai Zhong
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jing Chen
- School of Environmental Science and Engineering Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bo Xiao
- School of Environmental Science and Engineering Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wu Xiao
- PowerChina Zhongnan Engineering Corporation Limited, Changsha, 410000, China
| | - Wei Wang
- PowerChina Environmental Engineering Corporation Limited, Changsha, 410000, China
| | - John C Crittenden
- School of Environmental Science and Engineering Huazhong University of Science and Technology, Wuhan, 430074, China; Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Linling Wang
- School of Environmental Science and Engineering Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
11
|
Kim HM, Choi TY, Park MJ, Jeong DW. Heavy metal removal using an advanced removal method to obtain recyclable paper incineration ash. Sci Rep 2022; 12:12800. [PMID: 35896703 PMCID: PMC9329337 DOI: 10.1038/s41598-022-16486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Various agents, including ethylenediaminetetraacetic acid, oxalic acid, citric acid, and HCl, were applied to remove heavy metals from raw paper incineration ash and render the ash recyclable. Among these prepared agent solutions, ethylenediaminetetraacetic acid showed the highest efficiency for Pb removal, while oxalic acid showed the highest efficiencies for Cu, Cd, and As removal. Additionally, three modes of an advanced removal method, which involved the use of both ethylenediaminetetraacetic acid and oxalic acid, were considered for use at the end of the rendering process. Among these three modes of the advanced removal method, that which involved the simultaneous use of ethylenediaminetetraacetic acid and oxalic acid, i.e., a mixture of both solutions, showed the best heavy metal removal efficiencies. In detail, 11.9% of Cd, 10% of Hg, 28.42% of As, 31.29% of Cu, and 49.19% of Pb were removed when this method was used. Furthermore, the application of these three modes of the advanced removal method resulted in a decrease in the amounts of heavy metals eluted and brought about an increase in the CaO content of the treated incineration ash, while decreasing its Cl content. These combined results enhanced the solidification effect of the treated incineration ash. Thus, it was confirmed that the advanced removal method is a promising strategy by which recyclable paper incineration ash can be obtained.
Collapse
Affiliation(s)
- Hak-Min Kim
- Industrial Technology Research Center, Changwon National University, 20 Changwondaehak-ro, Changwon, Gyeongnam, 51140, Republic of Korea
| | - Tae-Yeol Choi
- Department of Smart Environmental Energy Engineering, Changwon National University, 20 Changwondaehak-ro, Changwon, Gyeongnam, 51140, Republic of Korea
| | - Min-Ju Park
- Department of Smart Environmental Energy Engineering, Changwon National University, 20 Changwondaehak-ro, Changwon, Gyeongnam, 51140, Republic of Korea
| | - Dae-Woon Jeong
- Department of Smart Environmental Energy Engineering, Changwon National University, 20 Changwondaehak-ro, Changwon, Gyeongnam, 51140, Republic of Korea. .,Department of Environmental & Energy Engineering, Changwon National University, 20 Changwondaehak-ro, Changwon, Gyeongnam, 51140, Republic of Korea.
| |
Collapse
|
12
|
Fazle Bari ASM, Lamb D, MacFarlane GR, Rahman MM. Soil washing of arsenic from mixed contaminated abandoned mine soils and fate of arsenic after washing. CHEMOSPHERE 2022; 296:134053. [PMID: 35183586 DOI: 10.1016/j.chemosphere.2022.134053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Arsenic contamination in abandoned soils is a global concern which warrants an effective method of remediation. In this study, two organic acids and one biodegradable chelating agent were used to treat arsenic (As) contaminated abandoned mine soils. The concentration of As was 19,100 and 75,350 (mg/kg) for Webbs Consols (WC) and Mole River (MR) samples, respectively. X-ray diffraction and scanning electron microscopy confirmed that tooeleite, arsenopyrite, scorodite and quartz were the major minerals in these soils. A major portion of the As was composed of amorphous and crystalline oxides of Fe and Al determined by sequential extraction. Among the three washing reagents (oxalic acid, citric acid and EDDS) oxalic acid showed the best performance for extracting As. Based on the batch experiment, 0.5 M oxalic acid and 3 h of washing was the most efficient treatment to extract As and other trace elements. Extraction of As, Fe, and Pb was 70, 55, and 48% respectively for WC, while 68, 45 and 63% respectively for MR soil. Oxalic acid extracted 75 and 83% of As and Fe, respectively from tooeleite. Leachability and bioaccessibility of As and Fe in the treated soil was reduced due to washing. However, bioaccessibility and leachability of Pb in soil and Fe and As in tooeleite increased in washed samples. Though the leachability and bioaccessibility of As and Fe in soil was reduced in the treated soil, As still exceeded the USEPA criteria (5 mg/L) which is needed to successfully remediate soil by washing. Soil washing and subsequent solidification/stabilization could be an alternative option to remediate extremely contaminated abandoned mine soil.
Collapse
Affiliation(s)
- A S M Fazle Bari
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia; Department of Soil Science, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Dane Lamb
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
13
|
Luo Y, Pang J, Li C, Sun J, Xu Q, Ye J, Wu H, Wan Y, Shi J. Long-term and high-bioavailable potentially toxic elements (PTEs) strongly influence the microbiota in electroplating sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:151933. [PMID: 34838915 DOI: 10.1016/j.scitotenv.2021.151933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/01/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Multiple potentially toxic elements (PTEs) wastes are produced in the process of electroplating, which pollute the surrounding soils. However, the priority pollutants and critical risk factors in electroplating sites are still unclear. Hence, a typical demolished electroplating site (operation for 31 years) in the Yangtze River Delta was investigated. Results showed that the soil was severely polluted by Cr(VI) (1711.3 mg kg-1), Ni (6754.0 mg kg-1) and Pb (2784.4 mg kg-1). The spatial distribution of soil PTEs performed by ArcGIS illustrated that the soil pollution varied with plating workshops. Hard Cr electroplating workshops (HCE), decorative Cr electroplating workshops (DCE) and sludge storage station (SS) were the hot spots in the site. Besides, the toxicity characteristic leaching procedure (TCLP) - extractable Cr and Ni contents in different workshops were significantly related (P < 0.05) to their bioavailable fractions (exchangeable fraction (F1) + bound to carbonate fraction (F2)), which pose potential risk to humans. Although the soil total Pb concentration was high, its mobility was very low (<0.007%). Moreover, the soil microbial community dynamics under the stress of long term and high contents of PTEs were further revealed. The soil microbiota was significantly disturbed by long term and high concentration of PTEs. A bit of bacteria (Caulobacter) and fungi (Cladosporium and Monocillium) showed tolerance potential to multiple metals. Furthermore, the canonical correspondence analysis (CCA) showed that the bioavailable fractions (F1 + F2) of Cr and Ni were the most critical environmental variables affecting microbiota. Therefore, remediation strategies are required urgently to reduce the bioavailability of soil Cr and Ni. The results of this study provide an overview of the pollution distribution and microbial dynamics of a typical plating site, laying a foundation for ecological remediation of electroplating sites in Yangtze River Delta of China.
Collapse
Affiliation(s)
- Yating Luo
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jingli Pang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Chunhui Li
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jiacong Sun
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Qiao Xu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jien Ye
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Yuanyan Wan
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Yan D, Guo Z, Xiao X, Peng C, He Y, Yang A, Wang X, Hu Y, Li Z. Cleanup of arsenic, cadmium, and lead in the soil from a smelting site using N,N-bis(carboxymethyl)-L-glutamic acid combined with ascorbic acid: A lab-scale experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113174. [PMID: 34237673 DOI: 10.1016/j.jenvman.2021.113174] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/05/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Chemical washing has been carried out to remediate soil contaminated with heavy metals. In this study, the appropriate washing conditions for N,N-bis(carboxymethyl)-L-glutamic acid (GLDA) combined with ascorbic acid were determined to remove As, Cd, and Pb in the soil from the smelting site. The mechanism of heavy metal removal by the washing agent was also clarified. The results showed that heavy metals in the soil from the smelting site can be effectively removed. The removal percentages of As, Cd, and Pb in the soil from the smelting site were found to be 34.49%, 63.26%, and 62.93%, respectively, under optimal conditions (GLDA and ascorbic acid concentration ratio of 5:20, pH of 3, washing for 60 min, and the liquid-to-solid ratio of 10). GLDA combined with ascorbic acid efficiently removes As, Cd, and Pb from the soil through synergistic proton obstruction, chelation, and reduction. GLDA can chelate with iron and aluminum oxides while directly chelate with Cd and Pb. Ascorbic acid can reduce both Fe(III) to Fe(II) and As(III) to As0. The dissolution of As was promoted by indirectly preempting the binding sites of iron and aluminum in the soil while those of Cd and Pb were improved by directly interrupting the binding sites. This study suggested that GLDA combined with ascorbic acid is an effective cleanup technology to remove As, Cd, and Pb simultaneously from contaminated smelting site soils.
Collapse
Affiliation(s)
- Demei Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Yalei He
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Andi Yang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Xiaoyan Wang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Yulian Hu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Zhihui Li
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
15
|
Rebello S, Sivaprasad MS, Anoopkumar AN, Jayakrishnan L, Aneesh EM, Narisetty V, Sindhu R, Binod P, Pugazhendhi A, Pandey A. Cleaner technologies to combat heavy metal toxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113231. [PMID: 34252850 DOI: 10.1016/j.jenvman.2021.113231] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 05/21/2023]
Abstract
Heavy metals frequently occur as silent poisons present in our daily diet, the environment we live and the products we use, leaving us victims to various associated drastic health and ecological bad effects even in meagre quantities. The prevalence of heavy metals can be traced from children's toys, electronic goods, industrial effluents, pesticide preparation, and even in drinking water in some instances; necessitating methods to remediate them. The current review discusses the various physicochemical and biological methods employed to tackle the problem of heavy metal pollution. Apart from the conventional methods following the principles of adsorption, precipitation, coagulation, and various separation techniques, the advancements made in the directions of biological heavy metal detoxification using microbes, plants, algae have been critically analyzed to identify the specific utility of different agents for specific heavy metal removal. The review paper is a nutshell of different heavy metal remediation strategies, their merits, demerits, and modifications done to alleviate process of heavy metal pollution.
Collapse
Affiliation(s)
| | - M S Sivaprasad
- University of Calicut, Kerala Police Academy, Thrissur, Kerala, India
| | | | | | | | - Vivek Narisetty
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, Kerala, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research, Lucknow, 226 001, Uttar Pradesh, India; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
16
|
Zhao Y, Li H, Li B, Lai Y, Zang L, Tang X. Process design and validation of a new mixed eluent for leaching Cd, Cr, Pb, Cu, Ni, and Zn from heavy metal-polluted soil. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1269-1277. [PMID: 33624641 DOI: 10.1039/d0ay01978j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemical leaching, an emerging technology for treating heavy metal-polluted soils, requires a design for reasonable and new eluent and an evaluation of its efficiency on the simultaneous removal of different elements. In this study, the leaching effect and biodegradability of chelating agents were compared, and ethylenediamine disuccinic acid (EDDS) was selected to combine with ferric chloride (FeCl3) for the design of a mixed eluent (EDDS + FeCl3). Through batch experiments, the influences of the eluent concentration and solution pH on leaching were revealed, and leaching efficiencies of EDDS, FeCl3, and EDDS + FeCl3 on six heavy metals Cd, Cr, Pb, Cu, Ni, and Zn in the soil were separately analyzed. Results indicated that EDDS + FeCl3 showed advantages over both EDDS and FeCl3 alone, and it presented an excellent effect, especially for simultaneously leaching multiple heavy metals from the soil. The highest leaching efficiencies for Cd, Cr, Pb, Cu, Ni, and Zn reached up to 71.36%, 21.29%, 31.14%, 30.25%, 34.05%, and 4.96%, respectively. According to different soil types and target elements, the concentration, pH condition, and mass ratio of EDDS + FeCl3 could be adjusted for soil remediation. Fourier transform infrared spectroscopy proved that the better leaching effect of EDDS + FeCl3 was attributed to changes in the number and strength of functional groups in the solution, which enhanced the chelating ability of the mixed eluent and heavy metal ions. Therefore, chemical leaching by EDDS + FeCl3 for the remediation of multiple heavy metal-contaminated soil is a potential feasible strategy.
Collapse
Affiliation(s)
- Yuyan Zhao
- College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China.
| | | | | | | | | | | |
Collapse
|
17
|
Li Q, Li Y, Yang Z, Li X, Tang Z, Yang S, Zhang Y, Liu D. Remediation of iron oxide bound Pb and Pb-contaminated soils using a combination of acid washing agents and l-ascorbic acid. RSC Adv 2020; 10:37808-37817. [PMID: 35515195 PMCID: PMC9057221 DOI: 10.1039/d0ra05327a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/12/2020] [Indexed: 11/21/2022] Open
Abstract
Soil washing is an efficient, rapid, and cost-effective remediation technique to dissolve target pollutants from contaminated soil. Here we studied the effects of leaching agents: hydrochloric acid (HCl), ethylenediamine tetraacetic acid disodium salt (Na2EDTA) and citric acid (CA), and reductants: hydroxylamine hydrochloride (NH2OH·HCl) and l-ascorbic acid (VC) on the leaching of Pb from synthetic iron oxide; the changes in mineralogy, morphology, and occurrence of Pb were shown by XRD, SEM, and sequential extraction analyses. Although the washing efficiency of Pb follows the trend HCl (44.24%) > Na2EDTA (39.04%) > CA (28.85%), the cooperation of the leaching agent with reductant further improves the efficiency. VC is more suitable as a reductant considering the higher washing efficiency by HCl-VC (98.6%) than HCl-NH2OH·HCl (88.8%). Moreover, increasing the temperature can promote the decomposition and dehydrogenation reaction of VC with more H+. Among the mixture agents, Na2EDTA + VC is the most effective agent to remediate the two kinds of contaminated soils owing to the formation of Fe(ii)-EDTA, a powerful reducing agent so that the efficiencies can reach up to 98.03% and 92.81%, respectively. As a result, these mixture agents have a great prospect to remediate Pb-contaminated soils.
Collapse
Affiliation(s)
- Quan Li
- School of Environmental Studies, China University of Geosciences 68 Jincheng Street Wuhan 430074 P. R. China
| | - Yilian Li
- School of Environmental Studies, China University of Geosciences 68 Jincheng Street Wuhan 430074 P. R. China
| | - Zhe Yang
- School of Environmental Studies, China University of Geosciences 68 Jincheng Street Wuhan 430074 P. R. China
| | - Xiang Li
- School of Environmental Studies, China University of Geosciences 68 Jincheng Street Wuhan 430074 P. R. China
| | - Zhi Tang
- School of Environmental Studies, China University of Geosciences 68 Jincheng Street Wuhan 430074 P. R. China
| | - Sen Yang
- School of Environmental Studies, China University of Geosciences 68 Jincheng Street Wuhan 430074 P. R. China
| | - Yangyang Zhang
- School of Environmental Studies, China University of Geosciences 68 Jincheng Street Wuhan 430074 P. R. China
| | - Danqing Liu
- School of Environmental Studies, China University of Geosciences 68 Jincheng Street Wuhan 430074 P. R. China
| |
Collapse
|
18
|
Xu YN, Chen Y. Advances in heavy metal removal by sulfate-reducing bacteria. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1797-1827. [PMID: 32666937 DOI: 10.2166/wst.2020.227] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Industrial development has led to generation of large volumes of wastewater containing heavy metals, which need to be removed before the wastewater is released into the environment. Chemical and electrochemical methods are traditionally applied to treat this type of wastewater. These conventional methods have several shortcomings, such as secondary pollution and cost. Bioprocesses are gradually gaining popularity because of their high selectivities, low costs, and reduced environmental pollution. Removal of heavy metals by sulfate-reducing bacteria (SRB) is an economical and effective alternative to conventional methods. The limitations of and advances in SRB activity have not been comprehensively reviewed. In this paper, recent advances from laboratory studies in heavy metal removal by SRB were reported. Firstly, the mechanism of heavy metal removal by SRB is introduced. Then, the factors affecting microbial activity and metal removal efficiency are elucidated and discussed in detail. In addition, recent advances in selection of an electron donor, enhancement of SRB activity, and improvement of SRB tolerance to heavy metals are reviewed. Furthermore, key points for future studies of the SRB process are proposed.
Collapse
Affiliation(s)
- Ya-Nan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China E-mail:
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China E-mail: ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|