1
|
Chen Z, Zhou Y, Li L, Ma W, Li Y, Yang Z. Activatable Molecular Probes With Clinical Promise for NIR-II Fluorescent Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2411787. [PMID: 39707663 DOI: 10.1002/smll.202411787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/09/2024] [Indexed: 12/23/2024]
Abstract
The second near-infrared window (NIR-II) fluorescence imaging has been widely adopted in basic scientific research and preclinical applications due to its exceptional spatiotemporal resolution and deep tissue penetration. Among the various fluorescent agents, organic small-molecule fluorophores are considered the most promising candidates for clinical translation, owing to their well-defined chemical structures, tunable optical properties, and excellent biocompatibility. However, many currently available NIR-II fluorophores exhibit an "always-on" fluorescence signal, which leads to background noise and compromises diagnostic accuracy during disease detection. Developing NIR-II activatable organic small-molecule fluorescent probes (AOSFPs) for accurately reporting pathological changes is key to advancing NIR-II fluorescence imaging toward clinical application. This review summarizes the rational design strategies for NIR-II AOSFPs based on four core structures (cyanine, hemicyanine, xanthene, and BODIPY). These NIR-II AOSFPs hold substantial potential for clinical translation. Furthermore, the recent advances in NIR-II AOSFPs for NIR-II bioimaging are comprehensively reviewed, offering clear guidance and direction for their further development. Finally, the prospective efforts to advance NIR-II AOSFPs for clinical applications are outlined.
Collapse
Affiliation(s)
- Zikang Chen
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Yongjie Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
2
|
Luo L, Zhou H, Wang S, Pang M, Zhang J, Hu Y, You J. The Application of Nanoparticle-Based Imaging and Phototherapy for Female Reproductive Organs Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207694. [PMID: 37154216 DOI: 10.1002/smll.202207694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/06/2023] [Indexed: 05/10/2023]
Abstract
Various female reproductive disorders affect millions of women worldwide and bring many troubles to women's daily life. Let alone, gynecological cancer (such as ovarian cancer and cervical cancer) is a severe threat to most women's lives. Endometriosis, pelvic inflammatory disease, and other chronic diseases-induced pain have significantly harmed women's physical and mental health. Despite recent advances in the female reproductive field, the existing challenges are still enormous such as personalization of disease, difficulty in diagnosing early cancers, antibiotic resistance in infectious diseases, etc. To confront such challenges, nanoparticle-based imaging tools and phototherapies that offer minimally invasive detection and treatment of reproductive tract-associated pathologies are indispensable and innovative. Of late, several clinical trials have also been conducted using nanoparticles for the early detection of female reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics. However, these nanoparticle trials are still nascent due to the body's delicate and complex female reproductive system. The present review comprehensively focuses on emerging nanoparticle-based imaging and phototherapies applications, which hold enormous promise for improved early diagnosis and effective treatments of various female reproductive organ diseases.
Collapse
Affiliation(s)
- Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Mei Pang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yilong Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
3
|
Xu Y, Teng C, Wang Y, Chen D, Yin D, Yan L. Self-enhanced regulation of stable organic radicals with polypeptide nanoparticles for mild second near-infrared phototheranostics. J Colloid Interface Sci 2024; 669:578-589. [PMID: 38729006 DOI: 10.1016/j.jcis.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Stable organic radicals have emerged as a promising option to enhance fluorescence quantum yield (QY), gaining traction in medical treatment due to their unique electronic transitions from the ground state (D0) to the doublet excited state (D1). We synthesized a stable dicyanomethyl radical with a NIR-II fluorescence QY of 0.86 %, surpassing many NIR-II organic dyes. Subsequently, amphiphilic polymer-encapsulated nanoparticles (NPs) containing the radical were created, achieving a NIR-II fluorescence QY of 0.32 %, facilitating high-contrast bio-imaging. These CNPPs exhibit self-enhanced photothermal properties, elevating photothermal conversion efficiency (PCE) from 43.5 % to 57.5 % under 915 nm laser irradiation. This advancement enables more efficient photothermal therapy (PTT) with lower dye concentrations and reduced laser power, enhancing both feasibility and safety. Through regular fractionated mild photothermal therapy, we observed the release of damage-associated molecular patterns (DAMPs) and an increase in cytokine expression, culminating in combined mild phototherapy (m-PTT)-mediated immunogenic cell death (ICD). Consequently, we developed an immunostimulatory tumor vaccine, showcasing a novel approach for refining photothermal agents (PTA) and optimizing the PTT process.
Collapse
Affiliation(s)
- Yixuan Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Changchang Teng
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Yating Wang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Dejia Chen
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China.
| |
Collapse
|
4
|
Khan AEMA, Arutla V, Srivenugopal KS. Human NQO1 as a Selective Target for Anticancer Therapeutics and Tumor Imaging. Cells 2024; 13:1272. [PMID: 39120303 PMCID: PMC11311714 DOI: 10.3390/cells13151272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Human NAD(P)H-quinone oxidoreductase1 (HNQO1) is a two-electron reductase antioxidant enzyme whose expression is driven by the NRF2 transcription factor highly active in the prooxidant milieu found in human malignancies. The resulting abundance of NQO1 expression (up to 200-fold) in cancers and a barely detectable expression in body tissues makes it a selective marker of neoplasms. NQO1 can catalyze the repeated futile redox cycling of certain natural and synthetic quinones to their hydroxyquinones, consuming NADPH and generating rapid bursts of cytotoxic reactive oxygen species (ROS) and H2O2. A greater level of this quinone bioactivation due to elevated NQO1 content has been recognized as a tumor-specific therapeutic strategy, which, however, has not been clinically exploited. We review here the natural and new quinones activated by NQO1, the catalytic inhibitors, and the ensuing cell death mechanisms. Further, the cancer-selective expression of NQO1 has opened excellent opportunities for distinguishing cancer cells/tissues from their normal counterparts. Given this diagnostic, prognostic, and therapeutic importance, we and others have engineered a large number of specific NQO1 turn-on small molecule probes that remain latent but release intense fluorescence groups at near-infrared and other wavelengths, following enzymatic cleavage in cancer cells and tumor masses. This sensitive visualization/quantitation and powerful imaging technology based on NQO1 expression offers promise for guided cancer surgery, and the reagents suggest a theranostic potential for NQO1-targeted chemotherapy.
Collapse
Affiliation(s)
| | | | - Kalkunte S. Srivenugopal
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1406 Amarillo Research Bldg., Rm. 1102, Amarillo, TX 79106, USA; (A.E.M.A.K.); (V.A.)
| |
Collapse
|
5
|
Ciuffreda P, Xynomilakis O, Casati S, Ottria R. Fluorescence-Based Enzyme Activity Assay: Ascertaining the Activity and Inhibition of Endocannabinoid Hydrolytic Enzymes. Int J Mol Sci 2024; 25:7693. [PMID: 39062935 PMCID: PMC11276806 DOI: 10.3390/ijms25147693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The endocannabinoid system, known for its regulatory role in various physiological processes, relies on the activities of several hydrolytic enzymes, such as fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA), monoacylglycerol lipase (MAGL), and α/β-hydrolase domains 6 (ABHD6) and 12 (ABHD12), to maintain homeostasis. Accurate measurement of these enzymes' activities is crucial for understanding their function and for the development of potential therapeutic agents. Fluorometric assays, which offer high sensitivity, specificity, and real-time monitoring capabilities, have become essential tools in enzymatic studies. This review provides a comprehensive overview of the principles behind these assays, the various substrates and fluorophores used, and advances in assay techniques used not only for the determination of the kinetic mechanisms of enzyme reactions but also for setting up kinetic assays for the high-throughput screening of each critical enzyme involved in endocannabinoid degradation. Through this comprehensive review, we aim to highlight the strengths and limitations of current fluorometric assays and suggest future directions for improving the measurement of enzyme activity in the endocannabinoid system.
Collapse
Affiliation(s)
| | | | | | - Roberta Ottria
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milan, Italy; (P.C.); (O.X.); (S.C.)
| |
Collapse
|
6
|
Shen L, Li J, Wen C, Wang H, Liu N, Su X, Chen J, Li X. A firm-push-to-open and light-push-to-lock strategy for a general chemical platform to develop activatable dual-modality NIR-II probes. SCIENCE ADVANCES 2024; 10:eado2037. [PMID: 38875326 PMCID: PMC11177897 DOI: 10.1126/sciadv.ado2037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/10/2024] [Indexed: 06/16/2024]
Abstract
Activatable near-infrared (NIR) imaging in the NIR-II range is crucial for deep tissue bioanalyte tracking. However, designing such probes remains challenging due to the limited availability of general chemical strategies. Here, we introduced a foundational platform for activatable probes, using analyte-triggered smart modulation of the π-conjugation system of a NIR-II-emitting rhodamine hybrid. By tuning the nucleophilicity of the ortho-carboxy moiety, we achieved an electronic effect termed "firm-push-to-open and light-push-to-lock," which enables complete spirocyclization of the probe before sensing and allows for efficient zwitterion formation when the light-pushing aniline carbamate trigger is transformed into a firm-pushing aniline. This platform produces dual-modality NIR-II imaging probes with ~50-fold fluorogenic and activatable photoacoustic signals in live mice, surpassing reported probes with generally below 10-fold activatable signals. Demonstrating generality, we successfully designed probes for hydrogen peroxide (H2O2) and hydrogen sulfide (H2S). We envision a widespread adoption of the chemical platform for designing activatable NIR-II probes across diverse applications.
Collapse
Affiliation(s)
- Lili Shen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Street, Hangzhou 310058, China
| | - Jian Li
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenglong Wen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Street, Hangzhou 310058, China
| | - Hao Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Street, Hangzhou 310058, China
| | - Nian Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianzhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Street, Hangzhou 310058, China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Street, Hangzhou 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Chen HJ, Wang L, Zhu H, Wang ZG, Liu SL. NIR-II Fluorescence Imaging for In Vivo Quantitative Analysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28011-28028. [PMID: 38783516 DOI: 10.1021/acsami.4c04913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In vivo real-time qualitative and quantitative analysis is essential for the diagnosis and treatment of diseases such as tumors. Near-infrared-II (NIR-II, 1000-1700 nm) bioimaging is an emerging visualization modality based on fluorescent materials. The advantages of NIR-II region fluorescent materials in terms of reduced photon scattering and low tissue autofluorescence enable NIR-II bioimaging with high resolution and increasing depth of tissue penetration, and thus have great potential for in vivo qualitative and quantitative analysis. In this review, we first summarize recent advances in NIR-II imaging, including fluorescent probe selection, quantitative analysis strategies, and imaging. Then, we describe in detail representative applications to illustrate how NIR-II fluorescence imaging has become an important tool for in vivo quantitative analysis. Finally, we describe the future possibilities and challenges of NIR-II fluorescence imaging.
Collapse
Affiliation(s)
- Hua-Jie Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
8
|
Cosco ED, Bogyo M. Recent advances in ratiometric fluorescence imaging of enzyme activity in vivo. Curr Opin Chem Biol 2024; 80:102441. [PMID: 38457961 PMCID: PMC11164639 DOI: 10.1016/j.cbpa.2024.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
Among molecular imaging modalities that can monitor enzyme activity in vivo, optical imaging provides sensitive, molecular-level information at low-cost using safe and non-ionizing wavelengths of light. Yet, obtaining quantifiable optical signals in vivo poses significant challenges. Benchmarking using ratiometric signals can overcome dependence on dosing, illumination variability, and pharmacokinetics to provide quantitative in vivo optical data. This review highlights recent advances using fluorescent probes that are processed by enzymes to induce photophysical changes that can be monitored by ratiometric imaging. These diverse strategies include caged fluorophores that change photophysical properties upon enzymatic cleavage, as well as multi-fluorophore systems that are triggered by enzymatic cleavage to alter optical outputs in one or more fluorescent channels. The strategies discussed here have great potential for further development as well as potential broad applications for targeting diverse enzymes important for a wide range of human diseases.
Collapse
Affiliation(s)
- Emily D Cosco
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew Bogyo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Chen G, Xiong M, Jiang C, Zhao Y, Chen L, Ju Y, Jiang J, Xu Z, Pan J, Li X, Wang K. Novel BODIPY-based nano-biomaterials with enhanced D-A-D structure for NIR-triggered photodynamic and photothermal therapy. Bioorg Chem 2024; 148:107494. [PMID: 38797067 DOI: 10.1016/j.bioorg.2024.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Near-infrared (NIR) responsive nanoparticles are an important platform for multimodal phototherapy. Importantly, the simultaneous NIR-triggered photodynamic (PDT) and photothermal (PTT) therapy is a powerful approach to increase the antitumor efficiency of phototherapic nanoparticles due to the synergistic effect. Herein, a boron dipyrromethene (BODIPY)-based amphiphilic dye with enhanced electron donor-acceptor-donor (D-A-D) structure (BDP-AP) was designed and synthesized, which could self-assemble into stable nanoparticles (BDP-AP NPs) for the synergistic NIR-triggered PDT/PTT therapy. BDP-AP NPs synchronously generated singlet oxygen (1O2) and achieved preeminent photothermal conversion efficiency (61.42%). The in vitro and in vivo experiments showed that BDP-AP NPs possessed negligible dark cytotoxicity and infusive anticancer performance. BDP-AP NPs provide valuable guidance for the construction of PDT/PTT-synergistic NIR nanoagents to improve the efficiency of photoinduced cancer therapy in the future.
Collapse
Affiliation(s)
- Gang Chen
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Mengmeng Xiong
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Chen Jiang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Yimei Zhao
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China.
| | - Li Chen
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Yunlong Ju
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Jun Jiang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China; Hubei Province Engineering Centre of Performance Chemicals, Wuhan 430062, PR China.
| | - Zekun Xu
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Jie Pan
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Xiang Li
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China.
| | - Kai Wang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China.
| |
Collapse
|
10
|
Dong X, Zhang Z, Wang R, Sun J, Dong C, Sun L, Jia C, Gu X, Zhao C. RSS and ROS Sequentially Activated Carbon Monoxide Release for Boosting NIR Imaging-Guided On-Demand Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309529. [PMID: 38100303 DOI: 10.1002/smll.202309529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Carbon monoxide shows great therapeutic potential in anti-cancer. In particular, the construction of multifunctional CO delivery systems can promote the precise delivery of CO and achieve ideal therapeutic effects, but there are still great challenges in design. In this work, a RSS and ROS sequentially activated CO delivery system is developed for boosting NIR imaging-guided on-demand photodynamic therapy. This designed system is composed of a CO releaser (BOD-CO) and a photosensitizer (BOD-I). BOD-CO can be specifically activated by hydrogen sulfide with simultaneous release of CO donor and NIR fluorescence that can identify H2S-rich tumors and guide light therapy, also depleting H2S in the process. Moreover, BOD-I generates 1O2 under long-wavelength light irradiation, enabling both PDT and precise local release of CO via a photooxidation mechanism. Such sequential activation of CO release by RSS and ROS ensured the safety and controllability of CO delivery, and effectively avoided leakage during delivery. Importantly, cytotoxicity and in vivo studies reveal that the release of CO combined with the depletion of endogenous H2S amplified PDT, achieving ideal anticancer results. It is believed that such theranostic nanoplatform can provide a novel strategy for the precise CO delivery and combined therapy involved in gas therapy and PDT.
Collapse
Affiliation(s)
- Xuemei Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ziwen Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chengjun Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Lixin Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Cai Jia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100006, P. R. China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
11
|
Liu Y, Diao S, Ruan B, Zhou Y, Yu M, Dong G, Xu W, Ning L, Zhou W, Jiang Y, Xie C, Fan Q, Huang J. Molecular Engineering of Activatable NIR-II Hemicyanine Reporters for Early Diagnosis and Prognostic Assessment of Inflammatory Bowel Disease. ACS NANO 2024; 18:8437-8451. [PMID: 38501308 DOI: 10.1021/acsnano.3c13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Molecular imaging in the second near-infrared window (NIR-II) provides high-fidelity visualization of biopathological events in deep tissue. However, most NIR-II probes produce "always-on" output and demonstrate poor signal specificity toward biomarkers. Herein, we report a series of hemicyanine reporters (HBCs) with tunable emission to NIR-II window (715-1188 nm) and structurally amenable to constructing activatable probes. Such manipulation of emission wavelengths relies on rational molecular engineering by integrating benz[c,d]indolium, benzo[b]xanthonium, and thiophene moieties to a conventional hemicyanine skeleton. In particular, HBC4 and HBC5 possess bright and record long emission over 1050 nm, enabling improved tissue penetration depth and superior signal to background ratio for intestinal tract mapping than NIR-I fluorophore HC1. An activatable inflammatory reporter (AIR-PE) is further constructed for pH-triggered site-specific release in colon. Due to minimized background interference, oral gavage of AIR-PE allows clear delineation of irritated intestines and assessment of therapeutic responses in a mouse model of inflammatory bowel disease (IBD) through real-time NIRF-II imaging. Benefiting from its high fecal clearance efficiency (>90%), AIR-PE can also detect IBD and evaluate the effectiveness of colitis treatments via in vitro optical fecalysis, which outperforms typical clinical assays including fecal occult blood testing and histological examination. This study thus presents NIR-II molecular scaffolds that are not only applicable to developing versatile activatable probes for early diagnosis and prognostic monitoring of deeply seated diseases but also hold promise for future clinical translations.
Collapse
Affiliation(s)
- Yi Liu
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanchao Diao
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Bankang Ruan
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Ya Zhou
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengya Yu
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Guoqi Dong
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Weiping Xu
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Lulu Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wen Zhou
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yuyan Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford 94305, California, United States
| | - Chen Xie
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Quli Fan
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jiaguo Huang
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
12
|
Wang SY, Qu YC, Shao N, Niu LY, Yang QZ. Reversible Dual Fluorescence-Lifetime Imaging of Mitochondrial GSH and Microviscosity: Real-Time Evaluation of Ferroptosis Status. Anal Chem 2024; 96:4570-4579. [PMID: 38441542 DOI: 10.1021/acs.analchem.3c05430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Ferroptosis, as a new form of regulated cell death, is implicated in various physiological and pathological processes. Developing a single probe for an independent analysis of multiple analytes related to ferroptosis can provide more accurate information and simplify the detection procedures, but it faces great challenges. In this work, we develop a fluorescent probe for the simultaneous detection of GSH through ratiometric fluorescence response and microviscosity via a fluorescence lifetime model. Based on the reversible Michael addition reaction between GSH and unsaturated C═C bond, the probe responds reversibly to GSH with a ratiometric fluorescence variation and a fast response time (t1/2 = 4.7 s). At the same time, the probe is sensitive to environmental viscosity by changing its fluorescence lifetimes. The probe was applied to monitor the drug-induced ferroptosis process through both the classical Xc-/GSH/GPX4- and DHODH-mediated defense mechanisms. We hope that the probe will provide a useful molecular tool for the real-time live-cell imaging of GSH dynamics, which is benefit to unveiling related physiological and pathological processes.
Collapse
Affiliation(s)
- Si-Yu Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yu-Chen Qu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Na Shao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
13
|
Zhang J, Yang Y, Zeng L, Wang J. A ratiometric fluorescence platform for on-site screening meat freshness. Food Chem 2024; 436:137769. [PMID: 37862987 DOI: 10.1016/j.foodchem.2023.137769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Meat freshness is related to food safety and human health. Developing a simple and effective method for on-site detection of meat freshness is essential to ensure food safety. This study aimed to explore a ratiometric fluorescence platform for on-site screening of meat freshness. We synthesized a series of benzothiazole-based fluorescent compounds (BM, BHM and BTH), each with different recognition groups for detecting meat freshness biomarkers cadaverine (Cad) and putrescine (Pte). The optimized 2-(2'-hydroxyphenyl-3-aldehyde-5-1,3-indanedione) benzothiazole (BTH) demonstrated a noticeable color and fluorescence change, a fast response (<15 min), and high selectivity and sensitivity (LOD = 70 nM) to Cad. Portable test strips based on BTH were prepared for rapid visual detection of meat freshness, which exhibited visible color and fluorescen color changes to Cad and Pte. Furthermore, a portable smartphone-based fluorescence device integrated with a self-programmed Python program was fabricated and used on-site to monitor Cad and Pte within 5 min. The BTH-loaded portable test strips were successfully employed as low-cost, high-contrast, fast-response, and smartphone-adaptable fluorescent labels for detecting Cad and Pte in meat samples under different temperatures (25 °C, 4 °C, and -20 °C). This enabled consumers and food supply chain stakeholders to quickly and visually monitor the meat freshness in real beef, chicken, and pork products.
Collapse
Affiliation(s)
- Jin Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ying Yang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lintao Zeng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Mei Y, Hai Z, Li Z, Rong K, Tang W, Song QH. Dual-Responsive Near-Infrared BODIPY-Based Fluorescent Probe for the Detection of F - and HClO in Organisms. Anal Chem 2024; 96:3802-3809. [PMID: 38381523 DOI: 10.1021/acs.analchem.3c04856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Fluoride anions (F-) play a crucial role in human physiological processes. However, excessive intake of F- would affect oxygen metabolism and promote the generation of oxygen-free radicals. Hence, it is essential to develop a precise and efficient fluorescent probe for visualizing F--induced oxidative stress. In this work, we developed the first bifunctional BODIPY-based fluorescent probe dfBDP with p-tert-butyldimethylsilanolate benzyl thioether as the sensing site for the detection of F- and HClO via two distinct reactions, the self-immolative removal and the thioether oxidation, which generate the sensing products with two nonoverlap fluorescence bands: 800-1200 and 500-750 nm, respectively. The probe dfBDP displays rapid response, high specificity, and sensitivity for the detection of F- (LOD, 316.2 nM) and HClO (LOD, 33.9 nM) in vitro. Cellular imaging reveals a correlation between F--induced oxidative stress and the upregulation of HClO. Finally, probe dfBDP was employed to detect F- and HClO in mice under the stimulation of F-. The experimental results display that the level of HClO elevates in the liver of mice.
Collapse
Affiliation(s)
- Yuan Mei
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zijuan Hai
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Ziyun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P. R. China
| | - Kuanrong Rong
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P. R. China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P. R. China
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
15
|
Zhang S, Qu Y, Zhang D, Li S, Tang F, Ding A, Hu L, Zhang J, Wang H, Huang K, Li L. Rational Design and Biological Application of Hybrid Fluorophores. Chemistry 2024; 30:e202303208. [PMID: 38038726 DOI: 10.1002/chem.202303208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
Fluorophores are considered powerful tools for not only enabling the visualization of cell structures, substructures, and biological processes, but also making for the quantitative and qualitative measurement of various analytes in living systems. However, most fluorophores do not meet the diverse requirements for biological applications in terms of their photophysical and biological properties. Hybridization is an important strategy in molecular engineering that provides fluorophores with complementarity and multifunctionality. This review summarizes the basic strategies of hybridization with four classes of fluorophores, including xanthene, cyanine, coumarin, and BODIPY with a focus on their structure-property relationship (SPR) and biological applications. This review aims to provide rational hybrid ideas for expanding the reservoir of knowledge regarding fluorophores and promoting the development of newly produced fluorophores for applications in the field of life sciences.
Collapse
Affiliation(s)
- Shiji Zhang
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yunwei Qu
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Duoteng Zhang
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Shuai Li
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Fang Tang
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Aixiang Ding
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Lei Hu
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Jin Zhang
- Technical Center of Xiamen Customs, Xiamen, 361001, China
| | - Hui Wang
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Lin Li
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
| |
Collapse
|
16
|
Luo X, Jia K, Xing J, Yi J. The utilization of nanotechnology in the female reproductive system and related disorders. Heliyon 2024; 10:e25477. [PMID: 38333849 PMCID: PMC10850912 DOI: 10.1016/j.heliyon.2024.e25477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
The health of the reproductive system is intricately linked to female fertility and quality of life. There has been a growing prevalence of reproductive system disorders among women, particularly in younger age groups, resulting in significant adverse effects on their reproductive health. Consequently, there is an urgent need for effective treatment modalities. Nanotechnology, as an advanced discipline, provides innovative avenues for managing and treating diseases of the female reproductive system by enabling precise manipulation and regulation of biological molecules and cells. By utilizing nanodelivery systems, drugs can be administered with pinpoint accuracy, leading to reduced side effects and improved therapeutic efficacy. Moreover, nanomaterial imaging techniques enhance diagnostic precision and sensitivity, aiding in the assessment of disease severity and progression. Furthermore, the implementation of nanobiosensors facilitates early detection and prevention of ailments. This comprehensive review aims to summarize recent applications of nanotechnology in the treatment of female reproductive system diseases. The latest advancements in drug delivery, diagnosis, and treatment approaches will be discussed, with an emphasis on the potential of nanotechnology to improve treatment outcomes and overall quality of life.
Collapse
Affiliation(s)
- Xin Luo
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Keran Jia
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jinshan Xing
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China
| |
Collapse
|
17
|
Lin S, Ye C, Lin Z, Huang L, Li D. Recent progress of near-infrared fluorescent probes in the determination of reactive oxygen species for disease diagnosis. Talanta 2024; 268:125264. [PMID: 37832458 DOI: 10.1016/j.talanta.2023.125264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023]
Abstract
Reactive oxygen species (ROS), a chemically defined group of reactive molecules derived from molecular oxygen, are involved in a variety of physiological and pathological processes, including immune defense, cellular metabolism, and other physiological processes. To access their detailed function in these processes, it is critical to establish rapid, accurate and in situ assays for these species in vivo. Among the potential assays, fluorescent probes are considered as the most promising candidate to monitor the biological ROS in vivo with great spatial and temporal resolution and are extensively used as an excellent tool in modern redox biology discovery. Recently, abundant fluorescent probes have been successively developed for in vitro or intracellular detection of ROS, but most of them could not be used for in vivo imaging due to their intrinsic shortcomings such as short emission wavelengths, phototoxicity and poor tissue penetration. Recent development of fluorescent ROS probes with near-infrared emission aim to address these concerns to develop practical assays. Herein, we review recent developments of ROS-sensitive near-infrared fluorescent probes, with an emphasis on the design, synthesis, characteristics of fluorescent probes, as well as their applications. We hope this review will aid the development of a new generation of efficient, sensitive and biocompatible fluorescent probes for in vivo ROS detection.
Collapse
Affiliation(s)
- Shufang Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, 350117, PR China
| | - Chenqian Ye
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, 350117, PR China
| | - Zengyan Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, 350117, PR China
| | - Luqiang Huang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, PR China.
| | - Daliang Li
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, 350117, PR China.
| |
Collapse
|
18
|
Wu M, Gong D, Zhou Y, Zha Z, Xia X. Activatable probes with potential for intraoperative tumor-specific fluorescence-imaging guided surgery. J Mater Chem B 2023; 11:9777-9797. [PMID: 37749982 DOI: 10.1039/d3tb01590d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Owing to societal development and aging population, the impact of cancer on human health and quality of life has increased. Early detection and surgical treatment are the most effective approaches for most cancer patients. As the scope of conventional tumor resection is determined by auxiliary examination and surgeon experience, there is often insufficient recognition of tiny tumors. The ability to detect such tumors can be improved by using fluorescent tumor-specific probes for surgical navigation. This review mainly describes the design principles and mechanisms of activatable probes for the fluorescence imaging of tumors. This type of probe is nonfluorescent in normal tissue but exhibits obvious fluorescence emission upon encountering tumor-specific substrates, such as enzymes or bioactive molecules, or changes in the microenvironment, such as a low pH. In some cases, a single-factor response does not guarantee the effective fluorescence labeling of tumors. Therefore, two-factor-activatable fluorescence imaging probes that react with two specific factors in tumor cells have also been developed. Compared with single biomarker testing, the simultaneous monitoring of multiple biomarkers may provide additional insight into the role of these substances in cancer development and aid in improving the accuracy of early cancer diagnosis. Research and progress in this field can provide new methods for precision medicine and targeted therapy. The development of new approaches for early diagnosis and treatment can effectively improve the prognosis of cancer patients and help enhance their quality of life.
Collapse
Affiliation(s)
- Mingzhu Wu
- Department of Obstetrics and Gynecology, Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Children's Hospital of Anhui Medical University, Hefei, Anhui 230051, P. R. China.
| | - Deyan Gong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Yuanyuan Zhou
- Department of Obstetrics and Gynecology, Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Children's Hospital of Anhui Medical University, Hefei, Anhui 230051, P. R. China.
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Xiaoping Xia
- Department of Obstetrics and Gynecology, Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Children's Hospital of Anhui Medical University, Hefei, Anhui 230051, P. R. China.
| |
Collapse
|
19
|
Mei Y, Li Z, Rong K, Hai Z, Tang W, Song QH. A BODIPY-based fluorescent probe for simultaneous detection of H 2O 2 and viscosity during the pyroptosis process. Chem Commun (Camb) 2023; 59:12775-12778. [PMID: 37814891 DOI: 10.1039/d3cc03914e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
A dual functional BODIPY fluorescent probe was developed for simultaneous detection of H2O2 and viscosity, by collecting fluorescence from 800-1100 nm and 550-750 nm, respectively. Bioimaging based on the probe shows that H2O2 accumulates and cytoplasmic viscosity increases during the palmitic acid (PA)-induced pyroptosis process.
Collapse
Affiliation(s)
- Yuan Mei
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Ziyun Li
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Kuanrong Rong
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Zijuan Hai
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China.
| |
Collapse
|
20
|
Sun L, Dong X, Gao J, Zhu T, Sun J, Dong C, Wang R, Gu X, Zhao C. Precise Spatiotemporal Identification of Mitochondrial H 2S Fluctuations through Exploiting an On-Demand Photoactivated Probe. Anal Chem 2023; 95:14288-14296. [PMID: 37697825 DOI: 10.1021/acs.analchem.3c02509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Various signal molecules participate in complex biological processes in mitochondria. However, most currently available probes have problems in elucidating the functions of these active species in mitochondria due to the inability to light up these probes exclusively at the desired mitochondrial location, thereby compromising the specificity and accuracy. In this study, we present an on-demand photoactivation approach to the molecular design of optimized probes for precise spatiotemporal identification of mitochondrial H2S fluctuations. The designed probe with native yellow fluorescence can monitor the process into mitochondria but maintains nonfluorescent response to H2S during cellular delivery, providing the accurate timing of accumulation in mitochondria. On-demand photoactivation exclusively at the desired mitochondrial location affords a significant aggregation-enhanced and emissive response to H2S with lighting up red fluorescence at 690 nm, which is the only way to get such an emissive phenomenon and greatly improves the specificity and accuracy of targeting mitochondrial H2S. By using this photocontrolled fluorescence responsiveness to H2S, precise spatiotemporal identification of mitochondrial H2S fluctuations is successfully performed. Our work could facilitate advances toward interrogating the physiological and pathological consequences of mitochondrial H2S in various biological events.
Collapse
Affiliation(s)
- Lixin Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuemei Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinzhu Gao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Tianli Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chengjun Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
21
|
Mu D, Wen D, Li Y, Zhong L, Zhao J, Zhou S. Renal Clearable Magnetic Nanoreporter for Colorimetric Urinalysis of Tumor. ACS Biomater Sci Eng 2023; 9:5039-5050. [PMID: 37535675 DOI: 10.1021/acsbiomaterials.3c00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The convenience and availability are of great significance for the early screening of cancer. Herein, a magnetic nanoreporter with renal clearable capability and activatable catalytic activity was developed for colorimetric urinalysis of tumors. The magnetic nanoreporters were prepared by loading 3.2 nm Fe3O4 nanoparticles (NPs) and glucose oxidase (GOD) into macrophage cell-derived microvesicles (MVs) through electroporation, and these compositions serve as renal clearable catalytic reporters, synergistic catalysts, and targeted delivery carriers, respectively. The magnetic nanoreporters can convert the H2O2 in the mildly acidic tumor microenvironment into hydroxyl radicals through the synergistic catalysis of Fe3O4 NPs and GOD. Then the MVs can be disintegrated by the radicals, and ultrasmall Fe3O4 NPs will be released from the MVs at the tumor site, enabling rapid clearance of the Fe3O4 NPs into urine and a direct colorimetric urinalysis of the tumor within 4 h. The magnetic nanoreporters had good biocompatibility, and the released Fe3O4 NPs were rapidly excreted from the body, avoiding the potential toxicity. We envision that the magnetic nanoreporters can be used for convenient and rapid cancer screening.
Collapse
Affiliation(s)
- Dan Mu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Dan Wen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yan Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Ling Zhong
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jingya Zhao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
22
|
Ding C, Ren T. Near infrared fluorescent probes for detecting and imaging active small molecules. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
23
|
Cheng HB, Cao X, Zhang S, Zhang K, Cheng Y, Wang J, Zhao J, Zhou L, Liang XJ, Yoon J. BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207546. [PMID: 36398522 DOI: 10.1002/adma.202207546] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Indexed: 05/05/2023]
Abstract
The use of boron dipyrromethene (BODIPY) in biomedicine is reviewed. To open, its synthesis and regulatory strategies are summarized, and inspiring cutting-edge work in post-functionalization strategies is highlighted. A brief overview of assembly model of BODIPY is then provided: BODIPY is introduced as a promising building block for the formation of single- and multicomponent self-assembled systems, including nanostructures suitable for aqueous environments, thereby showing the great development potential of supramolecular assembly in biomedicine applications. The frontier progress of BODIPY in biomedical application is thereafter described, supported by examples of the frontiers of biomedical applications of BODIPY-containing smart materials: it mainly involves the application of materials based on BODIPY building blocks and their assemblies in fluorescence bioimaging, photoacoustic imaging, disease treatment including photodynamic therapy, photothermal therapy, and immunotherapy. Lastly, not only the current status of the BODIPY family in the biomedical field but also the challenges worth considering are summarized. At the same time, insights into the future development prospects of biomedically applicable BODIPY are provided.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Keyue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Yang Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
24
|
Gai L, Liu Y, Zhou Z, Lu H, Guo Z. BODIPY-based probes for hypoxic environments. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
25
|
Qin S, Liu Q, Li K, Qiu L, Xie M, Lin J. Neuropilin 1-targeted near-infrared fluorescence probes for tumor diagnosis. Bioorg Med Chem Lett 2023; 84:129196. [PMID: 36828298 DOI: 10.1016/j.bmcl.2023.129196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
Two neuropilin 1 (NRP1)-targeted near-infrared fluorescence probes for tumor imaging were synthesized via click reaction. These two probes achieve excellent solubility and less aggregation. Importantly, they were able to rapidly target NRP1-overexpressing tumors and had long retention within tumors. Additionally, QS-1 with appropriate hydrophilicity displays higher tumor to muscle (T/M) ratio. And QS-1 can be easily modified with other functional group, and serve as a platform for constructing dual-modal or dual-targeting probes.
Collapse
Affiliation(s)
- Shuai Qin
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Minhao Xie
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| |
Collapse
|
26
|
Zhang X, Shen S, Liu D, Li X, Shi W, Ma H. Combination of changeable π-conjugation and hydrophilic groups for developing water-soluble small-molecule NIR-II fluorogenic probes. Chem Sci 2023; 14:2928-2934. [PMID: 36937580 PMCID: PMC10016431 DOI: 10.1039/d3sc00355h] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
Small-molecule probes emitting in the second near-infrared window (NIR-II) are attracting great attention because of their deep-tissue imaging ability. However, developing NIR-II fluorogenic (off-on) probes with good water solubility remains a great challenge due to the lack of a facile approach. Herein we first report the combination of changeable π-conjugation and hydrophilic groups as an effective strategy for developing water-soluble NIR-II fluorogenic probes. With the strategy, new water-soluble NIR-II fluorophores are prepared, among which NIR-II-F2 and NIR-II-F3 show superior stability and bright fluorescence in aqueous media, and are thus used to design two water-soluble NIR-II fluorogenic probes for leucine aminopeptidase (LAP). The excellent performance in real aqueous bio-environments is demonstrated by imaging mouse vasculatures and organs with NIR-II-F2, and LAP in drug-induced liver injury mice with one of the enzymatic probes; however, water-insoluble dyes cannot achieve such in vivo imaging under the same conditions. Our strategy may be helpful for further developing water-soluble organic NIR-II fluorogenic probes for in vivo imaging of other analytes.
Collapse
Affiliation(s)
- Xiaofan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100049 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shili Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100049 China
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences Tai'an Shandong 271016 China
| | - Diankai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100049 China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100049 China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100049 China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100049 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
27
|
Ye M, Xiang Y, Gong J, Wang X, Mao Z, Liu Z. Monitoring Hg 2+ and MeHg + poisoning in living body with an activatable near-infrared II fluorescence probe. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130612. [PMID: 37056002 DOI: 10.1016/j.jhazmat.2022.130612] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 06/19/2023]
Abstract
Noninvasively imaging mercury poisoning in living organisms is critical to understanding its toxicity and treatments. Especially, simultaneous fluorescence imaging of Hg2+ and MeHg+in vivo is helpful to disclose the mysteries of mercury poisoning. The key limitation for mercury imaging in vivo is the low imaging signal-to-background ratio (SBR) and limited imaging depth, which may result in unreliable detection results. Here, we designed and prepared a near-infrared II (NIR II) emissive probe, NIR-Rh-MS, leveraging the "spirolactam ring-open" tactic of xanthene dyes for in situ visualization of mercury toxicity in mice. The probe produces a marked fluorescence signal at 1015 nm and displays good linear responses to Hg2+ and MeHg+ with excellent sensitivity, respectively. The penetration experiments elucidate that the activated NIR-II fluorescence signal of the probe penetrates to a depth of up to 7 mm in simulated tissues. Impressively, the probe can monitor the toxicity of Hg2+ in mouse livers and the accumulation of MeHg+ in mouse brains via intravital NIR-II imaging for the first time. Thus, we believe that detecting Hg2+ and MeHg+ in different organs with a single NIR-II fluorescence probe in mice would assuredly advance the toxicologic study of mercury poisoning in vivo.
Collapse
Affiliation(s)
- Miantai Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yunhui Xiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jiankang Gong
- College of Health Science and Engineering, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xiaoyu Wang
- College of Health Science and Engineering, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhiqiang Mao
- College of Health Science and Engineering, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Zhihong Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; College of Health Science and Engineering, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
28
|
Mao Z, Kim JH, Lee J, Xiong H, Zhang F, Kim JS. Engineering of BODIPY-based theranostics for cancer therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Recent advances in small-molecule fluorescent probes for diagnosis of cancer cells/tissues. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Han C, Zhao X, Huo X, Yu Z, Wang C, Feng L, Cui J, Tian X, Ma X. Rational design of a NIR fluorescent probe for carboxylesterase 1 detection during endoplasmic reticulum stress and drug-induced acute liver injury. Chem Commun (Camb) 2023; 59:1145-1148. [PMID: 36594784 DOI: 10.1039/d2cc04237a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An endoplasmic reticulum targeting NIR fluorescent probe (ERBM) was developed for real-time monitoring of carboxylesterase 1 (CES1) and exhibited excellent ER location in living cell imaging. In addition, ERBM was applied to illustrate the regulation characteristics of CES1 under ER stress and acute liver injury models at the cell and animal level.
Collapse
Affiliation(s)
- Chaoyan Han
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.,College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xin Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiaokui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Zhenlong Yu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Chao Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiangge Tian
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| |
Collapse
|
31
|
Wang S, Zhang XF, Wang HS, Liu J, Shen SL, Cao XQ. A highly sensitive NIR fluorescence probe for hypoxia imaging in cells and ulcerative colitis. Talanta 2023; 252:123834. [DOI: 10.1016/j.talanta.2022.123834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/28/2022]
|
32
|
Chang B, Chen J, Bao J, Dong K, Chen S, Cheng Z. Design strategies and applications of smart optical probes in the second near-infrared window. Adv Drug Deliv Rev 2023; 192:114637. [PMID: 36476990 DOI: 10.1016/j.addr.2022.114637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/30/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Over the last decade, a series of synergistic advances in the synthesis chemistries and imaging instruments have largely boosted a significant revolution, in which large-scale biomedical applications are now benefiting from optical bioimaging in the second near-infrared window (NIR-II, 1000-1700 nm). The large tissue penetration and limited autofluorescence associated with long-wavelength imaging improve translational potential of NIR-II imaging over common visible-light (400-650 nm) and NIR-I (750-900 nm) imaging, with ongoing profound effects on the studies of precision medicine. Unfortunately, the majority of NIR-II probes are designed as "always-on" luminescent imaging contrasts, continuously generating unspecific signals regardless of whether they reach pathological locations. Thus, in vivo imaging by traditional NIR-II probes usually suffers from weak detect precision due to high background noise. In this context, the advances of optical imaging now enter into an era of precise control of NIR-II photophysical kinetics. Developing NIR-II optical probes that can efficiently activate their luminescent signal in response to biological targets of interest and substantially suppress the background interferences have become a highly prospective research frontier. In this review, the merits and demerits of optical imaging probes from visible-light, NIR-I to NIR-II windows are carefully discussed along with the lens of stimuli-responsive photophysical kinetics. We then highlight the latest development in engineering methods for designing smart NIR-II optical probes. Finally, to appreciate such advances, challenges and prospect in rapidly growing study of smart NIR-II probes are addressed in this review.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Kangfeng Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Si Chen
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha 410008, China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264000, China.
| |
Collapse
|
33
|
Wang M, Gu X, Chen J, Yang X, Cheng P, Xu K. A novel near-infrared colorimetric-fluorescent probe for hydrogen sulfide and application in bioimaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Ye H, Koo S, Beitong Zhu, Ke Y, Sheng R, Duan T, Zeng L, Kim JS. Real-Time Fluorescence Screening Platform for Meat Freshness. Anal Chem 2022; 94:15423-15432. [DOI: 10.1021/acs.analchem.2c03326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Huan Ye
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Seyoung Koo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Beitong Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yingjun Ke
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ruilong Sheng
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Madeira 9000-390, Portugal
| | - Ting Duan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lintao Zeng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
35
|
Lan Q, Yu P, Yan K, Li X, Zhang F, Lei Z. Polymethine Molecular Platform for Ratiometric Fluorescent Probes in the Second near-Infrared Window. J Am Chem Soc 2022; 144:21010-21015. [DOI: 10.1021/jacs.2c10041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingchun Lan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai 201203, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Xiaomin Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Zuhai Lei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai 201203, China
| |
Collapse
|
36
|
Zhao X, Na N, Ouyang J. CRISPR/Cas9-based coronal nanostructures for targeted mitochondria single molecule imaging. Chem Sci 2022; 13:11433-11441. [PMID: 36320584 PMCID: PMC9533423 DOI: 10.1039/d2sc03329a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/07/2022] [Indexed: 02/12/2024] Open
Abstract
The biological state at the subcellular level is highly relevant to many diseases, and the monitoring of organelles such as mitochondria is crucial based on this. However, most DNA and protein based nanoprobes used for the detection of mitochondrial RNAs (mitomiRs) lack spatial selectivity, which leads to inefficiencies in probe delivery and signal turn-on. Herein, we constructed a novel DNA nanoprobe named protein delivery nano-corona (PDNC) to improve the delivery efficiency of Cas protein, for spatially selective imaging of mitomiRs in living cells switched on by a CRISPR/Cas system. Combined with a single-molecule counting method, this strategy enables highly sensitive detection of low-abundance mitomiR. Therefore, the strategy in this work opens up new opportunities for cell identification, early clinical diagnosis, and research in biological behaviour at the subcellular level.
Collapse
Affiliation(s)
- Xuan Zhao
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University Beijing 100875 China
| |
Collapse
|
37
|
Sun R, Liu W, Kirk TV, Chen XD. A Dual-labeled Fluorescent Probe for Visualization of Dextranase Activity in A Simulated Food Digestion System. Food Chem 2022; 405:134744. [DOI: 10.1016/j.foodchem.2022.134744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/04/2022]
|
38
|
Meng X, Pang X, Zhang K, Gong C, Yang J, Dong H, Zhang X. Recent Advances in Near-Infrared-II Fluorescence Imaging for Deep-Tissue Molecular Analysis and Cancer Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202035. [PMID: 35762403 DOI: 10.1002/smll.202202035] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Fluorescence imaging with high sensitivity and minimal invasiveness has received tremendous attention, which can accomplish visualized monitoring and evaluation of cancer progression. Compared with the conventional first near-infrared (NIR-I) optical window (650-950 nm), fluorescence imaging in the second NIR optical window (NIR-II, 950-1700 nm) exhibits deeper tissue penetration capability and higher temporal-spatial resolution with lower background interference for achieving deep-tissue in vivo imaging and real-time monitoring of cancer development. Encouraged by the significant preponderances, a variety of multifunctional NIR-II fluorophores have been designed and fabricated for sensitively imaging biomarkers in vivo and visualizing the treatment procedure of cancers. In this review, the differences between NIR-I and NIR-II fluorescence imaging are briefly introduced, especially the advantages of NIR-II fluorescence imaging for the real-time visualization of tumors in vivo and cancer diagnosis. An important focus is to summarize the NIR-II fluorescence imaging for deep-tissue biomarker analysis in vivo and tumor tissue visualization, and a brief introduction of NIR-II fluorescence imaging-guided cancer therapy is also presented. Finally, the significant challenges and reasonable prospects of NIR-II fluorescence imaging for cancer diagnosis in clinical applications are outlined.
Collapse
Affiliation(s)
- Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Xuejiao Pang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Kai Zhang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chenchen Gong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Junyan Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518071, P. R. China
| |
Collapse
|
39
|
Guo S, Zhu T, Wang R, Gao J, Sun J, Ou-Yang Z, Liu Y, Gu X, Zhao C. A water-soluble fluorescent probe for real-time visualization of γ-glutamyl transpeptidase activity in living cells. Bioorg Med Chem Lett 2022; 68:128762. [PMID: 35490954 DOI: 10.1016/j.bmcl.2022.128762] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/02/2022]
Abstract
γ-glutamyl transpeptidase (GGT) is a kind of cell-surface enzyme that is overexpressed in many cancer cells. It is of great significance to develop an ideal tool for the diagnosis of GGT-rich cancer cells. Here, we reported a simple-structured but effective imaging probe for the detection of GGT activity. In the presence of GGT, the γ-glutamyl linkage could be cleaved specifically to produce amino-substituted product, resulting in significant fluorescence enhancement at 578 nm. Moreover, we successfully employed the probe to monitor GGT activity in HepG2 cells. We envisaged that such a simple but effective imaging tool could improve the practical applications for bioimaging.
Collapse
Affiliation(s)
- Shiyuan Guo
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Tianli Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Jinzhu Gao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jie Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Zhirong Ou-Yang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Yingchao Liu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China.
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
40
|
Activatable near-infrared fluorescent probe triggered by nitroreductase for in vivo ulcerative colitis hypoxia imaging. Anal Chim Acta 2022; 1221:340107. [DOI: 10.1016/j.aca.2022.340107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/03/2022] [Accepted: 06/19/2022] [Indexed: 11/23/2022]
|
41
|
Wong KCY, Sletten EM. Extending optical chemical tools and technologies to mice by shifting to the shortwave infrared region. Curr Opin Chem Biol 2022; 68:102131. [PMID: 35366502 PMCID: PMC9583727 DOI: 10.1016/j.cbpa.2022.102131] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 01/11/2023]
Abstract
Fluorescence imaging is an indispensable method for studying biological processes non-invasively in cells and transparent organisms. Extension into the shortwave infrared (SWIR, 1000-2000 nm) region of the electromagnetic spectrum has allowed for imaging in mammals with unprecedented depth and resolution for optical imaging. In this review, we summarize recent advances in imaging technologies, dye scaffold modifications, and incorporation of these dyes into probes for SWIR imaging in mice. Finally, we offer an outlook on the future of SWIR detection in the field of chemical biology.
Collapse
Affiliation(s)
- Kelly C Y Wong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States.
| |
Collapse
|
42
|
Qin Z, Ren TB, Zhou H, Zhang X, He L, Li Z, Zhang XB, Yuan L. NIRII-HDs: A Versatile Platform for Developing Activatable NIR-II Fluorogenic Probes for Reliable In Vivo Analyte Sensing. Angew Chem Int Ed Engl 2022; 61:e202201541. [PMID: 35218130 DOI: 10.1002/anie.202201541] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/13/2022]
Abstract
Small-molecule-based second near-infrared (NIR-II) activatable fluorescent probes can potentially provide a high target-to-background ratio and deep tissue penetration. However, most of the reported NIR-II activatable small-molecule probes exhibit poor versatility owing to the lack of a general and stable optically tunable group. In this study, we designed NIRII-HDs, a novel dye scaffold optimized for NIR-II probe development. In particular, dye NIRII-HD5 showed the best optical properties such as proper pKa value, excellent stability, and high NIR-II brightness, which can be beneficial for in vivo imaging with high contrast. To demonstrate the applicability of the NIRII-HD5 dye, we designed three target-activatable NIR-II probes for ROS, thiols, and enzymes. Using these novel probes, we not only realized reliable NIR-II imaging of different diseases in mouse models but also evaluated the redox potential of liver tissue during a liver injury in vivo with high fidelity.
Collapse
Affiliation(s)
- Zuojia Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Huijie Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xingxing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Long He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhe Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
43
|
Fortibui MM, Jang M, Lee S, Ryoo IJ, Ahn JS, Ko SK, Kim J. Near-Infrared Fluorescence Probe for Specific Detection of Acetylcholinesterase and Imaging in Live Cells and Zebrafish. ACS APPLIED BIO MATERIALS 2022; 5:2232-2239. [PMID: 35446530 DOI: 10.1021/acsabm.2c00084] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Acetylcholinesterase (AChE) is a pivotal enzyme that is closely related with multiple neurological diseases, such as brain disorders or alterations in the neurotransmission and cancer. The development of convenient methods for imaging AChE activity in biological samples is very important to understand its mechanisms and functions in a living system. Herein, a fluorescent probe exhibiting emission in the near-infrared (NIR) region is developed to detect AChE and visualize biological AChE activities. This probe exhibits a quick response time, reasonable detection limit, and a large Stokes shift accompanied by the NIR emission. The probe has much better reactivity toward AChE than butyrylcholinesterase, which is one of the significant interfering substances. The outstanding specificity of the probe is proved by cellular imaging AChE activity and successful mapping in different regions of zebrafish. Such an effective probe can greatly contribute to ongoing efforts to design emission probes that have distinct properties to assay AChE in biological systems.
Collapse
Affiliation(s)
- Maxine Mambo Fortibui
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Mina Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Sohyun Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - In-Ja Ryoo
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Jong Seog Ahn
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Sung-Kyun Ko
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea
| | - Jinheung Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
44
|
Wang LY, Liu ZF, Teng KX, Niu LY, Yang QZ. Circularly polarized luminescence from helical N,O-boron-chelated dipyrromethene (BODIPY) derivatives. Chem Commun (Camb) 2022; 58:3807-3810. [PMID: 35233587 DOI: 10.1039/d1cc06051a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report N,O-boron-chelated dipyrromethene derivatives exhibiting circularly polarized luminescence (CPL) in the red/near-infrared region, both in solution and the aggregated state. The CPL is originated from the helical chirality through intramolecular substitution of fluorine by an alkenolic substituent. The self-assembly of the fluorophores significantly enhances the |glum| values from 10-4 to 10-2.
Collapse
Affiliation(s)
- Ling-Yun Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Edsucation, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Zheng-Fei Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Edsucation, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Kun-Xu Teng
- Key Laboratory of Radiopharmaceuticals, Ministry of Edsucation, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Ministry of Edsucation, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Edsucation, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
45
|
Zhou HJ, Ren TB. Recent Progress of Cyanine Fluorophores for NIR-II Sensing and Imaging. Chem Asian J 2022; 17:e202200147. [PMID: 35233937 DOI: 10.1002/asia.202200147] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/01/2022] [Indexed: 11/11/2022]
Abstract
The cyanine fluorophores, a kind of classic organic fluorophores, are famous for their high extinction coefficient, simple synthetic route, and relatively long absorption and emission wavelengths. Moreover, the excellent biocompatibility and low toxicity in biological samples make cyanine fluorophores show excellent application value in the biomedical field, especially in Near-Infrared II (NIR-II) sensing and imaging. In this review, we briefly outline the history, characteristics, and current state of development of cyanine fluorophores. In particular, we described the application of cyanine fluorophores in NIR-II sensing and imaging. We hope this review can help researchers grab the latest information in the fast-growing field of cyanine fluorophores for NIR-II sensing and imaging.
Collapse
Affiliation(s)
- Hui-Jie Zhou
- Hunan University, College of Chemistry and Chemical Engineering, CHINA
| | - Tian-Bing Ren
- Hunan University, College of Chemistry and Chemical Engineering, Yuelu District, 410082, Changsha, CHINA
| |
Collapse
|
46
|
Qin Z, Ren TB, Zhou H, Zhang X, He L, Li Z, Zhang XB, Yuan L. NIRII‐HDs: A Versatile Platform for Developing Activatable NIR‐II Fluorogenic Probes for Reliable In Vivo Analyte Sensing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | - Long He
- Hunan University Chemistry CHINA
| | - Zhe Li
- Hunan University Chemistry CHINA
| | | | - Lin Yuan
- Hunan University College of Chemistry and Chemical Engineering NO372, Lushan Rd. Yuelu District. 410082 Changsha CHINA
| |
Collapse
|
47
|
Li L, Ding L, Zhang X, Wen D, Zhang M, Liu W, Wang H, Wang B, Yan L, Guo L, Diao H. A nitroreductase-responsive near-infrared phototheranostic probe for in vivo imaging of tiny tumor and photodynamic therapy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120579. [PMID: 34776373 DOI: 10.1016/j.saa.2021.120579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
The hypoxia-activated and nitroreductase-responsive phototheranostic probe has been developed by incorporating a nitro group into a hemicyanine fluorophore. The probe displays extremely sensitive and selective near-infrared fluorescence enhancement to nitroreductase with the detection limit of 2.10 ng/mL. The detection mechanism relies on the nitroreductase-catalyzed reduction of the nitro group to an amino group, along with the generation of the fluorophore. The availability of the probe in fluorescence imaging and photodynamic therapy was demonstrated at cellular level and in vivo. The probe can image endogenous nitroreductase and the hypoxia status of living cells. The probe also exhibits significant phototoxicity to hypoxia tumor cells under the 660 nm laser irradiation. More importantly, the probe has been successfully utilized in imaging tiny tumor (about 6 mm3) and tumor photodynamic therapy in vivo. The proposed probe integrates accurate near-infrared fluorescence imaging and photodynamic therapy into the same molecule, which probably become a promising agent in the early diagnosis and therapy of tumors.
Collapse
Affiliation(s)
- Lihong Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, PR China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, PR China; College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China.
| | - Lei Ding
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xueyun Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, PR China
| | - Danning Wen
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, PR China
| | - Min Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, PR China
| | - Wen Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China.
| | - Haojiang Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Bin Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Lili Yan
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Lixia Guo
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Haipeng Diao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, PR China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, PR China; College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China.
| |
Collapse
|
48
|
Fan N, Li P, Zhou Y, Wu C, Wang X, Liu Z, Tang B. Demystifying Lysosomal α-l-Fucosidase in Liver Cancer-Bearing Mice by Specific Two-Photon Fluorescence Imaging. ACS Sens 2022; 7:71-81. [PMID: 34968045 DOI: 10.1021/acssensors.1c01630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Liver cancer is one of the most frequently diagnosed cancers and has high mortality. However, the early treatment and prognosis can greatly prolong the survival time of patients, which depends on its early detection. α-l-Fucosidase (AFU), as a vital lysosomal hydrolase, is considered to be an ideal biomarker for early stage liver cancer. So, in vivo monitoring of AFU is essential for the early and accurate diagnosis of liver cancer. Hence, we designed the first two-photon turn-on fluorescent reporter, termed HcyCl-F, which localized to lysosomes for fast imaging of AFU. The 2-chloro-4-phenyl-α-l-fucoside bond of HcyCl-F could be effectively hydrolyzed by AFU and released the hydroxyl on the benzene ring, eventually obtaining a strong conjugated compound (HcyCl-OH) with shiny fluorescence. We demonstrated that HcyCl-F was able to rapidly and accurately respond to AFU. Using a two-photon fluorescence microscope, we successfully visualized the fluctuation of AFU in lysosomes. More importantly, a fascinatingly strong fluorescence signal was observed in the tumor tissue of liver cancer-bearing mice. Of note, we confirmed that HcyCl-F could clearly detect liver tumors in stage I. Altogether, our work provides a simple and convenient method for deciphering the critical pathological function of AFU in depth and facilitates the nondestructive and effective diagnosis of liver cancer in the early stage.
Collapse
Affiliation(s)
- Nannan Fan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Yongqing Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Chuanchen Wu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Zhenzhen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| |
Collapse
|
49
|
Li Y, Liu F, Zhu D, Zhu T, Zhang Y, Li Y, Luo J, Kong L. A new near-infrared excitation/emission fluorescent probe for the detection of β-galactosidase in living cells and in vivo. Talanta 2022; 237:122952. [PMID: 34736678 DOI: 10.1016/j.talanta.2021.122952] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 01/09/2023]
Abstract
Development of noninvasive bioimaging fluorescent probes for detecting particular enzyme activity is greatly recommendable for preclinical diagnosis of cancer. Given that the elevated β-gal activity is positively correlated with several tumors, developing a fluorescent probe for the sensing of β-gal is therefore highly desirable for cancer diagnosis. Herein, a new enzyme-activatable near-infrared (NIR) turn-on fluorescent probe (DMC-βgal) was developed for accurately detecting β-gal activity characterized by excellent selectivity, high sensitivity (LOD = 0.298 U/L), and low toxicity. More importantly, DMC-βgal qualifies remarkable NIR excitation (725 nm) and emission wavelength (770 nm), an ideal tool for restrained photodamage and suppressed autofluorescence. The above excellent performance of DMC-β-gal allowed for the accurate monitoring of endogenous β-gal in living cells. Moreover, the probe was successfully applied to detect intracellular β-gal activity in different types of cancer cells, verifying that SKOV-3 cells had a higher level of β-gal activity than those of A549, HCT-116, MCF-7, and HepG2 cells. Furthermore, DMC-βgal could real-time visualize endogenously β-gal in tumor-bearing nude mice with low auto-fluorescence interference. All results fully demonstrated that DMC-βgal has potential value as a promising strategy for diagnosis of β-gal-related diseases.
Collapse
Affiliation(s)
- Yin Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Feiyan Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Dongrong Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Tianyu Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Yuxin Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Yalin Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Jianguang Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China.
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China.
| |
Collapse
|
50
|
Rational Design and Synthesis of Large Stokes Shift 2,6-Sulphur-Disubstituted BODIPYs for Cell Imaging. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Five new disubstituted 2,6-thioaryl-BODIPY dyes were synthesized via selective aromatic electrophilic substitution from commercially available thiophenols. The analysis of the photophysical properties via absorption and emission spectroscopy showed unusually large Stokes shifts for BODIPY fluorophores (70–100 nm), which makes them suitable probes for bioimaging. Selected compounds were evaluated for labelling primary immune cells as well as different cancer cell lines using confocal fluorescence microscopy.
Collapse
|