1
|
Pradanas-González F, Peltomaa R, Lahtinen S, Luque-Uría Á, Rodríguez Y, Navarro-Villoslada F, Maragos CM, Soukka T, Moreno-Bondi MC, Benito-Peña E. Upconversion-Linked Immunosorbent Assay for the Biomimetic Detection of the Mycotoxin Cyclopiazonic Acid. Anal Chem 2024; 96:20115-20122. [PMID: 39644222 DOI: 10.1021/acs.analchem.4c05168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The neurotoxin α-cyclopiazonic acid (CPA) is an emerging mycotoxin produced as a secondary metabolite by several fungi species (i.e., Penicillium spp. and Aspergillus spp.). CPA commonly contaminates maize, crops, cheese, and wine. In this work, CPA detection in foodstuff was accomplished by the innovative integration of two strategies: upconversion nanoparticles (UCNPs) and epitope-mimicking peptides, to develop a competitive upconversion-linked immunosorbent assay (ULISA). We have applied UCNPs (type NaYF4:Yb3+, Er3+) as background-free optical labels due to their anti-Stokes shift with excitation in the near-infrared region and emission in the ultraviolet-visible region. Moreover, a CPA epitope-mimicking cyclic peptide (A2) was used as a substitute for the toxin-conjugates traditionally applied to competitive assays. UCNPs were decorated with an anti-CPA fragment antigen-binding antibody (UCNP-Fab), and CPA detection was achieved through competition with a biotinylated CPA epitope-mimicking cyclic peptide (A2-biotin, ACNWWDLTLC-GGGSK (Biotin)-NH2), anchored to a streptavidin-coated microtiter plate, for antibody binding. The ULISA platform offers ultrasensitive detection of CPA (limit of detection of 1.3 pg mL-1 and IC50 value of 15 pg mL-1), and no cross-reactivity was observed with other coproduced mycotoxins. These results substantially outperformed the analytical features of conventional heterogeneous immunoassays based on enzymatic detection. Additionally, the use of advanced computational tools, such as MOE and Alphafold AI, proved advantageous in elucidating the molecular interactions between the antibody and the epitope, providing insights that enhance the rational design of immunoassays. The proposed ULISA was applied to detect CPA in spiked maize samples, and the results were validated by high-performance liquid chromatography coupled to a tandem mass spectrometry detector (HPLC-MS/MS).
Collapse
Affiliation(s)
- Fernando Pradanas-González
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Riikka Peltomaa
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Satu Lahtinen
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Álvaro Luque-Uría
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Yoel Rodríguez
- Department of Natural Sciences, Hostos Community College of The City University of New York, 500 Grand Concourse, Bronx, New York, New York 10451, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, United States
| | - Fernando Navarro-Villoslada
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Chris M Maragos
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 N University Street, Peoria, Illinois 61604, United States
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
2
|
Selva Sharma A, Marimuthu M, Varghese AW, Wu J, Xu J, Xiaofeng L, Devaraj S, Lan Y, Li H, Chen Q. A review of biomolecules conjugated lanthanide up-conversion nanoparticles-based fluorescence probes in food safety and quality monitoring applications. Crit Rev Food Sci Nutr 2024; 64:6129-6159. [PMID: 36688820 DOI: 10.1080/10408398.2022.2163975] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Upconversion nanoparticles (UCNPs) are known to possess unique characteristics, which allow them to overcome a number of issues that plague traditional fluorescence probes. UCNPs have been employed in a variety of applications, but it is arguably in the realm of optical sensors where they have shown the most promise. Biomolecule conjugated UCNPs-based fluorescence probes have been developed to detect and quantify a wide range of analytes, from metal ions to biomolecules, with great specificity and sensitivity. In this review, we have given much emphasis on the recent trends and progress in the preparation strategies of bioconjugated UCNPs and their potential application as fluorescence sensors in the trace level detection of food industry-based toxicants and adulterants. The paper discusses the preparation and functionalisation strategies of commonly used biomolecules over the surface of UCNPs. The use of different sensing strategies namely heterogenous and homogenous assays, underlying fluorescence mechanisms in the detection process of food adulterants are summarized in detail. This review might set a precedent for future multidisciplinary research including the development of novel biomolecules conjugated UCNPs for potential applications in food science and technology.
Collapse
Affiliation(s)
- Arumugam Selva Sharma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojapura, Thiruvananthapuram, India
| | - Murugavelu Marimuthu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Department of Science & Humanities, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Amal Wilson Varghese
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojapura, Thiruvananthapuram, India
| | - Jizong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Jing Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Luo Xiaofeng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Sabarinathan Devaraj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yang Lan
- Jiangxi Wuyuan Tea Vocational College, Jiangxi, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
3
|
Zeng J, Zhang T, Liang G, Mo J, Zhu J, Qin L, Liu X, Ni Z. A "turn off-on" fluorescent sensor for detection of Cr(Ⅵ) based on upconversion nanoparticles and nanoporphyrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124002. [PMID: 38364512 DOI: 10.1016/j.saa.2024.124002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
Hexavalent chromium (Cr(Ⅵ)) is a significant environmental pollutant because of its toxic and carcinogenic properties and wide use in various industries. Hence, there is an urgent need to develop accurate and selective approaches to detect the concentration of Cr(Ⅵ) in agricultural and aquaculture products to help humans avoid potential hazards of indirectly taking in Cr(Ⅵ). In this work, we report a "turn off-on" fluorescent sensor based on citric acid coated, 808 nm-excited core-shell upconversion nanoparticles (CA-UCNPs) and self-assembled copper porphyrin nanoparticles (nano CuTPyP) for sensitive and specific detection of Cr(Ⅵ). Nano copper 5, 10, 15, 20-tetra(4-pyridyl)-21H-23H- porphine obtained by acid-base neutralization micelle-confined self-assembly method function as an effective quencher due to its excellent optical property and water solubility. Through electrostatic interactions, positively charged nano CuTPyP are attracted to the surface of negatively charged CA-UCNPs, which can almost completely quench the fluorescence emission. In the presence of Cr(Ⅵ), nano CuTPyP can discriminatively interact with Cr(Ⅵ) and form nano CuTPyP/Cr(Ⅵ) complex, which separates nano CuTPyP from CA-UCNPs and restores the fluorescence. The sensing system exhibits a good linear response to Cr(Ⅵ) concentration in the range from 0.5 to 400 µM with a detection limit of 0.36 µM. The sensing method also displays high selectivity against other common ions including trivalent chromium and is applied to the analysis of Cr(Ⅵ) in actual rice and fish samples with satisfactory results.
Collapse
Affiliation(s)
- Jiaying Zeng
- School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Ting Zhang
- School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Jingwen Mo
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Jianxiong Zhu
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China
| | - Longhui Qin
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China
| | - Xiaojun Liu
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Zhonghua Ni
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
4
|
Ding H, Zhang W, Wang SA, Li C, Li W, Liu J, Yu F, Tao Y, Cheng S, Xie H, Chen Y. A semi-quantitative upconversion nanoparticle-based immunochromatographic assay for SARS-CoV-2 antigen detection. Front Microbiol 2023; 14:1289682. [PMID: 38149276 PMCID: PMC10750388 DOI: 10.3389/fmicb.2023.1289682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
The unprecedented public health and economic impact of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been met with an equally unprecedented scientific response. Sensitive point-of-care methods to detect SARS-CoV-2 antigens in clinical specimens are urgently required for the rapid screening of individuals with viral infection. Here, we developed an upconversion nanoparticle-based lateral flow immunochromatographic assay (UCNP-LFIA) for the high-sensitivity detection of SARS-CoV-2 nucleocapsid (N) protein. A pair of rabbit SARS-CoV-2 N-specific monoclonal antibodies was conjugated to UCNPs, and the prepared UCNPs were then deposited into the LFIA test strips for detecting and capturing the N protein. Under the test conditions, the limit of detection (LOD) of UCNP-LFIA for the N protein was 3.59 pg/mL, with a linear range of 0.01-100 ng/mL. Compared with that of the current colloidal gold-based LFIA strips, the LOD of the UCNP-LFIA-based method was increased by 100-fold. The antigen recovery rate of the developed method in the simulated pharyngeal swab samples ranged from 91.1 to 117.3%. Furthermore, compared with the reverse transcription-polymerase chain reaction, the developed UCNP-LFIA method showed a sensitivity of 94.73% for 19 patients with COVID-19. Thus, the newly established platform could serve as a promising and convenient fluorescent immunological sensing approach for the efficient screening and diagnosis of COVID-19.
Collapse
Affiliation(s)
- Hai Ding
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanying Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shu-an Wang
- Department of Clinic Nutrition, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chuang Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanting Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Liu
- Polariton Life Technologies Ltd., Soochow, Jiangsu, China
| | - Fang Yu
- Polariton Life Technologies Ltd., Soochow, Jiangsu, China
| | - Yanru Tao
- Polariton Life Technologies Ltd., Soochow, Jiangsu, China
| | - Siyun Cheng
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Xie
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Huo E, Shahab S, Dang H, Jia Q, Wang M. Triazine-based covalent-organic framework embedded with cuprous oxide as the bioplatform for photoelectrochemical aptasensing Escherichia coli. Mikrochim Acta 2023; 190:407. [PMID: 37731054 DOI: 10.1007/s00604-023-05987-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
A superior photoelectrochemical (PEC) aptasensor was manufactured for the detection of Escherichia coli (E. coli) based on a hybrid of triazine-based covalent-organic framework (COF) and cuprous oxide (Cu2O). The COF synthesized using 1,3,5-tris(4-aminophenyl)-benzene (TAPB) and 1,3,5-triformylphloroglucinol (Tp) as building blocks acted as a scaffold for encapsulated Cu2O nanoparticles (denoted as Cu2O@TAPB-Tp-COF), which then was employed as the bioplatform for anchoring E. coli-targeted aptamer. Cu2O@Cu@TAPB-Tp-COF demonstrated enhanced separation of the photogenerated carriers and photoabsorption ability and boosted photoelectric conversion efficiency. The developed Cu2O@TAPB-Tp-COF-based PEC aptasensor exhibited a lower detection limit of 2.5 CFU mL-1 toward E. coli within a wider range of 10 CFU mL-1 to 1 × 104 CFU mL-1 than most of reported aptasensors for determining foodborne bacteria, together with high selectivity, good stability, and superior ability and reproducibility. The recoveries of E. coli spiked into milk and bread samples ranged within 95.3-103.6% and 96.6-102.8%, accompanying with low RSDs of 1.37-4.48% and 1.74-3.66%, respectively. The present study shows a promising alternative for the sensitive detection of foodborne bacteria from complex foodstuffs and pathogenic bacteria-polluted environment.
Collapse
Affiliation(s)
- Erfu Huo
- Henan Chemical Industry Institute Co. Ltd., Zhengzhou, People's Republic of China.
- Quality Inspection and Analytical Test Research Center, Henan Academy of Sciences, Zhengzhou, People's Republic of China.
| | - Siyamak Shahab
- Belarusian State University, ISEI BSU, Minsk, Republic of Belarus
| | - Hao Dang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Qiaojuan Jia
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Minghua Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
6
|
Mo J, Wang S, Zeng J, Ding X. Aptamer-based Upconversion Fluorescence Sensor for Doxorubicin Detection. J Fluoresc 2023; 33:1897-1905. [PMID: 36877414 DOI: 10.1007/s10895-023-03184-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Doxorubicin is a common chemotherapeutic drug used to treat a variety of cancers. Monitoring the concentration of doxorubicin in human biological fluids is vital for treatment. In this work, we report an aptamer-functionalized, 808 nm-excited core-shell upconversion fluorescence sensor for specific detection of doxorubicin (DOX). Upconversion nanoparticles and DOX are used as energy donors and energy acceptors respectively. Aptamers immobilized on the surface of upconversion nanoparticles act as the molecular recognition element for DOX. The binding of DOX to the immobilized aptamers results in the fluorescence quenching of the upconversion nanoparticles via a fluorescence resonance energy transfer process. The relative fluorescence intensity exhibits a good linear response to DOX concentration in the range of 0.5 μM to 55 μM with a detection limit of 0.5 μM. The aptasensor displays high specificity and anti-interference against other antibiotics, common ions, and biomolecules owing to strong and specific interactions of aptamers towards DOX. The sensor is further applied for the detection of DOX in urine with spike recoveries of nearly 100%.
Collapse
Affiliation(s)
- Jingwen Mo
- Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments, Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, and School of Mechanical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Shichang Wang
- Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments, Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, and School of Mechanical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jiaying Zeng
- School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Xiong Ding
- School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
7
|
Li H, Sheng W, Haruna SA, Hassan MM, Chen Q. Recent advances in rare earth ion-doped upconversion nanomaterials: From design to their applications in food safety analysis. Compr Rev Food Sci Food Saf 2023; 22:3732-3764. [PMID: 37548602 DOI: 10.1111/1541-4337.13218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
The misuse of chemicals in agricultural systems and food production leads to an increase in contaminants in food, which ultimately has adverse effects on human health. This situation has prompted a demand for sophisticated detection technologies with rapid and sensitive features, as concerns over food safety and quality have grown around the globe. The rare earth ion-doped upconversion nanoparticle (UCNP)-based sensor has emerged as an innovative and promising approach for detecting and analyzing food contaminants due to its superior photophysical properties, including low autofluorescence background, deep penetration of light, low toxicity, and minimal photodamage to the biological samples. The aim of this review was to discuss an outline of the applications of UCNPs to detect contaminants in food matrices, with particular attention on the determination of heavy metals, pesticides, pathogenic bacteria, mycotoxins, and antibiotics. The review briefly discusses the mechanism of upconversion (UC) luminescence, the synthesis, modification, functionality of UCNPs, as well as the detection principles for the design of UC biosensors. Furthermore, because current UCNP research on food safety detection is still at an early stage, this review identifies several bottlenecks that must be overcome in UCNPs and discusses the future prospects for its application in the field of food analysis.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Wei Sheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Suleiman A Haruna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| |
Collapse
|
8
|
Ahmad W, Wang L, Zareef M, Chen Q. Ultrasensitive detection of Staphylococcus aureus using a non-fluorescent cDNA-grafted dark BBQ®-650 chromophore integrated hydrophilic upconversion nanoparticles/aptamer system. Mikrochim Acta 2023; 190:250. [PMID: 37278765 DOI: 10.1007/s00604-023-05823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
A highly structured fluorometric bioassay has been proposed for screening Staphylococcus aureus (S. aureus). The study exploits (i) the spectral attributes of the hexagonal NaYF4:Yb,Er upconversion nanoparticle (UCNP)-coated 3-aminopropyl)triethoxysilane; (ii) the intrinsic non-fluorescent quenching features of the highly stable dark blackberry (BBQ®-650) receptor; (iii) the aptamer (Apt-) biorecognition and binding affinity, and (iv) the complementary DNA hybridizer-linkage efficacy. The principle relied on the excited state energy transfer between the donor Apt-labeled NH2-UCNPs at the 3' end, and cDNA-grafted BBQ®-650 at the 5' end, as the effective receptors. The donor moieties in proximity (< 10.0 nm) trigger hybridization with the cDNA-grafted dark BBQ®-650, as the receptors of energy from the 2F5/2 level of Yb3+ ions to initiate the Förster resonance energy transfer pathway. This was confirmed by the decline in the excited-state lifetimes from 223.52 μs (τ1) to 179.26 μs (τ2). The existence of the target S. aureus in the bioassay attracts the Apt- resulting in the detachment of the acceptor, and disintegration of the complex configuration via conformation reversal. The re-activated fluorescence monitored at λex/em = 980/652 nm, as a function of the logarithmic concentration of S. aureus (42 to 4.2 × 108 CFU mL-1), yielded an ultra-low detection response of 2.0 CFU mL-1. The bioassay screening of S. aureus in real samples revealed satisfactory recoveries (92.44-107.82%) and validation results (p > 0.05). Hence, the comprehensive Apt-labeled NH2-UCNPs-cDNA-grafted dark BBQ®-650 bioassay offered fast and precise S. aureus screening in food and environmental settings.
Collapse
Affiliation(s)
- Waqas Ahmad
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Li Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Quansheng Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, People's Republic of China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
9
|
Zhang N, Zhang W, Wu Y, Xie X, Jiang R, Luo F, Zhang K. Upconversion nanoparticles anchored MnO 2 nanosheets for luminescence "turn on" detecting hydrogen peroxide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122819. [PMID: 37163855 DOI: 10.1016/j.saa.2023.122819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
The sensitively and reliably detecting hydrogen peroxide (H2O2) is of significant for biology and environment protection fields. Herein, we reported a high sensitive H2O2 nanoprobe based on upconversion nanoparticles (UCNPs) anchored MnO2 nanosheets. In which, DNA modified NaYF4@NaYF4:Yb,Tm core-shell nanoparticles were anchored onto the MnO2 nanosheets surface via π-π stacking. Owing to the luminescence resonance energy transfer, the blue luminescence of UCNPs was effectively quenched by MnO2 nanosheets, then the luminescence could be restored by adding H2O2 for reducing MnO2 to Mn2+, and achieving a H2O2 concentration-dependent luminescence change, the detection limit could reach to 0.23 nM (S/N = 3). The proposed method could detect H2O2 in serum, lake water and real samples. Thus, a desired upconversion luminescence sensing strategy for detection H2O2 in life and environmental analysis was successfully constructed. It may be provide a potential tool in disease diagnosis and environmental monitoring fields.
Collapse
Affiliation(s)
- Na Zhang
- China Univ Min & Technol, Sch Chem Engn & Technol, Xuzhou 221116, China; Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, 234000, China
| | - Wen Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, 234000, China
| | - Yilin Wu
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, 234000, China
| | - Xusheng Xie
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, 234000, China
| | - Rongli Jiang
- China Univ Min & Technol, Sch Chem Engn & Technol, Xuzhou 221116, China.
| | - Fabao Luo
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, Anhui 234000, China.
| | - Keying Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, 234000, China; State Key Laboratory of Bioelectronics, Southeast University, Nanjing 211189, China.
| |
Collapse
|
10
|
Pradanas-González F, Peltomaa R, Lahtinen S, Luque-Uría Á, Más V, Barderas R, Maragos CM, Canales Á, Soukka T, Benito-Peña E, Moreno-Bondi MC. Homogeneous immunoassay for cyclopiazonic acid based upon mimotopes and upconversion-resonance energy transfer. Biosens Bioelectron 2023; 233:115339. [PMID: 37126866 DOI: 10.1016/j.bios.2023.115339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Strains of Penicillium spp. are used for fungi-ripened cheeses and Aspergillus spp. routinely contaminate maize and other crops. Some of these strains can produce toxic secondary metabolites (mycotoxins), including the neurotoxin α-cyclopiazonic acid (CPA). In this work, we developed a homogeneous upconversion-resonance energy transfer (UC-RET) immunoassay for the detection of CPA using a novel epitope mimicking peptide, or mimotope, selected by phage display. CPA-specific antibody was used to isolate mimotopes from a cyclic 7-mer peptide library in consecutive selection rounds. Enrichment of antibody binding phages was achieved, and the analysis of individual phage clones revealed four different mimotope peptide sequences. The mimotope sequence, ACNWWDLTLC, performed best in phage-based immunoassays, surface plasmon resonance binding analyses, and UC-RET-based immunoassays. To develop a homogeneous assay, upconversion nanoparticles (UCNP, type NaYF4:Yb3+, Er3+) were used as energy donors and coated with streptavidin to anchor the synthetic biotinylated mimotope. Alexa Fluor 555, used as an energy acceptor, was conjugated to the anti-CPA antibody fragment. The homogeneous single-step immunoassay could detect CPA in just 5 min and enabled a limit of detection (LOD) of 30 pg mL-1 (1.5 μg kg-1) and an IC50 value of 0.36 ng mL-1. No significant cross-reactivity was observed with other co-produced mycotoxins. Finally, we applied the novel method for the detection of CPA in spiked maize samples using high-performance liquid chromatography coupled to a diode array detector (HPLC-DAD) as a reference method.
Collapse
Affiliation(s)
- Fernando Pradanas-González
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | - Riikka Peltomaa
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Satu Lahtinen
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Álvaro Luque-Uría
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | - Vicente Más
- Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, 28220, Madrid, Spain
| | - Rodrigo Barderas
- Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, 28220, Madrid, Spain
| | - Chris M Maragos
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 N University, Peoria, IL, 61604, USA
| | - Ángeles Canales
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain.
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| |
Collapse
|
11
|
Bhuckory S, Lahtinen S, Höysniemi N, Guo J, Qiu X, Soukka T, Hildebrandt N. Understanding FRET in Upconversion Nanoparticle Nucleic Acid Biosensors. NANO LETTERS 2023; 23:2253-2261. [PMID: 36729707 DOI: 10.1021/acs.nanolett.2c04899] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Upconversion nanoparticles (UCNPs) have been frequently applied in Förster resonance energy transfer (FRET) bioanalysis. However, the understanding of how surface coatings, bioconjugation, and dye-surface distance influence FRET biosensing performance has not significantly advanced. Here, we investigated UCNP-to-dye FRET DNA-hybridization assays in H2O and D2O using ∼24 nm large NaYF4:Yb3+,Er3+ UCNPs coated with thin layers of silica (SiO2) or poly(acrylic acid) (PAA). FRET resulted in strong distance-dependent PL intensity changes. However, the PL decay times were not significantly altered because of continuous Yb3+-to-Er3+ energy migration during Er3+-to-dye FRET. Direct bioconjugation of DNA to the thin PAA coating combined with the closest possible dye-surface distance resulted in optimal FRET performance with minor influence from competitive quenching by H2O. The better comprehension of UCNP-to-dye FRET was successfully translated into a microRNA (miR-20a) FRET assay with a limit of detection of 100 fmol in a 80 μL sample volume.
Collapse
Affiliation(s)
- Shashi Bhuckory
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- EMEA Clinical Service Operations, NAMSA, 38670 Chasse-sur-Rhône, France
| | - Satu Lahtinen
- University of Turku, Department of Life Technologies/Biotechnology, 20520 Turku, Finland
| | - Niina Höysniemi
- University of Turku, Department of Life Technologies/Biotechnology, 20520 Turku, Finland
| | - Jiajia Guo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Xue Qiu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Tero Soukka
- University of Turku, Department of Life Technologies/Biotechnology, 20520 Turku, Finland
| | - Niko Hildebrandt
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- Université de Rouen Normandie, CNRS, INSA, Normandie Université, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse - UMR6014 & FR3038), 76000 Rouen, France
- Seoul National University, Department of Chemistry, Seoul 08826, South Korea
| |
Collapse
|
12
|
Molkenova A, Choi HE, Park JM, Lee JH, Kim KS. Plasmon Modulated Upconversion Biosensors. BIOSENSORS 2023; 13:306. [PMID: 36979518 PMCID: PMC10046391 DOI: 10.3390/bios13030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Over the past two decades, lanthanide-based upconversion nanoparticles (UCNPs) have been fascinating scientists due to their ability to offer unprecedented prospects to upconvert tissue-penetrating near-infrared light into color-tailorable optical illumination inside biological matter. In particular, luminescent behavior UCNPs have been widely utilized for background-free biorecognition and biosensing. Currently, a paramount challenge exists on how to maximize NIR light harvesting and upconversion efficiencies for achieving faster response and better sensitivity without damaging the biological tissue upon laser assisted photoactivation. In this review, we offer the reader an overview of the recent updates about exciting achievements and challenges in the development of plasmon-modulated upconversion nanoformulations for biosensing application.
Collapse
Affiliation(s)
- Anara Molkenova
- Institute of Advanced Organic Materials, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hye Eun Choi
- School of Chemical Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong Min Park
- School of Chemical Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Yangsan 50612, Republic of Korea
| | - Ki Su Kim
- Institute of Advanced Organic Materials, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
- School of Chemical Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
- Department of Organic Material Science & Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| |
Collapse
|
13
|
Assessing the reproducibility and up-scaling of the synthesis of Er,Yb-doped NaYF 4-based upconverting nanoparticles and control of size, morphology, and optical properties. Sci Rep 2023; 13:2288. [PMID: 36759652 PMCID: PMC9911732 DOI: 10.1038/s41598-023-28875-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Lanthanide-based, spectrally shifting, and multi-color luminescent upconverting nanoparticles (UCNPs) have received much attention in the last decades because of their applicability as reporter for bioimaging, super-resolution microscopy, and sensing as well as barcoding and anti-counterfeiting tags. A prerequisite for the broad application of UCNPs in areas such as sensing and encoding are simple, robust, and easily upscalable synthesis protocols that yield large quantities of UCNPs with sizes of 20 nm or more with precisely controlled and tunable physicochemical properties from low-cost reagents with a high reproducibility. In this context, we studied the reproducibility, robustness, and upscalability of the synthesis of β-NaYF4:Yb, Er UCNPs via thermal decomposition. Reaction parameters included solvent, precursor chemical compositions, ratio, and concentration. The resulting UCNPs were then examined regarding their application-relevant physicochemical properties such as size, size distribution, morphology, crystal phase, chemical composition, and photoluminescence. Based on these screening studies, we propose a small volume and high-concentration synthesis approach that can provide UCNPs with different, yet controlled size, an excellent phase purity and tunable morphology in batch sizes of up to at least 5 g which are well suited for the fabrication of sensors, printable barcodes or authentication and recycling tags.
Collapse
|
14
|
Matulionyte M, Skripka A, Ramos-Guerra A, Benayas A, Vetrone F. The Coming of Age of Neodymium: Redefining Its Role in Rare Earth Doped Nanoparticles. Chem Rev 2023; 123:515-554. [PMID: 36516409 DOI: 10.1021/acs.chemrev.2c00419] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among luminescent nanostructures actively investigated in the last couple of decades, rare earth (RE3+) doped nanoparticles (RENPs) are some of the most reported family of materials. The development of RENPs in the biomedical framework is quickly making its transition to the ∼800 nm excitation pathway, beneficial for both in vitro and in vivo applications to eliminate heating and facilitate higher penetration in tissues. Therefore, reports and investigations on RENPs containing the neodymium ion (Nd3+) greatly increased in number as the focus on ∼800 nm radiation absorbing Nd3+ ion gained traction. In this review, we cover the basics behind the RE3+ luminescence, the most successful Nd3+-RENP architectures, and highlight application areas. Nd3+-RENPs, particularly Nd3+-sensitized RENPs, have been scrutinized by considering the division between their upconversion and downshifting emissions. Aside from their distinctive optical properties, significant attention is paid to the diverse applications of Nd3+-RENPs, notwithstanding the pitfalls that are still to be addressed. Overall, we aim to provide a comprehensive overview on Nd3+-RENPs, discussing their developmental and applicative successes as well as challenges. We also assess future research pathways and foreseeable obstacles ahead, in a field, which we believe will continue witnessing an effervescent progress in the years to come.
Collapse
Affiliation(s)
- Marija Matulionyte
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| | - Artiom Skripka
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| | - Alma Ramos-Guerra
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| | - Antonio Benayas
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.,Molecular Imaging Program at Stanford Department of Radiology Stanford University 1201 Welch Road, Lucas Center (exp.), Stanford, California 94305-5484, United States
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| |
Collapse
|
15
|
Development of an Immunofluorescent Capillary Sensor for the Detection of Zearalenone Mycotoxin. Toxins (Basel) 2022; 14:toxins14120866. [PMID: 36548763 PMCID: PMC9785567 DOI: 10.3390/toxins14120866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
A capillary-based immunofluorescence sensor was developed and incorporated in a flow injection analysis system. The light-guiding capillary was illuminated axially by a 473 nm/5 mW solid state laser through a tailored optofluidic connector. High sensitivity of the system was achieved by efficiently collecting and detecting the non-guided fluorescence signal scattered out along the wall of the capillary. The excitation was highly suppressed with bandpass and dichroic filters by simultaneously exploiting the guiding effect inside the capillary. The glass capillary used as a measuring cell was silanized in liquid phase by 3-aminopropyltriethoxysilane (APTS), and the biomolecules were immobilized using glutaraldehyde inside the capillary. The applicability of the developed system was tested with a bovine serum albumin (BSA)-anti-BSA-IgG model-molecule pair, using a fluorescently labeled secondary antibody. Based on the results of the BSA-anti-BSA experiments, a similar setup using a primary antibody specific for zearalenone (ZON) was established, and a competitive fluorescence measurement system was developed for quantitative determination of ZON. For the measurements, 20 µg/mL ZON-BSA conjugate was immobilized in the capillary, and a 1:2500 dilution of the primary antibody stock solution and a 2 µg/mL secondary antibody solution were set. The developed capillary-based immunosensor allowed a limit of detection (LOD) of 0.003 ng/mL and a limit of quantification (LOQ) of 0.007 ng/mL for ZON in the competitive immunosensor setup, with a dynamic detection range of 0.01-10 ng/mL ZON concentrations.
Collapse
|
16
|
Shen Y, Nie C, Wei Y, Zheng Z, Xu ZL, Xiang P. FRET-based innovative assays for precise detection of the residual heavy metals in food and agriculture-related matrices. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Ding R, Li Z, Xiong Y, Wu W, Yang Q, Hou X. Electrochemical (Bio)Sensors for the Detection of Organophosphorus Pesticides Based on Nanomaterial-Modified Electrodes: A Review. Crit Rev Anal Chem 2022; 53:1766-1791. [PMID: 35235478 DOI: 10.1080/10408347.2022.2041391] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Organophosphorus pesticides were easily remained in fruits and vegetables which would be harm to the environmental safety and human health. In recent years, due to the simple preparation process, fast response and high sensitivity, the electrochemical (bio)sensors have received increasing attention, which were extensively used as the sensing platform for the detection of OPPs. The mechanisms for the determination of OPPs mainly included redox of nitrophenyl OPPs, enzyme hydrolysis and inhibition, immunosensor, aptasensor. Nowadays, the mainly explored electrode material has focused on metal-organic frameworks, metal and metal derivatives, carbon materials (carbon nanotube, graphene, g-C3N4), MXene, etc. These nanomaterials played important roles in the electrochemical (bio)sensors, which included: (a) as an electrocatalyst to promote the redox reaction, (b) as a carrier to load the enzyme or aptamer, (c) as a recognizer to identify the targets. The nanomaterials-based electrochemical (bio)sensor was a rapid, cost-effective methods to detect OPPs with high sensitivity. Besides, this review compared the analytical performance of different nanomaterials-based electrochemical (bio)sensors, and also identified the key challenges in the future. It would provide new ideas and insights to the further development and application of electrochemical (bio)sensors and the detection of pesticides in real samples.
Collapse
Affiliation(s)
- Rong Ding
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | | | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
18
|
Hlaváček A, Farka Z, Mickert MJ, Kostiv U, Brandmeier JC, Horák D, Skládal P, Foret F, Gorris HH. Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging. Nat Protoc 2022; 17:1028-1072. [PMID: 35181766 DOI: 10.1038/s41596-021-00670-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
The detection of cancer biomarkers in histological samples and blood is of paramount importance for clinical diagnosis. Current methods are limited in terms of sensitivity, hindering early detection of disease. We have overcome the shortcomings of currently available staining and fluorescence labeling methods by taking an integrative approach to establish photon-upconversion nanoparticles (UCNP) as a powerful platform for cancer detection. These nanoparticles are readily synthesized in different sizes to yield efficient and tunable short-wavelength light emission under near-infrared excitation, which eliminates optical background interference of the specimen. Here we present a protocol for the synthesis of UCNPs by high-temperature co-precipitation or seed-mediated growth by thermal decomposition, surface modification by silica or poly(ethylene glycol) that renders the particles resistant to nonspecific binding, and the conjugation of streptavidin or antibodies for biological detection. To detect blood-based biomarkers, we present an upconversion-linked immunosorbent assay for the analog and digital detection of the cancer marker prostate-specific antigen. When applied to immunocytochemistry analysis, UCNPs enable the detection of the breast cancer marker human epidermal growth factor receptor 2 with a signal-to-background ratio 50-fold higher than conventional fluorescent labels. UCNP synthesis takes 4.5 d, the preparation of the antibody-silica-UCNP conjugate takes 3 d, the streptavidin-poly(ethylene glycol)-UCNP conjugate takes 2-3 weeks, upconversion-linked immunosorbent assay takes 2-4 d and immunocytochemistry takes 8-10 h. The procedures can be performed after standard laboratory training in nanomaterials research.
Collapse
Affiliation(s)
- Antonín Hlaváček
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic. .,CEITEC MU, Masaryk University, Brno, Czech Republic.
| | | | - Uliana Kostiv
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.,Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.,CEITEC MU, Masaryk University, Brno, Czech Republic
| | - František Foret
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
19
|
Rodrigues EM, Hemmer E. Trends in hyperspectral imaging: from environmental and health sensing to structure-property and nano-bio interaction studies. Anal Bioanal Chem 2022; 414:4269-4279. [PMID: 35175390 DOI: 10.1007/s00216-022-03959-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/01/2022]
Abstract
Hyperspectral imaging (HSI) is a technique that allows for the simultaneous acquisition of both spatial and spectral information. While HSI has been known for years in the field of remote sensing, for instance in geology, cultural heritage, or food industries, it recently emerged in the fields of nano- and micromaterials as well as bioimaging and -sensing. Herein, the attractiveness of HSI arises from the suitability for generating knowledge about environment-specific optical properties, such as photoluminescence of optical probes in a biological sample or at a single-crystal/particle level, to be leveraged into better understanding of structure-property relationships and nano-bio interactions, respectively. Moreover, given its excellent spectral resolution, HSI is highly suitable for optical multiplexing in multiple dimensions, as sought after for, e.g., high throughput biological imaging by simultaneous tracking of multiple targets. Overall, HSI is an emerging technique that has the potential to transform analytical approaches from biomedicine to advanced materials research. This Trends Article provides insight into the potential of HSI, highlighting selected examples from well-established fields including environmental monitoring and food quality control to set the stage for the discussion of emerging opportunities at the micro- and nanoscale. Herein, special focus is set on photoluminescent micro- and nanoprobes for health and spectral conversion applications.
Collapse
Affiliation(s)
- Emille Martinazzo Rodrigues
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
20
|
Advances in nanomaterial-based microfluidic platforms for on-site detection of foodborne bacteria. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Singhaal R, Tashi L, Devi S, Sheikh HN. Hybrid photoluminescent material from lanthanide fluoride and graphene oxide with strong luminescence intensity as a chemical sensor for mercury ions. NEW J CHEM 2022. [DOI: 10.1039/d2nj00250g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we employed NaxLiyGdF4:Tb3+@PMA@Phen@GO nanocomposite as chemical sensor for selective and sensitive luminescence sensing of toxic Hg2+ metal ion.
Collapse
Affiliation(s)
- Richa Singhaal
- Department of Chemistry, University of Jammu, Baba Sahib Ambedkar Road, Jammu, 180006, India
| | - Lobzang Tashi
- Department of Chemistry, University of Jammu, Baba Sahib Ambedkar Road, Jammu, 180006, India
| | - Swaita Devi
- Department of Chemistry, University of Jammu, Baba Sahib Ambedkar Road, Jammu, 180006, India
| | - Haq Nawaz Sheikh
- Department of Chemistry, University of Jammu, Baba Sahib Ambedkar Road, Jammu, 180006, India
| |
Collapse
|
22
|
He H, Sun DW, Wu Z, Pu H, Wei Q. On-off-on fluorescent nanosensing: Materials, detection strategies and recent food applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Wu N, Wei Y, Pan L, Yang X, Qi H, Gao Q, Zhang C, Li CZ. Sensitive and rapid determination of heat shock protein 70 using lateral flow immunostrips and upconversion nanoparticle fluorescence probes. Analyst 2022; 147:3444-3450. [DOI: 10.1039/d2an00742h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heat shock protein 70 (Hsp70), belonging to the heat shock protein (HSP) family, is reported to be a potential diagnostic biomarker.
Collapse
Affiliation(s)
- Nengying Wu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
- Guizhou Academy of Forestry, Guiyang, 550000, P.R. China
| | - Yuxi Wei
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Lanlan Pan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Chen-zhong Li
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
24
|
Gao C, Zheng P, Liu Q, Han S, Li D, Luo S, Temple H, Xing C, Wang J, Wei Y, Jiang T, Chen W. Recent Advances of Upconversion Nanomaterials in the Biological Field. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2474. [PMID: 34684916 PMCID: PMC8539378 DOI: 10.3390/nano11102474] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022]
Abstract
Rare Earth Upconversion nanoparticles (UCNPs) are a type of material that emits high-energy photons by absorbing two or more low-energy photons caused by the anti-stokes process. It can emit ultraviolet (UV) visible light or near-infrared (NIR) luminescence upon NIR light excitation. Due to its excellent physical and chemical properties, including exceptional optical stability, narrow emission band, enormous Anti-Stokes spectral shift, high light penetration in biological tissues, long luminescent lifetime, and a high signal-to-noise ratio, it shows a prodigious application potential for bio-imaging and photodynamic therapy. This paper will briefly introduce the physical mechanism of upconversion luminescence (UCL) and focus on their research progress and achievements in bio-imaging, bio-detection, and photodynamic therapy.
Collapse
Affiliation(s)
- Cunjin Gao
- Beijing Key Laboratory of Printing and Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China; (C.G.); (P.Z.); (Q.L.); (S.H.); (D.L.); (S.L.)
| | - Pengrui Zheng
- Beijing Key Laboratory of Printing and Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China; (C.G.); (P.Z.); (Q.L.); (S.H.); (D.L.); (S.L.)
| | - Quanxiao Liu
- Beijing Key Laboratory of Printing and Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China; (C.G.); (P.Z.); (Q.L.); (S.H.); (D.L.); (S.L.)
| | - Shuang Han
- Beijing Key Laboratory of Printing and Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China; (C.G.); (P.Z.); (Q.L.); (S.H.); (D.L.); (S.L.)
| | - Dongli Li
- Beijing Key Laboratory of Printing and Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China; (C.G.); (P.Z.); (Q.L.); (S.H.); (D.L.); (S.L.)
| | - Shiyong Luo
- Beijing Key Laboratory of Printing and Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China; (C.G.); (P.Z.); (Q.L.); (S.H.); (D.L.); (S.L.)
| | - Hunter Temple
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059, USA; (H.T.); (C.X.)
| | - Christina Xing
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059, USA; (H.T.); (C.X.)
| | - Jigang Wang
- Beijing Key Laboratory of Printing and Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China; (C.G.); (P.Z.); (Q.L.); (S.H.); (D.L.); (S.L.)
| | - Yanling Wei
- Faculty of Applied Sciences, Jilin Engineering Normal University, Changchun 130052, China
| | - Tao Jiang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059, USA; (H.T.); (C.X.)
- Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford CM1 1SQ, UK
| |
Collapse
|
25
|
Zhang K, Zhu G, Wei Y, Zhang L, Shen Y. Engineering of an Upconversion Luminescence Sensing Platform Based on the Competition Effect for Mercury-Ion Monitoring in Green Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8565-8570. [PMID: 34310878 DOI: 10.1021/acs.jafc.1c03100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accurately monitoring mercury ions (Hg2+) in food and agriculture-related matrixes (e.g., green tea) is of great significance to safeguard food safety. Here, we employed upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs) to engineer a cysteine (Cys)-assisted anti-Stokes luminescence sensing platform (UCNPs-AuNPs) for precisely detecting residual Hg2+ in green tea through the competition effect. Initially, AuNPs could effectively quench the luminescence of UCNPs through the luminescence resonance energy transfer process, which was then interrupted by Cys-triggered AuNP aggregation via Au-S, thereby restoring UCNP luminescence. Interestingly, owing to the competition effect with AuNPs toward Cys, Hg2+ could weaken the luminescence restoring efficiency, achieving a Hg2+ concentration-dependent luminescence change. On this basis, a facile, reliable, and sensitive upconversion luminescence sensing platform for monitoring residual Hg2+ in green tea was successfully established. This study offers a novel insight into integrating the competition effect and anti-Stokes luminescence for food- and agriculture-related contaminant monitoring.
Collapse
Affiliation(s)
- Keying Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues; School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Guang Zhu
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues; School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Yunlong Wei
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Li Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues; School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
26
|
Herrera-Chacón A, Cetó X, Del Valle M. Molecularly imprinted polymers - towards electrochemical sensors and electronic tongues. Anal Bioanal Chem 2021; 413:6117-6140. [PMID: 33928404 PMCID: PMC8084593 DOI: 10.1007/s00216-021-03313-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
Molecularly imprinted polymers (MIPs) are artificially synthesized materials to mimic the molecular recognition process of biological macromolecules such as substrate-enzyme or antigen-antibody. The combination of these biomimetic materials with electrochemical techniques has allowed the development of advanced sensing devices, which significantly improve the performance of bare or catalyst-modified sensors, being able to unleash new applications. However, despite the high selectivity that MIPs exhibit, those can still show some cross-response towards other compounds, especially with chemically analogous (bio)molecules. Thus, the combination of MIPs with chemometric methods opens the room for the development of what could be considered a new type of electronic tongues, i.e. sensor array systems, based on its usage. In this direction, this review provides an overview of the more common synthetic approaches, as well as the strategies that can be used to achieve the integration of MIPs and electrochemical sensors, followed by some recent examples over different areas in order to illustrate the potential of such combination in very diverse applications.
Collapse
Affiliation(s)
- Anna Herrera-Chacón
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain
| | - Xavier Cetó
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain
| | - Manel Del Valle
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|