1
|
Ye X, Wang E, Huang Y, Yang Y, Zhang T, You H, Long Y, Guo W, Liu B, Wang S. Biomolecule-grafted GO enhanced the mechanical and biological properties of 3D printed PLA scaffolds with TPMS porous structure. J Mech Behav Biomed Mater 2024; 157:106646. [PMID: 38981181 DOI: 10.1016/j.jmbbm.2024.106646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Graphene oxide (GO) exhibits excellent mechanical strength and modulus. However, its effectiveness in mechanically reinforcing polymer materials is limited due to issues with interfacial bonding and dispersion arising from differences in the physicochemical properties between GO and polymers. Surface modification using coupling agents is an effective method to improve the bonding problem between polymer and GO, but there may be biocompatibility issues when used in the biomedical field. In this study, the biomolecule L-lysine, was applied to improve the interfacial bonding and dispersion of GO in polylactic acid (PLA) without compromising biocompatibility. The PLA/L-lysine-modified GO (PLA/L-GO) bone scaffold with triply periodic minimal surface (TPMS) structure was prepared using fused deposition modeling (FDM). The FTIR results revealed successful grafting of L-lysine onto GO through the reaction between their -COOH and -NH2 groups. The macroscopic and microscopic morphology characterization indicated that the PLA/L-GO scaffolds exhibited an characteristics of dynamic diameter changes, with good interlayer bonding. It was noteworthy that the L-lysine modification promoted the dispersion of GO and the interfacial bonding with the PLA matrix, as characterized by SEM. As a result, the PLA/0.1L-GO scaffold exhibited higher compressive strength (13.2 MPa) and elastic modulus (226.8 MPa) than PLA/0.1GO. Moreover, PLA/L-GO composite scaffold exhibited superior biomineralization capacity and cell response compared to PLA/GO. In summary, L-lysine not only improved the dispersion and interfacial bonding of GO with PLA, enhancing the mechanical properties, but also improved the biological properties. This study suggests that biomolecules like L-lysine may replace traditional modifiers as an innovative bio-modifier to improve the performance of polymer/inorganic composite biomaterials.
Collapse
Affiliation(s)
- Xiaotong Ye
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Enyu Wang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning, 530004, China
| | - Yanjian Huang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Yanjuan Yang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning, 530004, China
| | - Tianwen Zhang
- Department of Orthopedic Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Hui You
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning, 530004, China
| | - Yu Long
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning, 530004, China
| | - Wang Guo
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning, 530004, China.
| | - Bin Liu
- Department of Orthopedic Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China.
| | - Shan Wang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China.
| |
Collapse
|
2
|
Zhu S, Zhou J, Xie Z. The balance between helper T 17 and regulatory T cells in osteoimmunology and relevant research progress on bone tissue engineering. Immun Inflamm Dis 2024; 12:e70011. [PMID: 39264247 PMCID: PMC11391570 DOI: 10.1002/iid3.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Bone regeneration is a well-regulated dynamic process, of which the prominent role of the immune system on bone homeostasis is more and more revealed by recent research. Before fully activation of the bone remodeling cells, the immune system needs to clean up the microenvironment in facilitating the bone repair initiation. Furthermore, this microenvironment must be maintained properly by various mechanisms over the entire bone regeneration process. OBJECTIVE This review aims to summarize the role of the T-helper 17/Regulatory T cell (Th17/Treg) balance in bone cell remodeling and discuss the relevant progress in bone tissue engineering. RESULTS The role of the immune response in the early stages of bone regeneration is crucial, especially the impact of the Th17/Treg balance on osteoclasts, mesenchymal stem cells (MSCs), and osteoblasts activity. By virtue of these knowledge advancements, innovative approaches in bone tissue engineering, such as nano-structures, hydrogel, and exosomes, are designed to influence the Th17/Treg balance and thereby augment bone repair and regeneration. CONCLUSION Targeting the Th17/Treg balance is a promising innovative strategy for developing new treatments to enhance bone regeneration, thus offering potential breakthroughs in bone injury clinics.
Collapse
Affiliation(s)
- Shuyu Zhu
- Kunming Medical University School of Stomatology and Affiliated Stomatology HospitalKunmingYunnan ProvinceChina
| | - Jing Zhou
- Kunming Medical University School of Stomatology and Affiliated Stomatology HospitalKunmingYunnan ProvinceChina
| | - Zhigang Xie
- Kunming Medical University School of Stomatology and Affiliated Stomatology HospitalKunmingYunnan ProvinceChina
| |
Collapse
|
3
|
Min KH, Kim KH, Ki MR, Pack SP. Antimicrobial Peptides and Their Biomedical Applications: A Review. Antibiotics (Basel) 2024; 13:794. [PMID: 39334969 PMCID: PMC11429172 DOI: 10.3390/antibiotics13090794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of drug resistance genes and the detrimental health effects caused by the overuse of antibiotics are increasingly prominent problems. There is an urgent need for effective strategies to antibiotics or antimicrobial resistance in the fields of biomedicine and therapeutics. The pathogen-killing ability of antimicrobial peptides (AMPs) is linked to their structure and physicochemical properties, including their conformation, electrical charges, hydrophilicity, and hydrophobicity. AMPs are a form of innate immune protection found in all life forms. A key aspect of the application of AMPs involves their potential to combat emerging antibiotic resistance; certain AMPs are effective against resistant microbial strains and can be modified through peptide engineering. This review summarizes the various strategies used to tackle antibiotic resistance, with a particular focus on the role of AMPs as effective antibiotic agents that enhance the host's immunological functions. Most of the recent studies on the properties and impregnation methods of AMPs, along with their biomedical applications, are discussed. This review provides researchers with insights into the latest advancements in AMP research, highlighting compelling evidence for the effectiveness of AMPs as antimicrobial agents.
Collapse
Affiliation(s)
- Ki Ha Min
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Koung Hee Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Mi-Ran Ki
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| |
Collapse
|
4
|
Marcello E, Nigmatullin R, Basnett P, Maqbool M, Prieto MA, Knowles JC, Boccaccini AR, Roy I. 3D Melt-Extrusion Printing of Medium Chain Length Polyhydroxyalkanoates and Their Application as Antibiotic-Free Antibacterial Scaffolds for Bone Regeneration. ACS Biomater Sci Eng 2024; 10:5136-5153. [PMID: 39058405 PMCID: PMC11322914 DOI: 10.1021/acsbiomaterials.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
In this work, we investigated, for the first time, the possibility of developing scaffolds for bone tissue engineering through three-dimensional (3D) melt-extrusion printing of medium chain length polyhydroxyalkanoate (mcl-PHA) (i.e., poly(3-hydroxyoctanoate-co-hydroxydecanoate-co-hydroxydodecanoate), P(3HO-co-3HD-co-3HDD)). The process parameters were successfully optimized to produce well-defined and reproducible 3D P(3HO-co-3HD-co-3HDD) scaffolds, showing high cell viability (100%) toward both undifferentiated and differentiated MC3T3-E1 cells. To introduce antibacterial features in the developed scaffolds, two strategies were investigated. For the first strategy, P(3HO-co-3HD-co-3HDD) was combined with PHAs containing thioester groups in their side chains (i.e., PHACOS), inherently antibacterial PHAs. The 3D blend scaffolds were able to induce a 70% reduction of Staphylococcus aureus 6538P cells by direct contact testing, confirming their antibacterial properties. Additionally, the scaffolds were able to support the growth of MC3T3-E1 cells, showing the potential for bone regeneration. For the second strategy, composite materials were produced by the combination of P(3HO-co-3HD-co-HDD) with a novel antibacterial hydroxyapatite doped with selenium and strontium ions (Se-Sr-HA). The composite material with 10 wt % Se-Sr-HA as a filler showed high antibacterial activity against both Gram-positive (S. aureus 6538P) and Gram-negative bacteria (Escherichia coli 8739), through a dual mechanism: by direct contact (inducing 80% reduction of both bacterial strains) and through the release of active ions (leading to a 54% bacterial cell count reduction for S. aureus 6538P and 30% for E. coli 8739 after 24 h). Moreover, the composite scaffolds showed high viability of MC3T3-E1 cells through both indirect and direct testing, showing promising results for their application in bone tissue engineering.
Collapse
Affiliation(s)
- Elena Marcello
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Rinat Nigmatullin
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Pooja Basnett
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Muhammad Maqbool
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
- Lucideon
Ltd., Stoke-on-Trent ST4 7LQ, Staffordshire U.K.
- CAM
Bioceramics B.V., Zernikedreef
6, 2333 CL Leiden, The Netherlands
| | - M. Auxiliadora Prieto
- Polymer
Biotechnology Lab, Centro de Investigaciones Biológicas-Margarita
Salas, Spanish National Research Council
(CIB-CSIC), Madrid 28040, Spain
| | - Jonathan C. Knowles
- Division
of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, London NW3 2PF, U.K.
- Department
of Nanobiomedical Science and BK21 Plus NBM, Global Research Center
for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - Aldo R. Boccaccini
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Ipsita Roy
- Department
of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S3 7HQ, U.K.
- Insigneo
Institute for In Silico Medicine, University
of Sheffield, Sheffield S3 7HQ, U.K.
| |
Collapse
|
5
|
ten Brink T, Damanik F, Rotmans JI, Moroni L. Unraveling and Harnessing the Immune Response at the Cell-Biomaterial Interface for Tissue Engineering Purposes. Adv Healthc Mater 2024; 13:e2301939. [PMID: 38217464 PMCID: PMC11468937 DOI: 10.1002/adhm.202301939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Biomaterials are defined as "engineered materials" and include a range of natural and synthetic products, designed for their introduction into and interaction with living tissues. Biomaterials are considered prominent tools in regenerative medicine that support the restoration of tissue defects and retain physiologic functionality. Although commonly used in the medical field, these constructs are inherently foreign toward the host and induce an immune response at the material-tissue interface, defined as the foreign body response (FBR). A strong connection between the foreign body response and tissue regeneration is suggested, in which an appropriate amount of immune response and macrophage polarization is necessary to trigger autologous tissue formation. Recent developments in this field have led to the characterization of immunomodulatory traits that optimizes bioactivity, the integration of biomaterials and determines the fate of tissue regeneration. This review addresses a variety of aspects that are involved in steering the inflammatory response, including immune cell interactions, physical characteristics, biochemical cues, and metabolomics. Harnessing the advancing knowledge of the FBR allows for the optimization of biomaterial-based implants, aiming to prevent damage of the implant, improve natural regeneration, and provide the tools for an efficient and successful in vivo implantation.
Collapse
Affiliation(s)
- Tim ten Brink
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Febriyani Damanik
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Joris I. Rotmans
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333ZAThe Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
6
|
Guan X, Wu S, Ouyang S, Ren S, Cui N, Wu X, Xiang D, Chen W, Yu B, Zhao P, Wang B. Remodeling Microenvironment for Implant-Associated Osteomyelitis by Dual Metal Peroxide. Adv Healthc Mater 2024; 13:e2303529. [PMID: 38430010 DOI: 10.1002/adhm.202303529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/02/2024] [Indexed: 03/03/2024]
Abstract
Implant-associated osteomyelitis (IAOM) is characterized by bone infection and destruction; current therapy of antibiotic treatment and surgical debridement often results in drug resistance and bone defect. It is challenging to develop an antibiotic-free bactericidal and osteogenic-enhanced strategy for IAOM. Herein, an IAOM-tailored antibacterial and osteoinductive composite of copper (Cu)-strontium (Sr) peroxide nanoparticles (CSp NPs), encapsulated in polyethylene glycol diacrylate (PEGDA) (CSp@PEGDA), is designed. The dual functional CSp NPs display hydrogen peroxide (H2O2) self-supplying and Fenton catalytic Cu2+ ions' release, generating plenty of hydroxyl radical (•OH) in a pH-responsive manner for bacterial killing, while the released Sr2+ promotes the in vitro osteogenicity regarding cell proliferation, alkaline phosphatase activity, extracellular matrix calcification, and osteo-associated genes expression. The integration of Cu2+ and Sr2+ in CSp NPs together with the coated PEGDA hydrogel ensures the stable and sustainable ion release during short- and long-term periods. Benefitted from the injectablity and photo-crosslink ability, CSp@PEGDA is able to thoroughly fill the infectious site and gelate in situ for bacterial elimination and bone regeneration, which is verified through in vivo evaluation using a clinical-simulating IAOM mouse model. These favorable abilities of CSp@PEGDA precisely meet the multiple therapeutic needs and pave a promising way for implant-associated osteomyelitis treatment.
Collapse
Affiliation(s)
- Xin Guan
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Siyuan Wu
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sixue Ouyang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shuchen Ren
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Naiqian Cui
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaohu Wu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510515, China
| | - Dayong Xiang
- Division of Orthopaedic Trauma, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenting Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bin Yu
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Division of Orthopaedic Trauma, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bowei Wang
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Division of Orthopaedic Trauma, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
7
|
Ali M, Mohd Noor SNF, Mohamad H, Ullah F, Javed F, Abdul Hamid ZA. Advances in guided bone regeneration membranes: a comprehensive review of materials and techniques. Biomed Phys Eng Express 2024; 10:032003. [PMID: 38224615 DOI: 10.1088/2057-1976/ad1e75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Guided tissue/bone regeneration (GTR/GBR) is a widely used technique in dentistry to facilitate the regeneration of damaged bone and tissue, which involves guiding materials that eventually degrade, allowing newly created tissue to take its place. This comprehensive review the evolution of biomaterials for guided bone regeneration that showcases a progressive shift from non-resorbable to highly biocompatible and bioactive materials, allowing for more effective and predictable bone regeneration. The evolution of biomaterials for guided bone regeneration GTR/GBR has marked a significant progression in regenerative dentistry and maxillofacial surgery. Biomaterials used in GBR have evolved over time to enhance biocompatibility, bioactivity, and efficacy in promoting bone growth and integration. This review also probes into several promising fabrication techniques like electrospinning and latest 3D printing fabrication techniques, which have shown potential in enhancing tissue and bone regeneration processes. Further, the challenges and future direction of GTR/GBR are explored and discussed.
Collapse
Affiliation(s)
- Mohammed Ali
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Siti Noor Fazliah Mohd Noor
- Dental Stimulation and Virtual Learning, Research Excellence Consortium, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Hasmaliza Mohamad
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Faheem Ullah
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
- Department of Biological Sciences, Biopolymer Research Centre (BRC), National University of Medical Sciences, 46000, Rawalpindi, Pakistan
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Butto Women University Peshawar, Charsadda Road Laramma, 25000, Peshawar, Pakistan
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
8
|
Kim MJ, Park JH, Seok JM, Jung J, Hwang TS, Lee HC, Lee JH, Park SA, Byun JH, Oh SH. BMP-2-immobilized PCL 3D printing scaffold with a leaf-stacked structure as a physically and biologically activated bone graft. Biofabrication 2024; 16:025014. [PMID: 38306679 DOI: 10.1088/1758-5090/ad2537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
Although three-dimensional (3D) printing techniques are used to mimic macro- and micro-structures as well as multi-structural human tissues in tissue engineering, efficient target tissue regeneration requires bioactive 3D printing scaffolds. In this study, we developed a bone morphogenetic protein-2 (BMP-2)-immobilized polycaprolactone (PCL) 3D printing scaffold with leaf-stacked structure (LSS) (3D-PLSS-BMP) as a bioactive patient-tailored bone graft. The unique LSS was introduced on the strand surface of the scaffold via heating/cooling in tetraglycol without significant deterioration in physical properties. The BMP-2 adsorbed on3D-PLSS-BMPwas continuously released from LSS over a period of 32 d. The LSS can be a microtopographical cue for improved focal cell adhesion, proliferation, and osteogenic differentiation.In vitrocell culture andin vivoanimal studies demonstrated the biological (bioactive BMP-2) and physical (microrough structure) mechanisms of3D-PLSS-BMPfor accelerated bone regeneration. Thus, bioactive molecule-immobilized 3D printing scaffold with LSS represents a promising physically and biologically activated bone graft as well as an advanced tool for widespread application in clinical and research fields.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji Min Seok
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - Jiwoon Jung
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Tae Sung Hwang
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hee-Chun Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon 34054, Republic of Korea
| | - Su A Park
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
9
|
Feng P, He R, Gu Y, Yang F, Pan H, Shuai C. Construction of antibacterial bone implants and their application in bone regeneration. MATERIALS HORIZONS 2024; 11:590-625. [PMID: 38018410 DOI: 10.1039/d3mh01298k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Bacterial infection represents a prevalent challenge during the bone repair process, often resulting in implant failure. However, the extensive use of antibiotics has limited local antibacterial effects at the infection site and is prone to side effects. In order to address the issue of bacterial infection during the transplantation of bone implants, four types of bone scaffold implants with long-term antimicrobial functionality have been constructed, including direct contact antimicrobial scaffold, dissolution-penetration antimicrobial scaffold, photocatalytic antimicrobial scaffold, and multimodal synergistic antimicrobial scaffold. The direct contact antimicrobial scaffold involves the physical penetration or disruption of bacterial cell membranes by the scaffold surface or hindrance of bacterial adhesion through surface charge, microstructure, and other factors. The dissolution-penetration antimicrobial scaffold releases antimicrobial substances from the scaffold's interior through degradation and other means to achieve local antimicrobial effects. The photocatalytic antimicrobial scaffold utilizes the absorption of light to generate reactive oxygen species (ROS) with enhanced chemical reactivity for antimicrobial activity. ROS can cause damage to bacterial cell membranes, deoxyribonucleic acid (DNA), proteins, and other components. The multimodal synergistic antimicrobial scaffold involves the combined use of multiple antimicrobial methods to achieve synergistic effects and effectively overcome the limitations of individual antimicrobial approaches. Additionally, the biocompatibility issues of the antimicrobial bone scaffold are also discussed, including in vitro cell adhesion, proliferation, and osteogenic differentiation, as well as in vivo bone repair and vascularization. Finally, the challenges and prospects of antimicrobial bone implants are summarized. The development of antimicrobial bone implants can provide effective solutions to bacterial infection issues in bone defect repair in the foreseeable future.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Ruizhong He
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Yulong Gu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Feng Yang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Hao Pan
- Department of Periodontics & Oral Mucosal Section, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410013, China.
| | - Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
- College of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
10
|
Guo K, Wang Y, Feng ZX, Lin XY, Wu ZR, Zhong XC, Zhuang ZM, Zhang T, Chen J, Tan WQ. Recent Development and Applications of Polydopamine in Tissue Repair and Regeneration Biomaterials. Int J Nanomedicine 2024; 19:859-881. [PMID: 38293610 PMCID: PMC10824616 DOI: 10.2147/ijn.s437854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
The various tissue damages are a severe problem to human health. The limited human tissue regenerate ability requires suitable biomaterials to help damage tissue repair and regeneration. Therefore, many researchers devoted themselves to exploring biomaterials suitable for tissue repair and regeneration. Polydopamine (PDA) as a natural and multifunctional material which is inspired by mussel has been widely applied in different biomaterials. The excellent properties of PDA, such as strong adhesion, photothermal and high drug-loaded capacity, seem to be born for tissue repair and regeneration. Furthermore, PDA combined with different materials can exert unexpected effects. Thus, to inspire researchers, this review summarizes the recent and representative development of PDA biomaterials in tissue repair and regeneration. This article focuses on why apply PDA in these biomaterials and what PDA can do in different tissue injuries.
Collapse
Affiliation(s)
- Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zhang-Rui Wu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Tao Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jian Chen
- Department of Ultrasonography, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, People’s Republic of China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
11
|
Caracciolo PC, Abraham GA, Battaglia ES, Bongiovanni Abel S. Recent Progress and Trends in the Development of Electrospun and 3D Printed Polymeric-Based Materials to Overcome Antimicrobial Resistance (AMR). Pharmaceutics 2023; 15:1964. [PMID: 37514150 PMCID: PMC10385409 DOI: 10.3390/pharmaceutics15071964] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) developed by microorganisms is considered one of the most critical public health issues worldwide. This problem is affecting the lives of millions of people and needs to be addressed promptly. Mainly, antibiotics are the substances that contribute to AMR in various strains of bacteria and other microorganisms, leading to infectious diseases that cannot be effectively treated. To avoid the use of antibiotics and similar drugs, several approaches have gained attention in the fields of materials science and engineering as well as pharmaceutics over the past five years. Our focus lies on the design and manufacture of polymeric-based materials capable of incorporating antimicrobial agents excluding the aforementioned substances. In this sense, two of the emerging techniques for materials fabrication, namely, electrospinning and 3D printing, have gained significant attraction. In this article, we provide a summary of the most important findings that contribute to the development of antimicrobial systems using these technologies to incorporate various types of nanomaterials, organic molecules, or natural compounds with the required property. Furthermore, we discuss and consider the challenges that lie ahead in this research field for the coming years.
Collapse
Affiliation(s)
- Pablo C Caracciolo
- Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Gustavo A Abraham
- Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Ernesto S Battaglia
- Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Silvestre Bongiovanni Abel
- Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| |
Collapse
|
12
|
Dubey A, Vahabi H, Kumaravel V. Antimicrobial and Biodegradable 3D Printed Scaffolds for Orthopedic Infections. ACS Biomater Sci Eng 2023; 9:4020-4044. [PMID: 37339247 PMCID: PMC10336748 DOI: 10.1021/acsbiomaterials.3c00115] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
In bone tissue engineering, the performance of scaffolds underpins the success of the healing of bone. Microbial infection is the most challenging issue for orthopedists. The application of scaffolds for healing bone defects is prone to microbial infection. To address this challenge, scaffolds with a desirable shape and significant mechanical, physical, and biological characteristics are crucial. 3D printing of antibacterial scaffolds with suitable mechanical strength and excellent biocompatibility is an appealing strategy to surmount issues of microbial infection. The spectacular progress in developing antimicrobial scaffolds, along with beneficial mechanical and biological properties, has sparked further research for possible clinical applications. Herein, the significance of antibacterial scaffolds designed by 3D, 4D, and 5D printing technologies for bone tissue engineering is critically investigated. Materials such as antibiotics, polymers, peptides, graphene, metals/ceramics/glass, and antibacterial coatings are used to impart the antimicrobial features for the 3D scaffolds. Polymeric or metallic biodegradable and antibacterial 3D-printed scaffolds in orthopedics disclose exceptional mechanical and degradation behavior, biocompatibility, osteogenesis, and long-term antibacterial efficiency. The commercialization aspect of antibacterial 3D-printed scaffolds and technical challenges are also discussed briefly. Finally, the discussion on the unmet demands and prevailing challenges for ideal scaffold materials for fighting against bone infections is included along with a highlight of emerging strategies in this field.
Collapse
Affiliation(s)
- Anshu Dubey
- International
Centre for Research on Innovative Biobased Materials (ICRI-BioM)—International
Research Agenda, Lodz University of Technology Żeromskiego 116, Lodz 90-924, Poland
| | - Henri Vahabi
- Université
de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France
| | - Vignesh Kumaravel
- International
Centre for Research on Innovative Biobased Materials (ICRI-BioM)—International
Research Agenda, Lodz University of Technology Żeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
13
|
Janmohammadi M, Nourbakhsh MS, Bahraminasab M, Tayebi L. Effect of Pore Characteristics and Alkali Treatment on the Physicochemical and Biological Properties of a 3D-Printed Polycaprolactone Bone Scaffold. ACS OMEGA 2023; 8:7378-7394. [PMID: 36873019 PMCID: PMC9979326 DOI: 10.1021/acsomega.2c05571] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/08/2023] [Indexed: 05/09/2023]
Abstract
Polycaprolactone scaffolds were designed and 3D-printed with different pore shapes (cube and triangle) and sizes (500 and 700 μm) and modified with alkaline hydrolysis of different ratios (1, 3, and 5 M). In total, 16 designs were evaluated for their physical, mechanical, and biological properties. The present study mainly focused on the pore size, porosity, pore shapes, surface modification, biomineralization, mechanical properties, and biological characteristics that might influence bone ingrowth in 3D-printed biodegradable scaffolds. The results showed that the surface roughness in treated scaffolds increased compared to untreated polycaprolactone scaffolds (R a = 2.3-10.5 nm and R q = 17- 76 nm), but the structural integrity declined with an increase in the NaOH concentration especially in the scaffolds with small pores and a triangle shape. Overall, the treated polycaprolactone scaffolds particularly with the triangle shape and smaller pore size provided superior performance in mechanical strength similar to that of cancellous bone. Additionally, the in vitro study showed that cell viability increased in the polycaprolactone scaffolds with cubic pore shapes and small pore sizes, whereas mineralization was enhanced in the designs with larger pore sizes. Based on the results obtained, this study demonstrated that the 3D-printed modified polycaprolactone scaffolds exhibit a favorable mechanical property, biomineralization, and better biological properties; therefore, they can be applied in bone tissue engineering.
Collapse
Affiliation(s)
- Mahsa Janmohammadi
- Department
of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan 3513119111, Iran
| | | | - Marjan Bahraminasab
- Department
of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran
- Nervous
System Stem Cells Research Center, Semnan
University of Medical Sciences, Semnan 3513138111, Iran
| | - Lobat Tayebi
- Marquette
University School of Dentistry, Milwaukee, Wisconsin 53233, United States
| |
Collapse
|
14
|
Chakraborty R, Anoop AG, Thakur A, Mohanta GC, Kumar P. Strategies To Modify the Surface and Bulk Properties of 3D-Printed Solid Scaffolds for Tissue Engineering Applications. ACS OMEGA 2023; 8:5139-5156. [PMID: 36816674 PMCID: PMC9933196 DOI: 10.1021/acsomega.2c05984] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/05/2023] [Indexed: 05/27/2023]
Abstract
3D printing is one of the effective scaffold fabrication techniques that emerged in the 21st century that has the potential to revolutionize the field of tissue engineering. The solid scaffolds developed by 3D printing are still one of the most sought-after approaches for developing hard-tissue regeneration and repair. However, applications of these solid scaffolds get limited due to their poor surface and bulk properties, which play a significant role in tissue integration, loadbearing, antimicrobial/antifouling properties, and others. As a result, several efforts have been directed to modify the surface and bulk of these solid scaffolds. These modifications have significantly improved the adoption of 3D-printed solid scaffolds and devices in the healthcare industry. Nevertheless, the in vivo implant applications of these 3D-printed solid scaffolds/devices are still under development. They require attention in terms of their surface/bulk properties, which dictate their functionality. Therefore, in the current review, we have discussed different 3D-printing parameters that facilitate the fabrication of solid scaffolds/devices with different properties. Further, changes in the bulk properties through material and microstructure modification are also being discussed. After that, we deliberated on the techniques that modify the surfaces through chemical and material modifications. The computational approaches for the bulk modification of these 3D-printed materials are also mentioned, focusing on tissue engineering. We have also briefly discussed the application of these solid scaffolds/devices in tissue engineering. Eventually, the review is concluded with an analysis of the choice of surface/bulk modification based on the intended application in tissue engineering.
Collapse
Affiliation(s)
- Ruchira Chakraborty
- Biodesign
and Medical Device Laboratory, Department of Biotechnology and Medical
Engineering, National Institute of Technology, Rourkela 769008, India
| | - Abhijeet Govind Anoop
- Biodesign
and Medical Device Laboratory, Department of Biotechnology and Medical
Engineering, National Institute of Technology, Rourkela 769008, India
| | - Abhay Thakur
- Biodesign
and Medical Device Laboratory, Department of Biotechnology and Medical
Engineering, National Institute of Technology, Rourkela 769008, India
| | - Girish Chandra Mohanta
- Materials
Science and Sensor Applications Division, CSIR−Central Scientific Instruments Organizations (CSIR-CSIO), Chandigarh 160030, India
| | - Prasoon Kumar
- Biodesign
and Medical Device Laboratory, Department of Biotechnology and Medical
Engineering, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
15
|
Logeshwaran A, Elsen R, Nayak S. Mechanical and biological characteristics of 3D fabricated clay mineral and bioceramic composite scaffold for bone tissue applications. J Mech Behav Biomed Mater 2023; 138:105633. [PMID: 36603527 DOI: 10.1016/j.jmbbm.2022.105633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
3D printing technology provides a platform to fabricate a wide range of structures and complex geometry-based scaffolds through computer-aided design (CAD). This study investigates the possibility of developing Bentonite(BEN)/Hydroxyapatite(HAP) scaffold with different HAP wt% (25, 50, 75) using a 3D printing technique (Robocasting) for potential bone tissue applications. Thermal stability of the composites was characterized in TGA and rheological properties of slurries were observed to have different viscosity and shear stress, especially BEN-HAP 50 wt% achieves all criteria for high-quality printing. The fabricated scaffolds were subjected to sintering from 200 °C to 1000 °C for proper densification and attained a maximum compression strength of 52 MPa at 1000 °C for the printed structures. Changes in crystallinity and functional groups were observed as well with respective sintering temperatures. In this study, we also discussed the extrusion and rheological properties of the composite slurry. Porosity, water absorption, degradation and density were studied to understand the physical properties of the sintered scaffolds. The biological characteristics of the scaffold were studied using MG63 cell lines In vitro biocompatibility study and expressed 91% of viability for the 1000 °C sintered samples under controlled culture conditions.
Collapse
Affiliation(s)
- A Logeshwaran
- School Of Bioscience And Technology, Vellore Institute Of Technology (VIT), Katpadi, Vellore, 632014, Tamil nadu, India
| | - Renold Elsen
- school Of Mechanical Engineering, Vellore Institute Of Technology (VIT), Katpadi, Vellore, 632014, Tamil Nadu, India
| | - Sunita Nayak
- School Of Bioscience And Technology, Vellore Institute Of Technology (VIT), Katpadi, Vellore, 632014, Tamil nadu, India.
| |
Collapse
|
16
|
Liu X, Liu Y, Qiang L, Ren Y, Lin Y, Li H, Chen Q, Gao S, Yang X, Zhang C, Fan M, Zheng P, Li S, Wang J. Multifunctional 3D-printed bioceramic scaffolds: Recent strategies for osteosarcoma treatment. J Tissue Eng 2023; 14:20417314231170371. [PMID: 37205149 PMCID: PMC10186582 DOI: 10.1177/20417314231170371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 05/21/2023] Open
Abstract
Osteosarcoma is the most prevalent bone malignant tumor in children and teenagers. The bone defect, recurrence, and metastasis after surgery severely affect the life quality of patients. Clinically, bone grafts are implanted. Primary bioceramic scaffolds show a monomodal osteogenesis function. With the advances in three-dimensional printing technology and materials science, while maintaining the osteogenesis ability, scaffolds become more patient-specific and obtain additional anti-tumor ability with functional agents being loaded. Anti-tumor therapies include photothermal, magnetothermal, old and novel chemo-, gas, and photodynamic therapy. These strategies kill tumors through novel mechanisms to treat refractory osteosarcoma due to drug resistance, and some have shown the potential to reverse drug resistance and inhibit metastasis. Therefore, multifunctional three-dimensional printed bioceramic scaffolds hold excellent promise for osteosarcoma treatments. To better understand, we review the background of osteosarcoma, primary 3D-printed bioceramic scaffolds, and different therapies and have a prospect for the future.
Collapse
Affiliation(s)
- Xingran Liu
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Lei Qiang
- Southwest Jiaotong University, Chengdu,
China
| | - Ya Ren
- Southwest Jiaotong University, Chengdu,
China
| | - Yixuan Lin
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Li
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Qiuhan Chen
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Shuxin Gao
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Xue Yang
- Southwest Jiaotong University, Chengdu,
China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Minjie Fan
- Department of Orthopaedic Surgery,
Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Zheng
- Department of Orthopaedic Surgery,
Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Li
- Department of Orthopedics, The First
Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
- Southwest Jiaotong University, Chengdu,
China
- Shanghai Jiao Tong University,
Shanghai, China
- Weifang Medical University School of
Rehabilitation Medicine, Weifang, Shandong Province, China
| |
Collapse
|
17
|
3D printing of bio-instructive materials: Toward directing the cell. Bioact Mater 2023; 19:292-327. [PMID: 35574057 PMCID: PMC9058956 DOI: 10.1016/j.bioactmat.2022.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 01/10/2023] Open
|
18
|
Yin J, Zhong J, Wang J, Wang Y, Li T, Wang L, Yang Y, Zhen Z, Li Y, Zhang H, Zhong S, Wu Y, Huang W. 3D-printed high-density polyethylene scaffolds with bioactive and antibacterial layer-by-layer modification for auricle reconstruction. Mater Today Bio 2022; 16:100361. [PMID: 35937577 PMCID: PMC9352972 DOI: 10.1016/j.mtbio.2022.100361] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 11/25/2022] Open
Abstract
High-density polyethylene (HDPE) is a promising material for the development of scaffold implants for auricle reconstruction. However, preparing a personalized HDPE auricle implant with favorable bioactive and antibacterial functions to promote skin tissue ingrowth is challenging. Herein, we present 3D-printed HDPE auricle scaffolds with satisfactory pore size and connectivity. The layer-by-layer (LBL) approach was applied to achieve the improved bioactive and antibacterial properties of these 3D printed scaffolds. The HDPE auricle scaffolds were fabricated using an extrusion 3D printing approach, and the individualized macrostructure and porous microstructure were both adjusted by the 3D printing parameters. The polydopamine (pDA) coating method was used to construct a multilayer ε-polylysine (EPL) and fibrin (FIB) modification on the surface of the 3D HDPE scaffold via the LBL self-assembly approach, which provides the bioactive and antibacterial properties. The results of the in vivo experiments using an animal model showed that LBL-coated HDPE auricular scaffolds were able to significantly enhance skin tissue ingrowth and ameliorate the inflammatory response caused by local stress. The results of this study suggest that the combination of the 3D printing technique and surface modification provides a promising strategy for developing personalized implants with biofunctional coatings, which show great potential as a scaffold implant for auricle reconstruction applications.
Collapse
Affiliation(s)
- Junfeiyang Yin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jing Zhong
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Jiejie Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yilin Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ling Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Yang Yang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhifang Zhen
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China
| | - Yanbing Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hongwu Zhang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shizhen Zhong
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 030699, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 030699, China
| |
Collapse
|
19
|
Serrano-Aroca Á, Cano-Vicent A, Sabater i Serra R, El-Tanani M, Aljabali A, Tambuwala MM, Mishra YK. Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Mater Today Bio 2022; 16:100412. [PMID: 36097597 PMCID: PMC9463390 DOI: 10.1016/j.mtbio.2022.100412] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
Due to microbial infections dramatically affect cell survival and increase the risk of implant failure, scaffolds produced with antimicrobial materials are now much more likely to be successful. Multidrug-resistant infections without suitable prevention strategies are increasing at an alarming rate. The ability of cells to organize, develop, differentiate, produce a functioning extracellular matrix (ECM) and create new functional tissue can all be controlled by careful control of the extracellular microenvironment. This review covers the present state of advanced strategies to develop scaffolds with antimicrobial properties for bone, oral tissue, skin, muscle, nerve, trachea, cardiac and other tissue engineering applications. The review focuses on the development of antimicrobial scaffolds against bacteria and fungi using a wide range of materials, including polymers, biopolymers, glass, ceramics and antimicrobials agents such as antibiotics, antiseptics, antimicrobial polymers, peptides, metals, carbon nanomaterials, combinatorial strategies, and includes discussions on the antimicrobial mechanisms involved in these antimicrobial approaches. The toxicological aspects of these advanced scaffolds are also analyzed to ensure future technological transfer to clinics. The main antimicrobial methods of characterizing scaffolds’ antimicrobial and antibiofilm properties are described. The production methods of these porous supports, such as electrospinning, phase separation, gas foaming, the porogen method, polymerization in solution, fiber mesh coating, self-assembly, membrane lamination, freeze drying, 3D printing and bioprinting, among others, are also included in this article. These important advances in antimicrobial materials-based scaffolds for regenerative medicine offer many new promising avenues to the material design and tissue-engineering communities. Antibacterial, antifungal and antibiofilm scaffolds. Antimicrobial scaffold fabrication techniques. Antimicrobial biomaterials for tissue engineering applications. Antimicrobial characterization methods of scaffolds. Bone, oral tissue, skin, muscle, nerve, trachea, cardiac, among other applications.
Collapse
|
20
|
Zhang X, Li Q, Wang Z, Zhou W, Zhang L, Liu Y, Xu Z, Li Z, Zhu C, Zhang X. Bone regeneration materials and their application over 20 years: A bibliometric study and systematic review. Front Bioeng Biotechnol 2022; 10:921092. [PMID: 36277397 PMCID: PMC9581237 DOI: 10.3389/fbioe.2022.921092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
Bone regeneration materials (BRMs) bring us new sights into the clinical management bone defects. With advances in BRMs technologies, new strategies are emerging to promote bone regeneration. The aim of this study was to comprehensively assess the existing research and recent progress on BRMs, thus providing useful insights into contemporary research, as well as to explore potential future directions within the scope of bone regeneration therapy. A comprehensive literature review using formal data mining procedures was performed to explore the global trends of selected areas of research for the past 20 years. The study applied bibliometric methods and knowledge visualization techniques to identify and investigate publications based on the publication year (between 2002 and 2021), document type, language, country, institution, author, journal, keywords, and citation number. The most productive countries were China, United States, and Italy. The most prolific journal in the BRM field was Acta Biomaterialia, closely followed by Biomaterials. Moreover, recent investigations have been focused on extracellular matrices (ECMs) (370 publications), hydrogel materials (286 publications), and drug delivery systems (220 publications). Research hotspots related to BRMs and extracellular matrices from 2002 to 2011 were growth factor, bone morphogenetic protein (BMP)-2, and mesenchymal stem cell (MSC), whereas after 2012 were composite scaffolds. Between 2002 and 2011, studies related to BRMs and hydrogels were focused on BMP-2, in vivo, and in vitro investigations, whereas it turned to the exploration of MSCs, mechanical properties, and osteogenic differentiation after 2012. Research hotspots related to BRM and drug delivery were fibroblast growth factor, mesoporous materials, and controlled release during 2002–2011, and electrospinning, antibacterial activity, and in vitro bioactivity after 2012. Overall, composite scaffolds, 3D printing technology, and antibacterial activity were found to have an important intersection within BRM investigations, representing relevant research fields for the future. Taken together, this extensive analysis highlights the existing literature and findings that advance scientific insights into bone tissue engineering and its subsequent applications.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Orthopedics, The Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Qianming Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhengxi Wang
- Department of Orthopedics, Anhui Provincial Hospital, Wannan Medical College, Hefei, China
| | - Wei Zhou
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yingsheng Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ze Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zheng Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Zhu
- Department of Orthopedics, The Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xianzuo Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Xianzuo Zhang,
| |
Collapse
|
21
|
Iranpour S, Attari F, Seyedjafari E, Nourmohammadi J. Coating of
3D
‐printed
poly (ε‐caprolactone)
scaffolds with silk protein sericin enhances the osteogenic differentiation of human mesenchymal stem cells. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Soodeh Iranpour
- Department of Animal Biology School of Biology, College of Science, University of Tehran Tehran Iran
| | - Farnoosh Attari
- Department of Animal Biology School of Biology, College of Science, University of Tehran Tehran Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology College of Science, University of Tehran Tehran Iran
| | - Jhamak Nourmohammadi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies University of Tehran Tehran Iran
| |
Collapse
|
22
|
Comini S, Sparti R, Coppola B, Mohammadi M, Scutera S, Menotti F, Banche G, Cuffini AM, Palmero P, Allizond V. Novel Silver-Functionalized Poly(ε-Caprolactone)/Biphasic Calcium Phosphate Scaffolds Designed to Counteract Post-Surgical Infections in Orthopedic Applications. Int J Mol Sci 2021; 22:10176. [PMID: 34576339 PMCID: PMC8471985 DOI: 10.3390/ijms221810176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022] Open
Abstract
In this study, we designed and developed novel poly(ε-caprolactone) (PCL)-based biomaterials, for use as bone scaffolds, through modification with both biphasic calcium phosphate (BCP), to impart bioactive/bioresorbable properties, and with silver nitrate, to provide antibacterial protection against Staphylococcus aureus, a microorganism involved in prosthetic joint infections (PJIs). Field emission scanning electron microscopy (FESEM) showed that the samples were characterized by square-shaped macropores, and energy dispersive X-ray spectroscopy analysis confirmed the presence of PCL and BCP phases, while inductively coupled plasma-mass spectrometry (ICP-MS) established the release of Ag+ in the medium (~0.15-0.8 wt% of initial Ag content). Adhesion assays revealed a significant (p < 0.0001) reduction in both adherent and planktonic staphylococci on the Ag-functionalized biomaterials, and the presence of an inhibition halo confirmed Ag release from enriched samples. To assess the potential outcome in promoting bone integration, preliminary tests on sarcoma osteogenic-2 (Saos-2) cells indicated PCL and BCP/PCL biocompatibility, but a reduction in viability was observed for Ag-added biomaterials. Due to their combined biodegrading and antimicrobial properties, the silver-enriched BCP/PCL-based scaffolds showed good potential for engineering of bone tissue and for reducing PJIs as a microbial anti-adhesive tool used in the delivery of targeted antimicrobial molecules, even if the amount of silver needs to be tuned to improve osteointegration.
Collapse
Affiliation(s)
- Sara Comini
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (S.C.); (F.M.); (A.M.C.); (V.A.)
| | - Rosaria Sparti
- Immunology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (R.S.); (S.S.)
| | - Bartolomeo Coppola
- INSTM R.U. Lince Laboratory, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; (B.C.); (M.M.); (P.P.)
| | - Mehdi Mohammadi
- INSTM R.U. Lince Laboratory, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; (B.C.); (M.M.); (P.P.)
| | - Sara Scutera
- Immunology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (R.S.); (S.S.)
| | - Francesca Menotti
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (S.C.); (F.M.); (A.M.C.); (V.A.)
| | - Giuliana Banche
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (S.C.); (F.M.); (A.M.C.); (V.A.)
| | - Anna Maria Cuffini
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (S.C.); (F.M.); (A.M.C.); (V.A.)
| | - Paola Palmero
- INSTM R.U. Lince Laboratory, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; (B.C.); (M.M.); (P.P.)
| | - Valeria Allizond
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (S.C.); (F.M.); (A.M.C.); (V.A.)
| |
Collapse
|
23
|
Juan PK, Fan FY, Lin WC, Liao PB, Huang CF, Shen YK, Ruslin M, Lee CH. Bioactivity and Bone Cell Formation with Poly-ε-Caprolactone/Bioceramic 3D Porous Scaffolds. Polymers (Basel) 2021; 13:2718. [PMID: 34451257 PMCID: PMC8401466 DOI: 10.3390/polym13162718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023] Open
Abstract
This study applied poly-ε-caprolactone (PCL), a biomedical ceramic powder as an additive (nano-hydroxyapatite (nHA) or β-tricalcium diphosphate (β-TCP)), and sodium chloride (NaCl) and ammonium bicarbonate ((NH4)HCO3) as porogens; these stuffs were used as scaffold materials. An improved solvent-casting/particulate-leaching method was utilized to fabricate 3D porous scaffolds. In this study we examined the physical properties (elastic modulus, porosity, and contact angle) and degradation properties (weight loss and pH value) of the 3D porous scaffolds. Both nHA and β-TCP improved the mechanical properties (elastic modulus) of the 3D porous scaffolds. The elastic modulus (0.15~1.865 GPa) of the various composite scaffolds matched that of human cancellous bone (0.1~4.5 GPa). Osteoblast-like (MG63) cells were cultured, a microculture tetrazolium test (MTT) was conducted and alkaline phosphatase (ALP) activity of the 3D porous scaffolds was determined. Experimental results indicated that both nHA and β-TCP powder improved the hydrophilic properties of the scaffolds. The degradation rate of the scaffolds was accelerated by adding nHA or β-TCP. The MTT and ALP activity tests indicated that the scaffolds with a high ratio of nHA or β-TCP had excellent properties of in vitro biocompatibility (cell attachment and proliferation).
Collapse
Affiliation(s)
- Po-Kai Juan
- Division of Prosthodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan; (P.-K.J.); (P.-B.L.)
| | - Fang-Yu Fan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (F.-Y.F.); (W.-C.L.); (C.-F.H.)
| | - Wei-Chun Lin
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (F.-Y.F.); (W.-C.L.); (C.-F.H.)
| | - Pei-Bang Liao
- Division of Prosthodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan; (P.-K.J.); (P.-B.L.)
| | - Chiung-Fang Huang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (F.-Y.F.); (W.-C.L.); (C.-F.H.)
- Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Yung-Kang Shen
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (F.-Y.F.); (W.-C.L.); (C.-F.H.)
| | - Muhammad Ruslin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar 90245, Indonesia;
| | - Chen-Han Lee
- Taiwan Society of Blood Biomaterials, New Taipei City 221, Taiwan;
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
24
|
Shape fidelity and sterility assessment of 3D printed polycaprolactone and hydroxyapatite scaffolds. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02675-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AbstractPolycaprolactone (PCL) and hydroxyapatite (HA) composite are widely used in tissue engineering (TE). They are fit to being processed with three-dimensional (3D) printing technique to create scaffolds with verifiable porosity. The current challenge is to guarantee the reliability and reproducibility of 3D printed scaffolds and to create sterile scaffolds which can be used for in vitro cell cultures. In this context it is important for successful cell culture, to have a protocol in order to evaluate the sterility of the printed scaffolds. We proposed a systematic approach to sterilise 90%PCL-10%HA pellets using a 3D bioprinter before starting the printing process. We evaluated the printability of PCL-HA composite and the shape fidelity of scaffolds printed with and without sterilised pellets varying infill pattern, and the sterility of 3D printed scaffolds following the method established by the United States Pharmacopoeia. Finally, the thermal analyses supported by the Fourier Transform Infrared Spectroscopy were useful to verify the stability of the sterilisation process in the PCL solid state with and without HA. The results show that the use of the 3D printer, according to the proposed protocol, allows to obtain sterile 3D PCL-HA scaffolds suitable for TE applications such as bone or cartilage repair.
Collapse
|
25
|
Fabrication of Biocompatible Polycaprolactone–Hydroxyapatite Composite Filaments for the FDM 3D Printing of Bone Scaffolds. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146351] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, three-dimensional printing (3DP) technology has been widely adopted in biology and biomedical applications, thanks to its capacity to readily construct complex 3D features. Using hot-melt extrusion 3DP, scaffolds for bone tissue engineering were fabricated using a composite of biodegradable polycaprolactone (PCL) and hydroxyapatite (HA). However, there are hardly any published reports on the application of the fused deposition modeling (FDM) method using feed filaments, which is the most common 3D printing method. In this study, we report on the fabrication and characterization of biocompatible filaments made of polycaprolactone (PCL)/hydroxyapatite (HA), a raw material mainly used for bone scaffolds, using FDM 3D printing. A series of filaments with varying HA content, from 5 to 25 wt.%, were fabricated. The mechanical and electrical properties of the various structures, printed using a commercially available 3D printer, were examined. Specifically, mechanical tensile tests were performed on the 3D-printed filaments and specimens. In addition, the electrical dielectric properties of the 3D-printed structures were investigated. Our method facilitates the fabrication of biocompatible structures using FDM-type 3DP, creating not only bone scaffolds but also testbeds for mimicking bone structure that may be useful in various fields of study.
Collapse
|
26
|
Tian B, Wang N, Jiang Q, Tian L, Hu L, Zhang Z. The immunogenic reaction and bone defect repair function of ε-poly-L-lysine (EPL)-coated nanoscale PCL/HA scaffold in rabbit calvarial bone defect. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:63. [PMID: 34097140 PMCID: PMC8184523 DOI: 10.1007/s10856-021-06533-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 05/20/2021] [Indexed: 05/27/2023]
Abstract
Tissue engineering is a promising strategy for bone tissue defect reconstruction. Immunogenic reaction, which was induced by scaffolds degradation or contaminating microorganism, influence cellular activity, compromise the efficiency of tissue engineering, or eventually lead to the failure of regeneration. Inhibiting excessive immune response through modulating scaffold is critical important to promote tissue regeneration. Our previous study showed that ε-poly-L-lysine (EPL)-coated nanoscale polycaprolactone/hydroxyapatite (EPL/PCL/HA) composite scaffold has enhanced antibacterial and osteogenic properties in vitro. However, the bone defect repair function and immunogenic reaction of EPL/PCL/HA scaffolds in vivo remains unclear. In the present study, three nanoscale scaffolds (EPL/PCL/HA, PCL and PCL/HA) were transplanted into rabbit paraspinal muscle pouches, and T helper type 1 (Th1), T helper type 2 (Th2), T helper type 17 (Th17), and macrophage infiltration were analyzed after 1 week and 2 weeks to detect their immunogenic reaction. Then, the different scaffolds were transplanted into rabbit calvarial bone defect to compare the bone defect repair capacities. The results showed that EPL/PCL/HA composite scaffolds decreased pro-inflammatory Th1, Th17, and type I macrophage infiltration from 1 to 2 weeks, and increased anti-inflammatory Th2 infiltration into the regenerated area at 2 weeks in vivo, when compared to PCL and PCL/HA. In addition, EPL/PCL/HA showed an enhanced bone repair capacity compared to PCL and PCL/HA when transplanted into rabbit calvarial bone defects at both 4 and 8 weeks. Hence, our results suggest that EPL could regulate the immunogenic reaction and promote bone defect repair function of PCL/HA, which is a promising agent for tissue engineering scaffold modulation.
Collapse
Affiliation(s)
- Bin Tian
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Na Wang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Qingsong Jiang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Lijiao Tian
- Liangxiang Hospital of Beijing Fangshan District, Beijing, China
| | - Lei Hu
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China.
| | - Zhenting Zhang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
| |
Collapse
|
27
|
Mancuso E, Shah L, Jindal S, Serenelli C, Tsikriteas ZM, Khanbareh H, Tirella A. Additively manufactured BaTiO 3 composite scaffolds: A novel strategy for load bearing bone tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112192. [PMID: 34082989 DOI: 10.1016/j.msec.2021.112192] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Piezoelectric ceramics, such as BaTiO3, have gained considerable attention in bone tissue engineering applications thanks to their biocompatibility, ability to sustain a charged surface as well as improve bone cells' adhesion and proliferation. However, the poor processability and brittleness of these materials hinder the fabrication of three-dimensional scaffolds for load bearing tissue engineering applications. For the first time, this study focused on the fabrication and characterisation of BaTiO3 composite scaffolds by using a multi-material 3D printing technology. Polycaprolactone (PCL) was selected and used as dispersion phase for its low melting point, easy processability and wide adoption in bone tissue engineering. The proposed single-step extrusion-based strategy enabled a faster and solvent-free process, where raw materials in powder forms were mechanically mixed and subsequently fed into the 3D printing system for further processing. PCL, PCL/hydroxyapatite and PCL/BaTiO3 composite scaffolds were successfully produced with high level of consistency and an inner architecture made of seamlessly integrated layers. The inclusion of BaTiO3 ceramic particles (10% wt.) significantly improved the mechanical performance of the scaffolds (54 ± 0.5 MPa) compared to PCL/hydroxyapatite scaffolds (40.4 ± 0.1 MPa); moreover, the presence of BaTiO3 increased the dielectric permittivity over the entire frequency spectrum and tested temperatures. Human osteoblasts Saos-2 were seeded on scaffolds and cellular adhesion, proliferation, differentiation and deposition of bone-like extracellular matrix were evaluated. All tested scaffolds (PCL, PCL/hydroxyapatite and PCL/BaTiO3) supported cell growth and viability, preserving the characteristic cellular osteoblastic phenotype morphology, with PCL/BaTiO3 composite scaffolds exhibiting higher mineralisation (ALP activity) and deposited bone-like extracellular matrix (osteocalcin and collagen I). The single-step multi-material additive manufacturing technology used for the fabrication of electroactive PCL/BaTiO3 composite scaffolds holds great promise for sustainability (reduced material waste and manufacturing costs) and it importantly suggests PCL/BaTiO3 scaffolds as promising candidates for load bearing bone tissue engineering applications to solve unmet clinical needs.
Collapse
Affiliation(s)
- Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, BT37 0QB Newtownabbey, United Kingdom.
| | - Lekha Shah
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health (FMBH), University of Manchester, Oxford Road, M13 9PT Manchester, United Kingdom
| | - Swati Jindal
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, BT37 0QB Newtownabbey, United Kingdom
| | - Cecile Serenelli
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, BT37 0QB Newtownabbey, United Kingdom
| | | | - Hamideh Khanbareh
- Department of Mechanical Engineering, University of Bath, BA2 7AY Bath, United Kingdom
| | - Annalisa Tirella
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health (FMBH), University of Manchester, Oxford Road, M13 9PT Manchester, United Kingdom.
| |
Collapse
|
28
|
Liu Z, Liu X, Ramakrishna S. Surface engineering of biomaterials in orthopedic and dental implants: Strategies to improve osteointegration, bacteriostatic and bactericidal activities. Biotechnol J 2021; 16:e2000116. [PMID: 33813785 DOI: 10.1002/biot.202000116] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The success of biomedical implants in orthopedic and dental applications is usually limited due to insufficient bone-implant integration, and implant-related infections. Biointerfaces are critical in regulating their interactions and the desirable performance of biomaterials in biological environment. Surface engineering has been widely studied to realize better control of the interface interaction to further enhance the desired behavior of biomaterials. PURPOSE AND SCOPE This review aims to investigate surface coating strategies in hard tissue applications to address insufficient osteointegration and implant-related infection problems. SUMMARY We first focused on surface coatings to enhance the osteointegration and biocompatibility of implants by emphasizing calcium phosphate-related, nanoscale TiO2 -related, bioactive tantalum-based and biomolecules incorporated coatings. Different coating strategies such as plasma spraying, biomimetic deposition, electrochemical anodization and LENS are discussed. We then discussed techniques to construct anti-adhesive and bactericidal surface while emphasizing multifunctional surface coating techniques that combine potential osteointegration and antibacterial activities. The effects of nanotopography via TiO2 coatings on antibacterial performance are interesting and included. A smart bacteria-responsive titanium dioxide nanotubes coating is also attractive and elaborated. CONCLUSION Developing multifunctional surface coatings combining osteogenesis and antimicrobial activity is the current trend. Surface engineering methods are usually combined to obtain hierarchical multiscale surface structures with better biofunctionalization outcomes.
Collapse
Affiliation(s)
- Ziqian Liu
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, China.,Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Xiaoling Liu
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Anita Lett J, Sagadevan S, Fatimah I, Hoque ME, Lokanathan Y, Léonard E, Alshahateet SF, Schirhagl R, Oh WC. Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110360] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Su X, Wang T, Guo S. Applications of 3D printed bone tissue engineering scaffolds in the stem cell field. Regen Ther 2021; 16:63-72. [PMID: 33598507 PMCID: PMC7868584 DOI: 10.1016/j.reth.2021.01.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Due to traffic accidents, injuries, burns, congenital malformations and other reasons, a large number of patients with tissue or organ defects need urgent treatment every year. The shortage of donors, graft rejection and other problems cause a deficient supply for organ and tissue replacement, repair and regeneration of patients, so regenerative medicine came into being. Stem cell therapy plays an important role in the field of regenerative medicine, but it is difficult to fill large tissue defects by injection alone. The scientists combine three-dimensional (3D) printed bone tissue engineering scaffolds with stem cells to achieve the desired effect. These scaffolds can mimic the extracellular matrix (ECM), bone and cartilage, and eventually form functional tissues or organs by providing structural support and promoting attachment, proliferation and differentiation. This paper mainly discussed the applications of 3D printed bone tissue engineering scaffolds in stem cell regenerative medicine. The application examples of different 3D printing technologies and different raw materials are introduced and compared. Then we discuss the superiority of 3D printing technology over traditional methods, put forward some problems and limitations, and look forward to the future.
Collapse
Key Words
- 3D printing
- 3D, three-dimensional
- ABS, Acrylonitrile Butadiene Styrene plastic
- AM, additive manufacturing
- ASCs, adult stem cells
- Alg, alginate
- BCP, biphasic calcium phosphate
- BMSCs, bone marrow-derived mesenchymal stem cells
- Bone tissue engineering
- CAD, computer-aided design
- CAP, cold atmospheric plasma
- CHMA, chitosan methacrylate
- CT, computed tomography
- DCM, dichloromethane
- ECM, extracellular matrix
- ESCs, embryonic stem cells
- FDM, fused deposition molding
- GO, graphene oxide
- HA, hydroxyapatite
- HAp, hydroxyapatite nanoparticles
- HTy, 4-hydroxyphenethyl 2-(4-hydroxyphenyl) acetate
- LDM, Low Temperature Deposition Modeling
- LIPUS, low intensity pulsed ultrasound
- MBG/SA–SA, mesoporous bioactive glass/sodium alginate-sodium alginate
- MSCs, Marrow stem cells
- PC, Polycarbonate
- PCL, polycraprolactone
- PDA, polydopamine
- PED, Precision Extrusion Deposition
- PEG, Polyethylene glycol
- PEGDA, poly (ethylene glycol) diacrylate
- PLGA, poly (lactide-co-glycolide)
- PLLA, poly l-lactide
- PPSU, Polyphenylene sulfone resins
- PRF, platelet-rich fibrin
- PVA, polyvinyl alcohol
- RAD16-I, a soft nanofibrous self-assembling peptide
- SCAPs, human stem cells from the apical papilla
- SF-BG, silk fibroin and silk fibroin-bioactive glass
- SLA, Stereolithography
- SLM, Selective Laser Melting
- STL, standard tessellation language
- Scaffold materials
- Stem cells
- TCP, β-tricalcium phosphate
- dECM, decellularized bovine cartilage extracellular matrix
- hADSC, human adipose derived stem cells
- hMSCs, human mesenchymal stem cells
- iPS, induced pluripotent stem
- pcHμPs, novel self-healable pre-cross- linked hydrogel microparticles
- rBMSCs, rat bone marrow stem cells
Collapse
Affiliation(s)
- Xin Su
- Department of Plastic Surgery, The First Hospital of China Medical University, 155 North Nanjing Street, Shenyang 110001, Liaoning, People's Republic of China
| | - Ting Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, 155 North Nanjing Street, Shenyang 110001, Liaoning, People's Republic of China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, 155 North Nanjing Street, Shenyang 110001, Liaoning, People's Republic of China
| |
Collapse
|
31
|
Vallet-Regí M, Lozano D, González B, Izquierdo-Barba I. Biomaterials against Bone Infection. Adv Healthc Mater 2020; 9:e2000310. [PMID: 32449317 PMCID: PMC7116285 DOI: 10.1002/adhm.202000310] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Chronic bone infection is considered as one of the most problematic biofilm-related infections. Its recurrent and resistant nature, high morbidity, prolonged hospitalization, and costly medical care expenses have driven the efforts of the scientific community to develop new therapies to improve the standards used today. There is great debate on the management of this kind of infection in order to establish consistent and agreed guidelines in national health systems. The scientific research is oriented toward the design of anti-infective biomaterials both for prevention and cure. The properties of these materials must be adapted to achieve better anti-infective performance and good compatibility, which allow a good integration of the implant with the surrounding tissue. The objective of this review is to study in-depth the antibacterial biomaterials and the strategies underlying them. In this sense, this manuscript focuses on antimicrobial coatings, including the new technological advances on surface modification; scaffolding design including multifunctional scaffolds with both antimicrobial and bone regeneration properties; and nanocarriers based on mesoporous silica nanoparticles with advanced properties (targeting and stimuli-response capabilities).
Collapse
Affiliation(s)
- María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| |
Collapse
|