1
|
Wang T, Cauchon NS, Kirwan JP, Joubert MK, Algorri M, Bell B, Soto RJ, Semin DJ. "Advancing the Implementation of Innovative Analytical Technologies in Pharmaceutical Manufacturing - Some Regulatory Considerations". J Pharm Sci 2024:S0022-3549(24)00628-2. [PMID: 39725231 DOI: 10.1016/j.xphs.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Analytical technologies and methods play a pivotal role in attribute understanding and control which are essential to the rapidly evolving field of pharmaceutical development and manufacturing. These technologies are advancing quickly, where innovations often involve both new scientific approaches and novel applications of established techniques. In many cases, the lack of harmonized global regulatory expectations presents challenges for the adoption of advanced technologies. This review explores some emerging technology trends and applications, while highlighting regulatory considerations for integrating innovative analytical approaches in pharmaceutical manufacturing. We provide detailed examples on the multi-attribute method (MAM), rapid microbial testing for environmental monitoring, and Raman spectroscopy for product identification, while discussing aspects of the current regulatory landscape and desired future advancements in the regulatory framework. We hope to promote the adoption and implementation of innovative analytical technologies for enhanced patient access, while ensuring product quality and safety.
Collapse
Affiliation(s)
- Ting Wang
- Process Development, Amgen Inc., Thousand Oaks, CA 91320.
| | - Nina S Cauchon
- Global Regulatory Affairs and Strategy, Amgen Inc., Thousand Oaks, CA 91320
| | - J Paul Kirwan
- Global Regulatory Affairs and Strategy, Amgen Inc., Thousand Oaks, CA 91320
| | | | - Marquerita Algorri
- Global Regulatory Affairs and Strategy, Amgen Inc., Thousand Oaks, CA 91320
| | - Brian Bell
- Process Development, Amgen Inc., Thousand Oaks, CA 91320
| | - Robert J Soto
- Process Development, Amgen Inc., Thousand Oaks, CA 91320
| | - David J Semin
- Process Development, Amgen Inc., Thousand Oaks, CA 91320
| |
Collapse
|
2
|
Cunha DR, Segundo MA, Quinaz MB. Electrochemical methods for evaluation of therapeutic monoclonal antibodies: A review. Biosens Bioelectron 2024; 271:116988. [PMID: 39642528 DOI: 10.1016/j.bios.2024.116988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Biopharmaceuticals are complex pharmaceutical drug products produced by biotechnology in living systems. Small changes in the production process can induce differences in the structure of the active ingredient, which may have a strong impact on its pharmacological properties. Therefore, quality assurance of biopharmaceuticals results in a high analytical effort. Strict quality and stability monitoring of potentially critical quality attributes (CQAs) is required. Electrochemical methods have been contributing to the expansion of sensors and biosensors due to their advantages, such as cost-effectiveness and easy operation. Here, we discuss the recent developments in sensors and biosensors using electrochemical techniques employed for the determination of biopharmaceuticals, namely monoclonal antibodies (mAb) and fragments of mAbs. In the frame of this information, this review aims to critically address electrochemical sensors and biosensors for the analysis of biopharmaceuticals reported since 2016. Electrochemical bio(sensors) development has been mainly based on gold and aptamers, respectively, as the most used electrode material and biorecognition element. Also, Bevacizumab (BEVA) was the main therapeutic mAb detected and 69% of the works described a (bio)sensor) that can be applied to therapeutic drug monitoring.
Collapse
Affiliation(s)
- Diana R Cunha
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Marcela A Segundo
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - M Beatriz Quinaz
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
3
|
Verscheure L, Vandenheede I, De Rore E, Meersseman M, Hanssens V, Meerschaert K, Stals H, Sandra P, Lynen F, Borgions F, Sandra K. 2D-CEX-FcRn-MS to Study Structure/Function Relation of mAb Charge Variants. Anal Chem 2024; 96:18122-18131. [PMID: 39470991 DOI: 10.1021/acs.analchem.4c04158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The automated elucidation of the interplay between monoclonal antibody (mAb) structure and function using two-dimensional liquid chromatography-mass spectrometry (2D-LC-MS) is reported. Charge variants, induced through forced degradation, are resolved by first-dimension (1D) cation-exchange chromatography (CEX) and subsequently collected in loops installed on a multiple heart-cutting valve prior to transfer to second-dimension (2D) neonatal crystallizable fragment receptor (FcRn) affinity chromatography coupled with MS. As such, binding affinity of the latter mAb variants can elegantly be assessed and a first glimpse of identity provided. To maximize MS sensitivity, charge variants are unfolded upon eluting from the 2D affinity column by postcolumn addition of a denaturing solution. Further structural details, i.e., modification sites and chain distribution, are unraveled by a multidimensional LC-MS (mD-LC-MS) setup incorporating 1D CEX and parallel online middle-up and bottom-up LC-MS analysis in the subsequent dimensions. Identified charge variants could be ranked according to their affinity for FcRn. Binding is predominantly impacted by heavy chain (HC) M253 oxidation and to a lesser extend, M429 oxidation. Oxidation of both HCs more drastically affects FcRn interaction compared to single-chain oxidation, and the more oxidation, the less binding. Other modifications, such as HC glycosylation, HC N385/390, and N326 deamidation or HC C-terminal processing, are not shown to affect binding. The streamlined platform is challenged against the established workflow involving offline collection of charge variants and structural and functional assessment by, respectively, LC-MS and enzyme-linked immunosorbent assay (ELISA). A decent correlation is demonstrated between the binding affinity measured with ELISA and 2D FcRn affinity chromatography. In addition, throughput is improved (7-fold), material requirements are substantially reduced (2 orders of magnitude), and sample preparation artifacts and loss are minimized. With the simultaneous determination of mAb structure and function, the current study takes the concept of multiattribute analysis to the next level, thereby contributing to the future development of safer and more effective antibody therapeutics.
Collapse
Affiliation(s)
- Liesa Verscheure
- RIC group, President Kennedypark 26, Kortrijk B-8500, Belgium
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | | | - Eline De Rore
- RIC group, President Kennedypark 26, Kortrijk B-8500, Belgium
| | | | | | | | - Hilde Stals
- Argenx, Industriepark Zwijnaarde 7, Ghent B-9052, Belgium
| | - Pat Sandra
- RIC group, President Kennedypark 26, Kortrijk B-8500, Belgium
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Filip Borgions
- Argenx, Industriepark Zwijnaarde 7, Ghent B-9052, Belgium
| | - Koen Sandra
- RIC group, President Kennedypark 26, Kortrijk B-8500, Belgium
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| |
Collapse
|
4
|
Sarin D, Kumar S, Rathore AS. Offline Coupling of Hydrophobic Interaction Chromatography-Capillary Zone Electrophoresis for Monitoring Charge-Based Heterogeneity of Recombinant Monoclonal Antibodies. Electrophoresis 2024; 45:1927-1938. [PMID: 39402848 DOI: 10.1002/elps.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 12/22/2024]
Abstract
A holistic understanding of the charge heterogeneity in monoclonal antibodies (mAbs) is paramount for ensuring acceptable product quality. Hence, biotherapeutic manufacturers are expected to thoroughly characterize their products via advanced analytical techniques. Recently, two-dimensional liquid chromatography (2DLC) methods have gained popularity for resolving complex charged species. Capillary electrophoresis (CE) is regarded as a sensitive and faster tool for charged species estimation in biotherapeutics. In this study, we aim to combine the separation power of chromatographic and electrophoretic tools (liquid chromatography [LC]-CE) so as to achieve maximum resolution of mAb charge variants. Hydrophobic interaction chromatography (HIC) has been used as the preferred LC mode with CE for achieving successful separation of both charge and hydrophobic variants for two of the mAbs (trastuzumab and rituximab). The standalone HIC and capillary zone electrophoresis (CZE) methods separated 4 hydrophobic variants and 7 charge variants for each mAb, whereas the 2DLC method separated 10 and 11 variants for mAbs A and B. On the other hand, the HIC-CZE-UV method resolved 29 variants in mAb A and 23 variants in mAb B. The reproducibility of the HIC-CZE-UV method was demonstrated by % change in values of retention time (RT) and peak area as <5% (mAb A), <3% (mAb B), and <12% (for both mAbs), respectively. Thus, the utility of the proposed LC-CE method for characterization of mAb charge variants has been displayed.
Collapse
Affiliation(s)
- Deepika Sarin
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Sunil Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
5
|
Sripada SA, Hosseini M, Ramesh S, Wang J, Ritola K, Menegatti S, Daniele MA. Advances and opportunities in process analytical technologies for viral vector manufacturing. Biotechnol Adv 2024; 74:108391. [PMID: 38848795 DOI: 10.1016/j.biotechadv.2024.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Viral vectors are an emerging, exciting class of biologics whose application in vaccines, oncology, and gene therapy has grown exponentially in recent years. Following first regulatory approval, this class of therapeutics has been vigorously pursued to treat monogenic disorders including orphan diseases, entering hundreds of new products into pipelines. Viral vector manufacturing supporting clinical efforts has spurred the introduction of a broad swath of analytical techniques dedicated to assessing the diverse and evolving panel of Critical Quality Attributes (CQAs) of these products. Herein, we provide an overview of the current state of analytics enabling measurement of CQAs such as capsid and vector identities, product titer, transduction efficiency, impurity clearance etc. We highlight orthogonal methods and discuss the advantages and limitations of these techniques while evaluating their adaptation as process analytical technologies. Finally, we identify gaps and propose opportunities in enabling existing technologies for real-time monitoring from hardware, software, and data analysis viewpoints for technology development within viral vector biomanufacturing.
Collapse
Affiliation(s)
- Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Mahshid Hosseini
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Srivatsan Ramesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Junhyeong Wang
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Kimberly Ritola
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Neuroscience Center, Brain Initiative Neurotools Vector Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Biomanufacturing Training and Education Center, North Carolina State University, 890 Main Campus Dr, Raleigh, NC 27695, USA.
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA.
| |
Collapse
|
6
|
Kim HS, Kim YI, Cho JY. ARID3C Acts as a Regulator of Monocyte-to-Macrophage Differentiation Interacting with NPM1. J Proteome Res 2024; 23:2882-2892. [PMID: 38231884 PMCID: PMC11302414 DOI: 10.1021/acs.jproteome.3c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
ARID3C is a protein located on human chromosome 9 and expressed at low levels in various organs, yet its biological function has not been elucidated. In this study, we investigated both the cellular localization and function of ARID3C. Employing a combination of LC-MS/MS and deep learning techniques, we identified NPM1 as a binding partner for ARID3C's nuclear shuttling. ARID3C was found to predominantly localize with the nucleus, where it functioned as a transcription factor for genes STAT3, STAT1, and JUNB, thereby facilitating monocyte-to-macrophage differentiation. The precise binding sites between ARID3C and NPM1 were predicted by AlphaFold2. Mutating this binding site prevented ARID3C from interacting with NPM1, resulting in its retention in the cytoplasm instead of translocation to the nucleus. Consequently, ARID3C lost its ability to bind to the promoters of target genes, leading to a loss of monocyte-to-macrophage differentiation. Collectively, our findings indicate that ARID3C forms a complex with NPM1 to translocate to the nucleus, acting as a transcription factor that promotes the expression of the genes involved in monocyte-to-macrophage differentiation.
Collapse
Affiliation(s)
- Hui-Su Kim
- Department
of Biochemistry, College of Veterinary Medicine, Research Institute
for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading
Education and Research Center, Seoul National
University, Seoul 08826, Republic of Korea
- Comparative
Medicine Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-In Kim
- Department
of Biochemistry, College of Veterinary Medicine, Research Institute
for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading
Education and Research Center, Seoul National
University, Seoul 08826, Republic of Korea
- Comparative
Medicine Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul 08826, Republic of Korea
| | - Je-Yoel Cho
- Department
of Biochemistry, College of Veterinary Medicine, Research Institute
for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading
Education and Research Center, Seoul National
University, Seoul 08826, Republic of Korea
- Comparative
Medicine Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Murphy A, Hill R, Berna M. Bioanalytical approaches to support the development of antibody-oligonucleotide conjugate (AOC) therapeutic proteins. Xenobiotica 2024; 54:552-562. [PMID: 38607350 DOI: 10.1080/00498254.2024.2339983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
RNA interference (RNAi) is a biological process that evolved to protect eukaryotic organisms from foreign genes delivered by viruses. This process has been adapted as a powerful tool to treat numerous diseases through the delivery of small-interfering RNAs (siRNAs) to target cells to alter aberrant gene expression.Antibody-oligonucleotide conjugates (AOCs) are monoclonal antibodies with complexed siRNA or antisense oligonucleotides (ASOs) that have emerged to address some of the challenges faced by naked or chemically conjugated siRNA, which include rapid clearance from systemic circulation and lack of selective delivery of siRNA to target cells.It is essential to characterise the ADME properties of an AOC during development to optimise distribution to target tissues, to minimise the impact of biotransformation on exposure, and to characterise the PK/PD relationship to guide translation. However, owing to the complexity of AOC structure, this presents significant bioanalytical challenges, and multiple bioanalytical measurements are required to investigate the pharmacokinetics and biotransformation of the antibody, linker, and siRNA payload.In this paper, we describe an analytical workflow that details in vivo characterisation of AOCs through measurement of their distinct molecular components to provide the basis for greater understanding of their ADME properties. Although the approaches herein can be applied to in vitro characterisation of AOCs, this paper will focus on in vivo applications. This workflow relies on high-resolution mass spectrometry as the principal means of detection and leverages chromatographic, affinity-based, and enzymatic sample preparation steps.
Collapse
Affiliation(s)
- Anthony Murphy
- Investigative ADME/Toxicology and Bioanalytical Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - Ryan Hill
- Investigative ADME/Toxicology and Bioanalytical Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - Michael Berna
- Investigative ADME/Toxicology and Bioanalytical Research, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
8
|
Verscheure L, Detremmerie S, Stals H, De Vos J, Sandra P, Lynen F, Borgions F, Sandra K. Multidimensional LC-MS with 1D multi-method option and parallel middle-up and bottom-up MS acquisition for in-depth characterization of antibodies. J Chromatogr A 2024; 1726:464947. [PMID: 38724406 DOI: 10.1016/j.chroma.2024.464947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Monoclonal antibodies (mAbs) are large and highly heterogeneous species typically characterized using a plethora of analytical methodologies. There is a trend within the biopharmaceutical industry to combine several of these methods in one analytical platform to simultaneously assess multiple structural attributes. Here, a protein analyzer for the fully automated middle-up and bottom-up liquid chromatography-mass spectrometry (LC-MS) analysis of charge, size and hydrophobic variants is described. The multidimensional set-up combines a multi-method option in the first dimension (1D) (choice between size exclusion - SEC, cation exchange - CEX or hydrophobic interaction chromatography - HIC) with second dimension (2D) on-column reversed-phase (RPLC) based desalting, denaturation and reduction prior to middle-up LC-MS analysis of collected 1D peaks and parallel on-column trypsin digestion of denatured and reduced peaks in the third dimension (3D) followed by bottom-up LC-MS analysis in the fourth dimension (4D). The versatile and comprehensive workflow is applied to the characterization of charge, hydrophobic and size heterogeneities associated with an engineered Fc fragment and is complemented with hydrogen-deuterium exchange (HDX) MS and FcRn affinity chromatography - native MS to explain observations in a structural/functional context.
Collapse
Affiliation(s)
- Liesa Verscheure
- RIC group, President Kennedypark 6, 8500 Kortrijk, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | | | - Hilde Stals
- Argenx, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium
| | - Jelle De Vos
- RIC group, President Kennedypark 6, 8500 Kortrijk, Belgium
| | - Pat Sandra
- RIC group, President Kennedypark 6, 8500 Kortrijk, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | | | - Koen Sandra
- RIC group, President Kennedypark 6, 8500 Kortrijk, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium.
| |
Collapse
|
9
|
Khalikova M, Jireš J, Horáček O, Douša M, Kučera R, Nováková L. What is the role of current mass spectrometry in pharmaceutical analysis? MASS SPECTROMETRY REVIEWS 2024; 43:560-609. [PMID: 37503656 DOI: 10.1002/mas.21858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
The role of mass spectrometry (MS) has become more important in most application domains in recent years. Pharmaceutical analysis is specific due to its stringent regulation procedures, the need for good laboratory/manufacturing practices, and a large number of routine quality control analyses to be carried out. The role of MS is, therefore, very different throughout the whole drug development cycle. While it dominates within the drug discovery and development phase, in routine quality control, the role of MS is minor and indispensable only for selected applications. Moreover, its role is very different in the case of analysis of small molecule pharmaceuticals and biopharmaceuticals. Our review explains the role of current MS in the analysis of both small-molecule chemical drugs and biopharmaceuticals. Important features of MS-based technologies being implemented, method requirements, and related challenges are discussed. The differences in analytical procedures for small molecule pharmaceuticals and biopharmaceuticals are pointed out. While a single method or a small set of methods is usually sufficient for quality control in the case of small molecule pharmaceuticals and MS is often not indispensable, a large panel of methods including extensive use of MS must be used for quality control of biopharmaceuticals. Finally, expected development and future trends are outlined.
Collapse
Affiliation(s)
- Maria Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Jakub Jireš
- Department of Analytical Chemistry, Faculty of Chemical Engineering, UCT Prague, Prague, Czech Republic
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Ondřej Horáček
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Michal Douša
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Radim Kučera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
10
|
Bouvarel T, Camperi J, Guillarme D. Multi-dimensional technology - Recent advances and applications for biotherapeutic characterization. J Sep Sci 2024; 47:e2300928. [PMID: 38471977 DOI: 10.1002/jssc.202300928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 03/14/2024]
Abstract
This review provides an overview of the latest advancements and applications in multi-dimensional liquid chromatography coupled with mass spectrometry (mD-LC-MS), covering aspects such as inter-laboratory studies, digestion strategy, trapping column, and multi-level analysis. The shift from an offline to an online workflow reduces sample processing artifacts, analytical variability, analysis time, and the labor required for data acquisition. Over the past few years, this technique has demonstrated sufficient maturity for application across a diverse range of complex products. Moreover, there is potential for this strategy to evolve into an integrated process analytical technology tool for the real-time monitoring of monoclonal antibody quality. This review also identifies emerging trends, including its application to new modalities, the possibility of evaluating biological activity within the mD-LC set-up, and the consideration of multi-dimensional capillary electrophoresis as an alternative to mD-LC. As mD-LC-MS continues to evolve and integrate emerging trends, it holds the potential to shape the next generation of analytical tools, offering exciting possibilities for enhanced characterization and monitoring of complex biopharmaceutical products.
Collapse
Affiliation(s)
- Thomas Bouvarel
- Protein Analytical Chemistry, Genentech, South San Francisco, California, USA
| | - Julien Camperi
- Cell Therapy Engineering and Development, Genentech, South San Francisco, California, USA
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Sadighi R, de Kleijne V, Wouters S, Lubbers K, Somsen GW, Gargano AFG, Haselberg R. Online multimethod platform for comprehensive characterization of monoclonal antibodies in cell culture fluid from a single sample injection - Intact protein workflow. Anal Chim Acta 2024; 1287:342074. [PMID: 38182339 DOI: 10.1016/j.aca.2023.342074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Therapeutic monoclonal antibodies (mAbs) comprise a large structural variability with respect to charge, size and post-translational modifications. These critical quality attributes (CQAs) need to be assessed during and after the production of mAbs. This normally requires off-line purification and sample preparation as well as several chromatographic selectivities, which makes the whole process time-consuming and error-prone. To improve on this, we developed an integrated and automated multi-dimensional analytical platform for the simultaneous assessment of multiple CQAs of mAbs in cell culture fluid (CCF) from upstream processes. RESULTS The on-line system allows mAb characterization at the intact level, combining protein A affinity chromatography (ProtA) with size-exclusion, ion-exchange, and reversed-phase liquid chromatographic modes with UV and mass spectrometric detection. Multiple heart cuts of a single mAb elution band from ProtA are stored in 20-μL loops and successively sent to the multimethod options in the second dimension. ProtA loading and elution conditions and their compatibility with second-dimension LC modes were studied and optimized. Subsequently, heart-cutting and valve-switching schemes were investigated to achieve effective and reproducible analyses. The applicability of the developed workflow was demonstrated by the direct analysis (i.e. not requiring off-line sample preparation) of a therapeutic mAb in CCF, obtaining useful information on accurate molecular mass, glycosylation, and charge and size variants of the mAb product at the same time and in just over 1 h. SIGNIFICANCE The developed multidimensional platform is the first system that allows for multiple fractions from a single ProtA band to be characterized using different chromatographic selectivities in a single run allowing direct correlation between CQAs. The performance of the system is comparable to established off-line methods, fully compatible with upstream process samples, and provides a significant time-reduction of the characterization procedure.
Collapse
Affiliation(s)
- Raya Sadighi
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands; Centre for Analytical Sciences, Amsterdam, the Netherlands.
| | - Vera de Kleijne
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Sam Wouters
- Agilent Technologies, Hewlett-Packard-Str. 8, Waldbronn, 76337, Germany
| | - Karin Lubbers
- Polpharma Biologics Utrecht B.V., Yalelaan 46, 3584 CM, Utrecht, the Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands; Centre for Analytical Sciences, Amsterdam, the Netherlands
| | - Andrea F G Gargano
- Centre for Analytical Sciences, Amsterdam, the Netherlands; Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94720, 1090 GE, Amsterdam, the Netherlands
| | - Rob Haselberg
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands; Centre for Analytical Sciences, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Ali S, Ekbbal R, Salar S, Yasheshwar, Ali SA, Jaiswal AK, Singh M, Yadav DK, Kumar S, Gaurav. Quality Standards and Pharmacological Interventions of Natural Oils: Current Scenario and Future Perspectives. ACS OMEGA 2023; 8:39945-39963. [PMID: 37953833 PMCID: PMC10635672 DOI: 10.1021/acsomega.3c05241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023]
Abstract
Medicinal plants are rich sources of natural oils such as essential and fixed oils used traditionally for nutritive as well as medicinal purposes. Most of the traditional formulations or phytopharmaceutical formulations contain oil as the main ingredient due to their own therapeutic applications and thus mitigating several pathogeneses such as fungal/bacterial/viral infection, gout, psoriasis, analgesic, antioxidant, skin infection, etc. Due to the lack of quality standards and progressive adulteration in the natural oils, their therapeutic efficacy is continuously deteriorated. To develop quality standards and validate scientific aspects on essential oils, several chromatographic and spectroscopic techniques such as HPTLC, HPLC, NMR, LC-MS, and GC-MS have been termed as the choices of techniques for better exploration of metabolites, hence sustaining the authenticity of the essential oils. In this review, chemical profiling and quality control aspects of essential or fixed oils have been explored from previously reported literature in reputed journals. Methods of chemical profiling, possible identified metabolites in essential oils, and their therapeutic applications have been described. The outcome of the review reveals that GC-MS/MS, LC-MS/MS, and NMR-based chromatographic and spectroscopic techniques are the most liable, economic, precise, and accurate techniques for determining the spuriousness or adulteration of oils based on their qualitative and quantitative chemical profiling studies. This review occupies the extensive information about the quality standards of several oils obtained from natural sources for their regulatory aspects via providing the detailed methods used in chemoprofiling techniques. Hence, this review helps researchers in further therapeutic exploration as well as quality-based standardization for their regulatory purpose.
Collapse
Affiliation(s)
- Shadab Ali
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Rustam Ekbbal
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Sapna Salar
- BBDIT
College of Pharmacy, Ghaziabad, Uttar Pradesh 201206, India
| | - Yasheshwar
- Department
of Botany, Acharya Narendra Dev College
(University of Delhi), Govindpuri,
Kalkaji, New Delhi 110019, India
| | - Sayad Ahad Ali
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Aakash Kumar Jaiswal
- School
of Pharmaceutical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Mhaveer Singh
- Pharmacy
Academy, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Dinesh Kumar Yadav
- Department
of Pharmacognosy, SGT College of Pharmacy, SGT University, Gurugram, Haryana 122505, India
| | - Santosh Kumar
- Department
of Botany, Maharaja Bijli Paasi Government
Post Graduate College, Sector M, Ashiyana, Lucknow, Uttar Pradesh 226012, India
| | - Gaurav
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| |
Collapse
|
13
|
Li X. Recent applications of quantitative mass spectrometry in biopharmaceutical process development and manufacturing. J Pharm Biomed Anal 2023; 234:115581. [PMID: 37494866 DOI: 10.1016/j.jpba.2023.115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Biopharmaceutical products have seen rapid growth over the past few decades and continue to dominate the global pharmaceutical market. Aligning with the quality by design (QbD) framework and realization, recent advances in liquid chromatography-mass spectrometry (LC-MS) instrumentation and related techniques have enhanced biopharmaceutical characterization capabilities and have supported an increased development of biopharmaceutical products. Beyond its routine qualitative characterization, the quantitative feature of LC-MS has unique applications in biopharmaceutical process development and manufacturing. This review describes the recent applications and implications of the advancement of quantitative MS methods in biopharmaceutical process development, and characterization of biopharmaceutical product, product-related variants, and process-related impurities. We also provide insights on the emerging applications of quantitative MS in the lifecycle of biopharmaceutical product development including quality control in the Good Manufacturing Practice (GMP) environment and process analytical technology (PAT) practices during process development and manufacturing. Through collaboration with instrument and software vendors and regulatory agencies, we envision broader adoption of phase-appropriate quantitative MS-based methods for the analysis of biopharmaceutical products, which in turn has the potential to enable manufacture of higher quality products for patients.
Collapse
Affiliation(s)
- Xuanwen Li
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA.
| |
Collapse
|
14
|
Kumar S, Savane TS, Rathore AS. Multiattribute Monitoring of Aggregates and Charge Variants of Monoclonal Antibody through Native 2D-SEC-MS-WCX-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37327380 DOI: 10.1021/jasms.2c00325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Monitoring of critical quality attributes such as size and charge-related heterogeneities is essential for biopharmaceutical manufacturers. Size-exclusion chromatography (SEC) is the preferred analytical technique for the quantification of aggregates and fragments in the product, whereas weak-cation exchange chromatography (WCX) is widely used for the characterization of charge variants of biotherapeutic products, in particular monoclonal antibodies (mAbs). Multiattribute monitoring offers the ability to monitor these attributes in a single run flow using two-dimensional liquid chromatography (2D-LC). Typically, in this approach, only the second-dimension samples are directly analyzed through mass spectrometry, as the first dimension has limitations concerning direct coupling with mass spectrometry. In the present study, a novel 2D-SEC-MS/WCX-MS workflow has been proposed, in which chromatography of both dimensions (D1 and D2) was directly coupled with mass spectrometry, through which size-related and charge-related variants of monoclonal antibody mAb A were analyzed simultaneously in their native form. In comparison to stand-alone SEC and WCX methods, this method enables simultaneous analysis of size and charge variants in a single workflow without manual intervention, allowing analysis of low abundant variants. Further, this method has 75% less sample requirement and a shorter analysis time (25 min vs 90 min) when size and charge variants were analyzed individually. The proposed native 2D-LC-MS workflow was used to analyze a stressed sample of mAb A, in which D1 analysis revealed the presence of aggregates (8-20%), which were primarily dimers, whereas D2 analysis showed an increment in acidic variants (9-21%).
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Tushar Sharad Savane
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
15
|
Moises JE, Regl C, Hinterholzer A, Huber CG, Schubert M. Unambiguous Identification of Glucose-Induced Glycation in mAbs and other Proteins by NMR Spectroscopy. Pharm Res 2023; 40:1341-1353. [PMID: 36510116 PMCID: PMC10338404 DOI: 10.1007/s11095-022-03454-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Glycation is a non-enzymatic and spontaneous post-translational modification (PTM) generated by the reaction between reducing sugars and primary amine groups within proteins. Because glycation can alter the properties of proteins, it is a critical quality attribute of therapeutic monoclonal antibodies (mAbs) and should therefore be carefully monitored. The most abundant product of glycation is formed by glucose and lysine side chains resulting in fructoselysine after Amadori rearrangement. In proteomics, which routinely uses a combination of chromatography and mass spectrometry to analyze PTMs, there is no straight-forward way to distinguish between glycation products of a reducing monosaccharide and an additional hexose within a glycan, since both lead to a mass difference of 162 Da. METHODS To verify that the observed mass change is indeed a glycation product, we developed an approach based on 2D NMR spectroscopy spectroscopy and full-length protein samples denatured using high concentrations of deuterated urea. RESULTS The dominating β-pyranose form of the Amadori product shows a characteristic chemical shift correlation pattern in 1H-13C HSQC spectra suited to identify glucose-induced glycation. The same pattern was observed in spectra of a variety of artificially glycated proteins, including two mAbs, as well as natural proteins. CONCLUSION Based on this unique correlation pattern, 2D NMR spectroscopy can be used to unambiguously identify glucose-induced glycation in any protein of interest. We provide a robust method that is orthogonal to MS-based methods and can also be used for cross-validation.
Collapse
Affiliation(s)
- Jennifer E Moises
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Christof Regl
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Arthur Hinterholzer
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Christian G Huber
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Mario Schubert
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.
| |
Collapse
|
16
|
Bhattacharya S, Joshi S, Rathore AS. A native multi-dimensional monitoring workflow for at-line characterization of mAb titer, size, charge, and glycoform heterogeneities in cell culture supernatant. J Chromatogr A 2023; 1696:463983. [PMID: 37054641 DOI: 10.1016/j.chroma.2023.463983] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
With growing maturity of the biopharmaceutical industry, new modalities entering the therapeutic design space and increasing complexity of formulations such as combination therapy, the demands and requirements on analytical workflows have also increased. A recent evolution in newer analytical workflows is that of multi-attribute monitoring workflows designed on chromatography-mass spectrometry (LC-MS) platform. In comparison to traditional one attribute per workflow paradigm, multi-attribute workflows are designed to monitor multiple critical quality attributes through a single workflow, thus reducing the overall time to information and increasing efficiency and throughput. While the 1st generation multi-attribute workflows focused on bottom-up characterization following peptide digestion, the more recent workflows have been focussing on characterization of intact biologics, preferably in native state. So far intact multi-attribute monitoring workflows suitable for comparability, utilizing single dimension chromatography coupled with MS have been published. In this study, we describe a native multi-dimensional multi-attribute monitoring workflow for at-line characterization of monoclonal antibody (mAb) titer, size, charge, and glycoform heterogeneities directly in cell culture supernatant. This has been achieved through coupling ProA in series with size exclusion chromatography in 1st dimension followed by cation exchange chromatography in the 2nd dimension. Intact paired glycoform characterization has been achieved through coupling 2D-LC with q-ToF-MS. The workflow with a single heart cut can be completed in 25 mins and utilizes 2D-liquid chromatography (2D-LC) to maximize separation and monitoring of titer, size as well as charge variants.
Collapse
Affiliation(s)
- Sanghati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Srishti Joshi
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
17
|
Schlecht J, Jooß K, Moritz B, Kiessig S, Neusüß C. Two-Dimensional Capillary Zone Electrophoresis-Mass Spectrometry: Intact mAb Charge Variant Separation Followed by Peptide Level Analysis Using In-Capillary Digestion. Anal Chem 2023; 95:4059-4066. [PMID: 36800441 DOI: 10.1021/acs.analchem.2c04578] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Characterization of charge heterogeneity is an essential pillar for pharmaceutical development and quality control of therapeutic monoclonal antibodies (mAbs). The highly selective and commonly applied capillary zone electrophoresis (CZE) method containing high amounts of ε-aminocaproic acid (EACA) provides a detailed and robust charge heterogeneity profile of intact mAb variants. Nevertheless, the exact location of protein modifications within these charge profiles remains ambiguous. Electrospray ionization mass spectrometry (ESI-MS) is a promising tool for this purpose; however, EACA is incompatible with electrospray. In this context, we present a two-dimensional CZE-CZE-MS system to combine efficient charge variant separation of intact mAbs with subsequent peptide analysis after in-capillary digestion of selected charge variants. The first dimension is based on a generic CZE(EACA) method in a fused silica capillary. In the second dimension, a neutral-coated capillary is used for in-capillary reduction and digestion with Tris(2-carboxyethyl)phosphine (TCEP) and pepsin, followed by CZE separation and MS/MS-characterization of the resulting peptides. The setup is demonstrated using stressed and nonstressed mAbs where peaks of basic, main, and acidic variants were transferred in a heart-cut fashion, digested, and characterized on the peptide level. Sequence coverages of more than 90% were obtained for heavy chain (HC) and light chain (LC) for four different mAbs, including low-abundance variants (<2% of the main peak). Frequently observed modifications (deamidation, oxidation, etc.) could be detected and localized. This study demonstrates a proof-of-concept for identification and localization of protein modifications from CZE charge heterogeneity profiles and, in this way, is expected to support the development and quality control testing of protein pharmaceuticals.
Collapse
Affiliation(s)
- Johannes Schlecht
- Department of Chemistry, Aalen University, Beethovenstrasse 1, 73430 Aalen, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kevin Jooß
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Bernd Moritz
- F. Hoffmann La-Roche Ltd., Grenzacherstraße 124, 4058 Basel, Switzerland
| | - Steffen Kiessig
- F. Hoffmann La-Roche Ltd., Grenzacherstraße 124, 4058 Basel, Switzerland
| | - Christian Neusüß
- Department of Chemistry, Aalen University, Beethovenstrasse 1, 73430 Aalen, Germany
| |
Collapse
|
18
|
Lambiase G, Klottrup-Rees K, Lovelady C, Ali S, Shepherd S, Muroni M, Lindo V, James DC, Dickman MJ. An automated, low volume, and high-throughput analytical platform for aggregate quantitation from cell culture media. J Chromatogr A 2023; 1691:463809. [PMID: 36731329 DOI: 10.1016/j.chroma.2023.463809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
High throughput screening methods have driven a paradigm shift in biopharmaceutical development by reducing the costs of good manufactured (COGM) and accelerate the launch to market of novel drug products. Scale-down cell culture systems such as shaken 24- and 96-deep-well plates (DWPs) are used for initial screening of hundreds of recombinant mammalian clonal cell lines to quickly and efficiently select the best producing strains expressing product quality attributes that fit to industry platform. A common modification monitored from early-stage product development is protein aggregation due to its impact on safety and efficacy. This study aims to integrate high-throughput analysis of aggregation-prone therapeutic proteins with 96-deep well plate screening to rank clones based on the aggregation levels of the expressed proteins. Here we present an automated, small-scale analytical platform workflow combining the purification and subsequent aggregation analysis of protein biopharmaceuticals expressed in 96-DWP cell cultures. Product purification was achieved by small-scale solid-phase extraction using dual flow chromatography (DFC) automated on a robotic liquid handler for the parallel processing of up to 96 samples at a time. At-line coupling of size-exclusion chromatography (SEC) using a 2.1 mm ID column enabled the detection of aggregates with sub-2 µg sensitivity and a 3.5 min run time. The entire workflow was designed as an application to aggregation-prone mAbs and "mAb-like" next generation biopharmaceuticals, such as bispecific antibodies (BsAbs). Application of the high-throughput analytical workflow to a shake plate overgrow (SPOG) screen, enabled the screening of 384 different clonal cell lines in 32 h, requiring < 2 μg of protein per sample. Aggregation levels expressed by the clones varied between 9 and 76%. This high-throughput analytical workflow allowed for the early elimination of clonal cell lines with high aggregation, demonstrating the advantage of integrating analytical testing for critical quality attributes (CQAs) earlier in product development to drive better decision making.
Collapse
Affiliation(s)
- Giulia Lambiase
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, UK; Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Kerensa Klottrup-Rees
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, AstraZeneca, Cambridge, UK
| | - Clare Lovelady
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, AstraZeneca, Cambridge, UK
| | - Salma Ali
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, AstraZeneca, Cambridge, UK
| | - Samuel Shepherd
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Maurizio Muroni
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Vivian Lindo
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK.
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, UK.
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, UK.
| |
Collapse
|
19
|
Mayr K, Weindl T, Gärtner A, Camperi J, Maetzke T, Förster M, Nachtigall T, Steiner F, Vogt A, Hosp F, Mølhøj M. Novel Multidimensional Liquid Chromatography Workflow with In-Loop Enzymatic Digests of Multiple Heart-Cuts for Fast and Flexible Characterization of Biotherapeutic Protein Variants. Anal Chem 2023; 95:3629-3637. [PMID: 36745752 DOI: 10.1021/acs.analchem.2c04467] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multidimensional liquid chromatography (mD-LC) is becoming a powerful tool for complete characterization of individual peaks and protein variants through separation methods such as nondenaturing ion exchange (IEC) or size-exclusion chromatography coupled to reversed-phase (RP) chromatography. The flexibility of commercially available and customized mD-LC systems is still limited in terms of enzymatic peak processing between chromatographic dimensions. In this regard, only a few column-immobilized proteases are available for detailed peak characterization by mD-LC coupled to mass spectrometry (mD-LC-MS). Here, we present a purpose-built and automated multiple heart-cutting mD-LC design with a novel analytical workflow involving in-loop enzymatic heart-cut digestion between the first-dimensional column and transfer to the second dimension before MS or MS/MS analyses. The setup facilitates the spike-in of any enzyme to multiple heart-cuts for multilevel analysis, for example, for peptide mapping, fragment generation, or deglycosylation, to reduce heterogeneity and provide maximum flexibility in terms of incubation time for optimal peak characterization. We demonstrate the application of IEC coupled to RP-LC-MS and automated in-loop deglycosylation and on-column reduction of an IgG antibody combined with upper hinge region cleavage for Fab generation. We further employ mD-LC-MS and mD-LC-MS/MS to assess post-translational modifications of a bispecific antibody and to support molecule selection by evaluating the best downstream purification strategy. The novel design and automated workflow of the mD-LC system described here offers enhanced flexibility for in-solution processing and real-time monitoring of multiple heart-cuts enabling streamlined characterization of unknown biotherapeutic charge and size variants.
Collapse
Affiliation(s)
- Kilian Mayr
- Large Molecule Research, Roche Innovation Center Munich, Roche Pharma Research and Early Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Thomas Weindl
- Large Molecule Research, Roche Innovation Center Munich, Roche Pharma Research and Early Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Achim Gärtner
- Large Molecule Research, Roche Innovation Center Munich, Roche Pharma Research and Early Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Julien Camperi
- Cell Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California, 94080, United States
| | - Thomas Maetzke
- HPLConsult GmbH, Bergmattenweg 16, CH-4148 Pfeffingen, Switzerland
| | - Markus Förster
- Thermo Fisher Scientific GmbH, Im Steingrund 4-6, 63303 Dreieich, Germany
| | - Thomas Nachtigall
- Thermo Fisher Scientific GmbH, Im Steingrund 4-6, 63303 Dreieich, Germany
| | - Frank Steiner
- Thermo Fisher Scientific GmbH, Im Steingrund 4-6, 63303 Dreieich, Germany
| | - Annette Vogt
- Large Molecule Research, Roche Innovation Center Munich, Roche Pharma Research and Early Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Fabian Hosp
- Large Molecule Research, Roche Innovation Center Munich, Roche Pharma Research and Early Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Michael Mølhøj
- Large Molecule Research, Roche Innovation Center Munich, Roche Pharma Research and Early Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| |
Collapse
|
20
|
Alhazmi HA, Albratty M. Analytical Techniques for the Characterization and Quantification of Monoclonal Antibodies. Pharmaceuticals (Basel) 2023; 16:291. [PMID: 37259434 PMCID: PMC9967501 DOI: 10.3390/ph16020291] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 08/12/2023] Open
Abstract
Monoclonal antibodies (mAbs) are a fast-growing class of biopharmaceuticals. They are widely used in the identification and detection of cell makers, serum analytes, and pathogenic agents, and are remarkably used for the cure of autoimmune diseases, infectious diseases, or malignancies. The successful application of therapeutic mAbs is based on their ability to precisely interact with their appropriate target sites. The precision of mAbs rely on the isolation techniques delivering pure, consistent, stable, and safe lots that can be used for analytical, diagnostic, or therapeutic applications. During the creation of a biologic, the key quality features of a particular mAb, such as structure, post-translational modifications, and activities at the biomolecular and cellular levels, must be characterized and profiled in great detail. This implies the requirement of powerful state of the art analytical techniques for quality control and characterization of mAbs. Until now, various analytical techniques have been developed to characterize and quantify the mAbs according to the regulatory guidelines. The present review summarizes the major techniques used for the analyses of mAbs which include chromatographic, electrophoretic, spectroscopic, and electrochemical methods in addition to the modifications in these methods for improving the quality of mAbs. This compilation of major analytical techniques will help students and researchers to have an overview of the methodologies employed by the biopharmaceutical industry for structural characterization of mAbs for eventual release of therapeutics in the drug market.
Collapse
Affiliation(s)
- Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
21
|
Kuhne F, Heinrich K, Winter M, Fichtl J, Hoffmann G, Zähringer F, Spitzauer K, Meier M, Khan TA, Bonnington L, Wagner K, Stracke JO, Reusch D, Wegele H, Mormann M, Bulau P. Identification of Hetero-aggregates in Antibody Co-formulations by Multi-dimensional Liquid Chromatography Coupled to Mass Spectrometry. Anal Chem 2023; 95:2203-2212. [PMID: 36669833 PMCID: PMC9893218 DOI: 10.1021/acs.analchem.2c03099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
Antibody combination therapies have become viable therapeutic treatment options for certain severe diseases such as cancer. The co-formulation production approach is intrinsically associated with more complex drug product variant profiles and creates more challenges for analytical control of drug product quality. In addition to various individual quality attributes, those arising from the interactions between the antibodies also potentially emerge through co-formulation. In this study, we describe the development of a widely applicable multi-dimensional liquid chromatography coupled to tandem mass spectrometry method for antibody homo- versus hetero-aggregate characterization. The co-formulation of trastuzumab and pertuzumab was used, a challenging model system, comprising two monoclonal antibodies with very similar physicochemical properties. The data presented demonstrate the high stability of the co-formulation, where only minor aggregate formation is observed upon product storage and accelerated temperature or light-stress conditions. The results also show that the homo- and hetero-aggregates, formed in low and comparable proportions, are only marginally impacted by the formulation and product storage conditions. No preferential formation of hetero-aggregates, in comparison to the already existing pertuzumab and trastuzumab homo-aggregates, was observed.
Collapse
Affiliation(s)
- Felix Kuhne
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
- Institute
of Hygiene, University of Münster, Robert-Koch-Strasse 41, 48149 Münster, Germany
| | - Katrin Heinrich
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Martin Winter
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Jürgen Fichtl
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Gabriel Hoffmann
- Pharma
Technical Development, F. Hoffmann-La Roche
Ltd., 4070 Basel, Switzerland
| | - Franziska Zähringer
- Pharma
Technical Development, F. Hoffmann-La Roche
Ltd., 4070 Basel, Switzerland
| | - Katharina Spitzauer
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Monika Meier
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Tarik A. Khan
- Pharma
Technical Development, F. Hoffmann-La Roche
Ltd., 4070 Basel, Switzerland
| | - Lea Bonnington
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Katharina Wagner
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Jan Olaf Stracke
- Pharma
Technical Development, F. Hoffmann-La Roche
Ltd., 4070 Basel, Switzerland
| | - Dietmar Reusch
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Harald Wegele
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Michael Mormann
- Institute
of Hygiene, University of Münster, Robert-Koch-Strasse 41, 48149 Münster, Germany
| | - Patrick Bulau
- Pharma
Technical Development, F. Hoffmann-La Roche
Ltd., 4070 Basel, Switzerland
| |
Collapse
|
22
|
Grunert I, Heinrich K, Hingar M, Ernst J, Winter M, Bomans K, Wagner K, Fevre A, Reusch D, Wuhrer M, Bulau P. Comprehensive Multidimensional Liquid Chromatography-Mass Spectrometry for the Characterization of Charge Variants of a Bispecific Antibody. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2319-2327. [PMID: 36442848 PMCID: PMC9732868 DOI: 10.1021/jasms.2c00296] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Identification and further characterization of antibody charge variants is a crucial step during biopharmaceutical drug development, particularly with regard to the increasing complexity of novel antibody formats. As a standard analytical approach, manual offline fractionation of charge variants by cation-exchange chromatography followed by comprehensive analytical testing is applied. These conventional workflows are time-consuming and labor-intensive and overall reach their limits in terms of chromatographic separation of enhanced structural heterogeneities raised from new antibody formats. For these reasons, we aimed to develop an alternative online characterization strategy for charge variant characterization of a therapeutic bispecific antibody by online mD-LC-MS at middle-up (2D-LC-MS) and bottom-up (4D-LC-MS) level. Using the implemented online mD-LC-MS approach, all medium- and even low-abundant product variants previously identified by offline fraction experiments and liquid chromatography mass spectrometry could be monitored. The herein reported automated online mD-LC-MS methodology therefore represents a complementary and in part alternative approach for analytical method validation including multiattribute monitoring (MAM) strategies by mass spectrometry, offering various benefits including increased throughput and reduced sample handling and combined protein information at intact protein and peptide level.
Collapse
Affiliation(s)
- Ingrid Grunert
- Pharma
Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Katrin Heinrich
- Pharma
Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Michael Hingar
- Pharma
Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Juliane Ernst
- Pharma
Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Martin Winter
- Pharma
Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Katrin Bomans
- Pharma
Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Katharina Wagner
- Pharma
Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Arnaud Fevre
- Pharma
Technical Development, Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Dietmar Reusch
- Pharma
Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2333 Leiden, The Netherlands
| | - Patrick Bulau
- Pharma
Technical Development, Hoffmann-La Roche, 4070 Basel, Switzerland
| |
Collapse
|
23
|
Liu YD, Cadang L, Bol K, Pan X, Tschudi K, Jazayri M, Camperi J, Michels D, Stults J, Harris RJ, Yang F. Challenges and Strategies for a Thorough Characterization of Antibody Acidic Charge Variants. Bioengineering (Basel) 2022; 9:641. [PMID: 36354552 PMCID: PMC9687119 DOI: 10.3390/bioengineering9110641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 09/02/2023] Open
Abstract
Heterogeneity of therapeutic Monoclonal antibody (mAb) drugs are due to protein variants generated during the manufacturing process. These protein variants can be critical quality attributes (CQAs) depending on their potential impact on drug safety and/or efficacy. To identify CQAs and ensure the drug product qualities, a thorough characterization is required but challenging due to the complex structure of biotherapeutics. Past characterization studies for basic and acidic variants revealed that full characterizations were limited to the basic charge variants, while the quantitative measurements of acidic variants left gaps. Consequently, the characterization and quantitation of acidic variants are more challenging. A case study of a therapeutic mAb1 accounted for two-thirds of the enriched acidic variants in the initial characterization study. This led to additional investigations, closing the quantification gaps of mAb1 acidic variants. This work demonstrates that a well-designed study with the right choices of analytical methods can play a key role in characterization studies. Thus, the updated strategies for more complete antibody charge variant characterization are recommended.
Collapse
Affiliation(s)
- Y. Diana Liu
- Pharma Technical Development, Genentech/Roche, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | - Feng Yang
- Pharma Technical Development, Genentech/Roche, South San Francisco, CA 94080, USA
| |
Collapse
|
24
|
Identification of a monoclonal antibody clipping variant by cross-validation using capillary electrophoresis – sodium dodecyl sulfate, capillary zone electrophoresis – mass spectrometry and capillary isoelectric focusing – mass spectrometry. J Chromatogr A 2022; 1684:463560. [DOI: 10.1016/j.chroma.2022.463560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
|
25
|
Vanhoenacker G, Sandra P, Sandra K. Minimizing the Risk of Missing Critical Sample Information by Using Two-Dimensional Liquid Chromatography. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.vg2884v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Analytical requirements in the biopharmaceutical, pharmaceutical, and food industries, among several others, are more demanding than ever. Chromatographic techniques are great tools to acquire detailed information on a vast number of molecules and sample types. The present challenge in research and development (R&D), as well as in quality control (QC) laboratories, is to collect as much sample information as possible. However, even with the current one-dimensional (1D) analytical portfolio, it is not possible to fully ensure that all the relevant information from a sample has been captured. This article illustrates the power of an online two-dimensional liquid chromatographic (2D-LC) setup to unravel the complexity of biopharmaceutical and pharmaceutical samples. This technology tremendously increases the resolving power in all areas where LC is applied and drastically reduces the risk of missing information about the sample.
Collapse
|
26
|
Oezipek S, Hoelterhoff S, Breuer S, Bell C, Bathke A. mD-UPLC-MS/MS: Next Generation of mAb Characterization by Multidimensional Ultraperformance Liquid Chromatography-Mass Spectrometry and Parallel On-Column LysC and Trypsin Digestion. Anal Chem 2022; 94:8136-8145. [PMID: 35545869 PMCID: PMC9201819 DOI: 10.1021/acs.analchem.1c04450] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Abstract
For the past few years, multidimensional liquid chromatography-mass spectrometry (LC-MS) systems have been commonly used to characterize post-translational modifications (PTMs) of therapeutic antibodies (mAbs). In most cases, this is performed by fractionation of charge variants by ion-exchange chromatography and subsequent online LC-MS peptide mapping analysis. In this study, we developed a multidimensional ultra-performance-liquid-chromatography-mass spectrometry system (mD-UPLC-MS/MS) for PTM characterization and quantification, allowing both rapid analysis and decreased risk of artificial modifications during sample preparation. We implemented UPLC columns for peptide mapping analysis, facilitating the linkage between mD-LC and routine LC-MS workflows. Furthermore, the introduced system incorporates a novel in-parallel trypsin and LysC on-column digestion setup, followed by a combined peptide mapping analysis. This parallel digestion with different enzymes enhances characterization by generating two distinct peptides. Using this approach, a low retentive ethylene oxide adduct of a bispecific antibody was successfully characterized within this study. In summary, our approach allows versatile and rapid analysis of PTMs, enabling efficient characterization of therapeutic molecules.
Collapse
Affiliation(s)
- Saban Oezipek
- Pharma Technical
Development, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sina Hoelterhoff
- Pharma Technical
Development, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Simon Breuer
- Pharma Technical
Development, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Christian Bell
- Pharma Technical
Development, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Anja Bathke
- Pharma Technical
Development, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
27
|
Goyon A. Cracking the Code of Complex Drug Modalities via Multidimensional Liquid Chromatography Coupled to Mass Spectrometry. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.jo6985r5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multidimensional liquid chromatography, coupled to mass spectrometry (MDLC–MS) is a powerful tool for the characterization of complex biopharmaceutical drug modalities, from antibody–drug conjugates to nuclear acid therapeutics like antisense oligonucleotides and small interfering RNA.
Collapse
|
28
|
Camperi J, Dahotre S, Guillarme D, Stella C. Monitoring multiple quality attributes of a complex Fc-fusion protein during cell culture production processes by mD-LC-MS peptide mapping. Talanta 2022; 246:123519. [PMID: 35525056 DOI: 10.1016/j.talanta.2022.123519] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Fc-fusion proteins represent a successful class of biopharmaceutical products. They are considered highly heterogeneous products due to the common degradation of amino acids that occurs during their production in upstream and downstream processes (e.g., oxidation and deamidation) and, above all, their complex glycosylation profile. Multi-dimensional liquid chromatography-mass spectrometry (mD-LC-MS) has recently gained much interest for process analytical technology, enabling the integration of this analytical technology in production and purification environments. In this study, an online mD-LC-MS/MS peptide mapping method was developed for monitoring multiple quality attributes, including the N-glycosylation state of a complex Fc-fusion protein, which is made by combining two heavily glycosylated cytokines with an Fc domain. This fully automated workflow includes sample purification, reduction, digestion, peptide mapping, and subsequent mass spectrometric analysis. Two immobilized enzyme cartridges based on trypsin and Lys-C protease were employed to generate a detailed glycosylation mapping, as trypsin allowed the identification of only one of four glycosylation sites, while Lys-C was more informative for two other sites. Site-specific glycosylation information such as antennarity, sialyation, and core fucosylation state was also determined. In addition to glycans, other post-translational modifications could be monitored simultaneously during the cell culture production processes by the mD-LC-MS/MS approach. In summary, the generated data demonstrate the applicability of mD-LC-MS for the monitoring and trending of multiple attributes for complex antibody formats over production processes in an automated and fast manner, compared to the complex and time-consuming traditional offline assays.
Collapse
Affiliation(s)
- Julien Camperi
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Sanket Dahotre
- iLabs, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet, 1, 1206, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, 1211, Geneva 4, Switzerland
| | - Cinzia Stella
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| |
Collapse
|
29
|
Verscheure L, Vanhoenacker G, Schneider S, Merchiers T, Storms J, Sandra P, Lynen F, Sandra K. 3D-LC-MS with 2D Multimethod Option for Fully Automated Assessment of Multiple Attributes of Monoclonal Antibodies Directly from Cell Culture Supernatants. Anal Chem 2022; 94:6502-6511. [PMID: 35442636 DOI: 10.1021/acs.analchem.1c05461] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fully automated analysis of multiple structural attributes of monoclonal antibodies (mAbs) using three-dimensional liquid chromatography-mass spectrometry (3D-LC-MS) is described. The analyzer combines Protein A affinity chromatography in the first dimension (1D) with a multimethod option in the second dimension (2D) (choice between size exclusion (SEC), cation exchange (CEX), and hydrophobic interaction chromatography (HIC)) and desalting SEC-MS in the third dimension (3D). This innovative 3D-LC-MS setup allows simultaneous and sequential assessment of mAb titer, size/charge/hydrophobic variants, molecular weight (MW), amino acid (AA) sequence, and post-translational modifications (PTMs) directly from cell culture supernatants. The reported methodology that finds multiple uses throughout the biopharmaceutical development trajectory was successfully challenged by the analysis of different trastuzumab and tocilizumab samples originating from biosimilar development programs.
Collapse
Affiliation(s)
- Liesa Verscheure
- RIC Group, President Kennedypark 26, B-8500 Kortrijk, Belgium.,Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | | | - Sonja Schneider
- Agilent Technologies, Hewlett-Packard Strasse 8, D-76337 Waldbronn, Germany
| | - Tom Merchiers
- RIC Group, President Kennedypark 26, B-8500 Kortrijk, Belgium
| | - Julie Storms
- RIC Group, President Kennedypark 26, B-8500 Kortrijk, Belgium
| | - Pat Sandra
- RIC Group, President Kennedypark 26, B-8500 Kortrijk, Belgium.,Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Koen Sandra
- RIC Group, President Kennedypark 26, B-8500 Kortrijk, Belgium.,Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| |
Collapse
|
30
|
Losacco GL, Hicks MB, DaSilva JO, Wang H, Potapenko M, Tsay FR, Ahmad IAH, Mangion I, Guillarme D, Regalado EL. Automated ion exchange chromatography screening combined with in silico multifactorial simulation for efficient method development and purification of biopharmaceutical targets. Anal Bioanal Chem 2022; 414:3581-3591. [PMID: 35441858 DOI: 10.1007/s00216-022-03982-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022]
Abstract
Bioprocess development of increasingly challenging therapeutics and vaccines requires a commensurate level of analytical innovation to deliver critical assays across functional areas. Chromatography hyphenated to numerous choices of detection has undeniably been the preferred analytical tool in the pharmaceutical industry for decades to analyze and isolate targets (e.g., APIs, intermediates, and byproducts) from multicomponent mixtures. Among many techniques, ion exchange chromatography (IEX) is widely used for the analysis and purification of biopharmaceuticals due to its unique selectivity that delivers distinctive chromatographic profiles compared to other separation modes (e.g., RPLC, HILIC, and SFC) without denaturing protein targets upon isolation process. However, IEX method development is still considered one of the most challenging and laborious approaches due to the many variables involved such as elution mechanism (via salt, pH, or salt-mediated-pH gradients), stationary phase's properties (positively or negatively charged; strong or weak ion exchanger), buffer type and ionic strength as well as pH choices. Herein, we introduce a new framework consisting of a multicolumn IEX screening in conjunction with computer-assisted simulation for efficient method development and purification of biopharmaceuticals. The screening component integrates a total of 12 different columns and 24 mobile phases that are sequentially operated in a straightforward automated fashion for both cation and anion exchange modes (CEX and AEX, respectively). Optimal and robust operating conditions are achieved via computer-assisted simulation using readily available software (ACD Laboratories/LC Simulator), showcasing differences between experimental and simulated retention times of less than 0.5%. In addition, automated fraction collection is also incorporated into this framework, illustrating the practicality and ease of use in the context of separation, analysis, and purification of nucleotides, peptides, and proteins. Finally, we provide examples of the use of this IEX screening as a framework to identify efficient first dimension (1D) conditions that are combined with MS-friendly RPLC conditions in the second dimension (2D) for two-dimensional liquid chromatography experiments enabling purity analysis and identification of pharmaceutical targets.
Collapse
Affiliation(s)
- Gioacchino Luca Losacco
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA.
| | - Michael B Hicks
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Jimmy O DaSilva
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Heather Wang
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Miraslava Potapenko
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Fuh-Rong Tsay
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Imad A Haidar Ahmad
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Ian Mangion
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Erik L Regalado
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA.
| |
Collapse
|
31
|
Real-Time Monitoring of Antibody Quality Attributes for Cell Culture Production Processes in Bioreactors via Integration of an Automated Sampling Technology with Multi-Dimensional Liquid Chromatography Mass Spectrometry. J Chromatogr A 2022; 1672:463067. [DOI: 10.1016/j.chroma.2022.463067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022]
|
32
|
Camperi J. Online HPLC–HRMS Platform: The Next-Generation Process Analytical Technology Tool for Real-Time Monitoring of Antibody Quality Attributes in Biopharmaceutical Processes. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.op5766f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Online monitoring of critical quality attributes (CQAs) directly within the bioreactor can provide the basis for advanced processing of therapeutics production, including automated real-time monitoring, feedback control process intensification, smart manufacturing, and real-time release testing. This paper presents recent developments in online high performance liquid chromatography–high-resolution mass spectrometry (HPLC–HRMS) platforms as a promising process analytical technology (PAT) tool for real-time monitoring of antibody quality attributes (QAs) in biopharmaceutical processes. This technology can be used to monitor multiple CQAs and process parameters during cell culture production, enabling real-time decisions.
Collapse
|
33
|
Candish E, Dykstra A, Polozova A, Ren D, Zhang H. New Aspects in the Integration of MS Technologies in the Biopharmaceutical Industry. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.sn9080m1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past decade, advances in both separations and mass spectrometry (MS) technologies have enabled new, streamlined, and data-rich approaches to monitor product quality attributes and their relationship with process parameters throughout the lifecycle of therapeutic proteins. As we enter a new decade of technology and method development, MS-based approaches utilized in the biopharmaceutical industry are evolving further. In this mini-review, we explore key developments that could inspire and improve the future of therapeutic protein development.
Collapse
|
34
|
N-Glycosylation of monoclonal antibody therapeutics: A comprehensive review on significance and characterization. Anal Chim Acta 2022; 1209:339828. [DOI: 10.1016/j.aca.2022.339828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 01/02/2023]
|
35
|
Bathke A, Hoelterhoff S, Oezipak S, Grunert I, Heinrich K, Winter M. The Power of Trypsin Immobilized Enzyme Reactors (IMERs) Deployed in Online MDLC–MS Applications. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.hl9986s4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immobilized enzyme reactors (IMERs) are a powerful and essential part of multidimensional liquid chromatography–tandem mass spectrometry (MDLC–MS/MS) approaches that enable online identification, characterization, and quantification of post-translational modifications of therapeutic antibodies. This review gives an overview of commercially available and selected trypsin IMERs in regard to their application in LC-based and automated sample preparation. Additionally, we address the challenges of IMER application in online systems and the advantages of self-made IMERs.
Collapse
|
36
|
Wu Z, Wang H, Tustian A, Qiu H, Li N. Development of a Two-Dimensional Liquid Chromatography-Mass Spectrometry Platform for Simultaneous Multi-Attribute Characterization of Adeno-Associated Viruses. Anal Chem 2022; 94:3219-3226. [PMID: 35142492 DOI: 10.1021/acs.analchem.1c04873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adeno-associated viruses (AAVs) are non-enveloped, single-stranded DNA viruses that have recently emerged as an attractive vector for delivering genetic materials to hosts for gene therapy applications. Due to their ability to transduce a wide range of species and tissues in vivo, low risk of immunotoxicity, and mild innate and adaptive immune responses, AAVs are currently used in research and clinical studies as a monotherapy or with other biomolecules to perform gene editing, replacement, addition, and silencing. As AAVs are a new and complex therapeutic modality with molecular weights into the megadalton range, new analytical techniques are therefore needed to support process development, product characterization, and release. In this study, an online two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) method was developed for AAV characterization. Our method uses high-resolution anion-exchange chromatography (AEX) in the first dimension to separate and measure empty and full capsids in AAV samples, followed by reversed-phase liquid chromatography coupled with mass spectrometry (RPLC-MS) to separate and characterize viral proteins. In this technique, online denaturation and removal of MS-incompatible salt were performed following AEX. The viral proteins present in the peak of interest after first-dimensional AEX are subjected to intact protein separation on the second-dimensional RPLC column and then characterized by MS. The 2DLC-MS method demonstrated in this study allows for high-throughput and multi-attribute AAV characterization in a single run, with minimal sample handling required for different AAV serotypes.
Collapse
Affiliation(s)
- Zhijie Wu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Hongxia Wang
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Andrew Tustian
- Viral Production Core, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
37
|
Bhattacharya S, Sarin D. Two-Dimensional Liquid Chromatography (2D-LC): Analysis of Size-Based Heterogeneities in Monoclonal Antibody–Based Biotherapeutic Products. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.cz9881a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Monoclonal antibodies (mAbs) dominate the pipelines in the biopharmaceutical industry today. Being complex products, this class of molecules has numerous critical quality attributes (CQAs). Their thorough characterization is a necessary and critical component of biopharmaceutical product development. One CQA is size-based heterogeneity. Aggregates are widely considered a CQA because of their likely impact on the immunogenicity of the product. There is no single analytical tool that can accurately characterize aggregates because of the significant diversity that they exhibit with respect to size, structure, and morphology. As a result, it is common practice to use multiple, orthogonal analytical tools for aggregate characterization. This article reviews efforts targeting the use of two-dimensional liquid chromatography (2D-LC) and mass spectrometry (MS) for aggregate characterization.
Collapse
|
38
|
Chapel S, Rouvière F, Guibal P, Mathieu D, Heinisch S. Development of a sub-hour on-line comprehensive cation exchange chromatography x RPLC method hyphenated to HRMS for the characterization of lysine-linked antibody-drug conjugates. Talanta 2021; 240:123174. [PMID: 35026643 DOI: 10.1016/j.talanta.2021.123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
This study details the development of on-line two-dimensional liquid chromatography (2D-LC) methods combining cation-exchange chromatography (CEX) and reversed-phase liquid chromatography (RPLC) for the separation of the charge variants of a lysine-linked antibody-drug conjugate (ADC). This combination gives an excellent example of the potential benefits of 2D-LC approaches for the analysis of such complex protein formats. CEX is considered the reference technique for the separation of protein charge variants but its retention mechanism usually requires the use of a high concentration of non-volatile salts, which impedes its compatibility with MS detection. In this context, the use of an on-line 2D-LC-MS approach not only allows on-line desalting and indirect coupling of CEX with mass spectrometry (MS) detection but it also provides increased and complementary information within a single analysis. The first part of this study was devoted to the choice of stationary phases and the optimization of chromatographic conditions in both dimensions. Based on the results obtained in 1D-CEX with ultraviolet detection (UV) and 1D-RPLC with UV and high-resolution mass spectrometry (HRMS) detections, an on-line comprehensive two-dimensional liquid chromatography method combining CEX and RPLC was developed. The last part of this study was devoted to the identification of the separated species using HRMS detection and in the comparison of three ADC samples exposed to different durations of thermal stress.
Collapse
Affiliation(s)
- Soraya Chapel
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Florent Rouvière
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Pierre Guibal
- Sanofi Aventis R&D, 1 Impasse des Ateliers, 94400, Vitry-sur-Seine, France
| | - Delphine Mathieu
- Sanofi Aventis R&D, 1 Impasse des Ateliers, 94400, Vitry-sur-Seine, France
| | - Sabine Heinisch
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, 5 rue de la Doua, 69100, Villeurbanne, France.
| |
Collapse
|
39
|
Yin Z, Du M, Chen D, Zhang W, Huang W, Wu X, Yan S. Rapid structural discrimination of IgG antibodies by multicharge-state collision-induced unfolding. RSC Adv 2021; 11:36502-36510. [PMID: 35494361 PMCID: PMC9043582 DOI: 10.1039/d1ra06486j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/06/2021] [Indexed: 11/29/2022] Open
Abstract
Immunoglobulin G (IgG) antibodies are an important class of biotherapeutics that target various diseases, such as cancers, neurodegenerative disorders, and autoimmune diseases, yet rapid discrimination of IgG antibodies remains a great challenge due to heterogeneity, flexibility, and large size. Herein, we demonstrate a simplified multicharge-state collision-induced unfolding (CIU) method for rapid differentiation of four IgG isotypes that differ in terms of the numbers and patterns of disulfide bonds, bypassing tedious single charge-state selection in advance. The results presented herein reveal that gas-phase unfolding behaviors have a strong dependence on charge states outside IgG surfaces; therefore, multicharge-state CIU analysis of IgG subtypes could offer a great opportunity to gain deeper insights into their gas-phase structural differentiation. The full discrimination of IgG antibody isoforms that possess different disulfide bond numbers and even subtle disulfide bonding patterns can be achieved based on their charge-dependent gas-phase unfolding behaviors and root-mean square deviation in CIU difference spectra. Taken together, the incorporation of all charge states observed in a native ion mobility-mass spectrometry (IM-MS) experiment to CIU analysis could make this strategy sensitive to more subtle structural discrepancies, facilitating the rapid discrimination and evaluation of innovative structurally similar biotherapeutic candidates with unexplored functions.
Collapse
Affiliation(s)
- Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Mingyi Du
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
| | - Dong Chen
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
| | - Wenyang Zhang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Xinzhou Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| |
Collapse
|
40
|
Pot S, Gstöttner C, Heinrich K, Hoelterhoff S, Grunert I, Leiss M, Bathke A, Domínguez-Vega E. Fast analysis of antibody-derived therapeutics by automated multidimensional liquid chromatography - Mass spectrometry. Anal Chim Acta 2021; 1184:339015. [PMID: 34625261 DOI: 10.1016/j.aca.2021.339015] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/01/2022]
Abstract
Characterization of post-translational modifications (PTMs) of therapeutic antibodies is commonly performed by bottom-up approaches, involving sample preparation and peptide analysis by liquid chromatography-mass spectrometry (LC-MS). Conventional sample preparation requires extensive hands-on time and can increase the risk of inducing artificial modifications as many off-line steps - denaturation, disulfide-reduction, alkylation and tryptic digestion - are performed. In this study, we developed an on-line multidimensional (mD)-LC-MS bottom-up approach for fast sample preparation and analysis of (formulated) monoclonal antibodies and antibody-derived therapeutics. This approach allows on-column reduction, tryptic digestion and subsequent peptide analysis by RP-MS. Optimization of the 1D -and 2D flow and temperature improved the trapping of small polar peptides during on-line peptide mapping analysis. These adaptations increased the sequence coverage (95-98% versus 86-94% for off-line approaches) and allowed identification of various PTMs (i.e. deamidation of asparagine, methionine oxidation and lysine glycation) within a single analysis. This workflow enables a fast (<2 h) characterization of antibody heterogeneities within a single run and a low amount of protein (10 μg). Importantly, the new mD-LC-MS bottom-up method was able to detect the polar, fast-eluting peptides: Fc oxidation at Hc-Met-252 and the Fc N-glycosylation at Hc-Asn-297, which can be challenging using mD-LC-MS. Moreover, the method showed good comparability across the different measurements (RSD of retention time in the range of 0.2-1.8% for polar peptides). The LC system was controlled by only a standard commercial software package which makes implementation for fast characterization of quality attributes relatively easy.
Collapse
Affiliation(s)
- Sanne Pot
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Christoph Gstöttner
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
| | - Katrin Heinrich
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Sina Hoelterhoff
- Pharma Technical Development Europe, Hoffmann-La Roche, Basel, Switzerland
| | - Ingrid Grunert
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Michael Leiss
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Anja Bathke
- Pharma Technical Development Europe, Hoffmann-La Roche, Basel, Switzerland
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
41
|
Online pressurized liquid extraction enables directly chemical analysis of herbal medicines: A mini review. J Pharm Biomed Anal 2021; 205:114332. [PMID: 34455204 DOI: 10.1016/j.jpba.2021.114332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Extraction is responsible for transferring components from solid materials into solvent. Tedious extraction procedures are usually involved in liquid chromatography-based chemical analysis of herbal medicines (HMs), resulting in extensive consumptions of organic solvents, time, energy, and materials, as well as the significant chemical degradation risks for those labile compounds. Fortunately, an emerging online pressurized liquid extraction (OLE, also known as online liquid extraction) technique has been developed for the achievement of directly chemical analysis for solid matrices in recent years, and in a short period, this versatile technique has been widely applied for the chemical analysis of HMs. In the present mini-review, we aim to briefly summarize the principles, the instrumentation, along with the application progress of this robust and flexible extraction technique in the latest six years, and the emerging challenges and future prospects are discussed as well. Special attention is paid onto the hyphenation of the versatile OLE module with LC-MS instrument. The described information is expected to introduce a promising OLE approach and to provide the guidance for the achievement of directly chemical analysis of, but not limited to, HMs.
Collapse
|
42
|
Spanov B, Olaleye O, Lingg N, Bentlage AEH, Govorukhina N, Hermans J, van de Merbel N, Vidarsson G, Jungbauer A, Bischoff R. Change of charge variant composition of trastuzumab upon stressing at physiological conditions. J Chromatogr A 2021; 1655:462506. [PMID: 34492576 DOI: 10.1016/j.chroma.2021.462506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/16/2023]
Abstract
Cation-exchange chromatography is a widely used approach to study charge heterogeneity of monoclonal antibodies. Heterogeneity may arise both in vitro and in vivo because of the susceptibility of monoclonal antibodies to undergo chemical modifications. Modifications may adversely affect the potency of the drug, induce immunogenicity or affect pharmacokinetics. In this study, we evaluated the application of optimized pH gradient systems for the separation of charge variants of trastuzumab after forced degradation study. pH gradient-based elution resulted in high-resolution separation of some 20 charge variants after 3 weeks at 37°C under physiological conditions. The charge variants were further characterized by LC-MS-based peptide mapping. There was no significant difference in the binding properties to HER2 or a range of Fcγ receptors between non-stressed and stressed trastuzumab.
Collapse
Affiliation(s)
- Baubek Spanov
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Oladapo Olaleye
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Nico Lingg
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Arthur E H Bentlage
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Natalia Govorukhina
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Jos Hermans
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Nico van de Merbel
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, the Netherlands; Bioanalytical Laboratory, PRA Health Sciences, Early Development Services, Westerbrink 3, 9405 BJ Assen, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
43
|
Matsuda Y, Mendelsohn BA. Recent Advances in Drug-Antibody Ratio Determination of Antibody-Drug Conjugates. Chem Pharm Bull (Tokyo) 2021; 69:976-983. [PMID: 34602579 DOI: 10.1248/cpb.c21-00258] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antibody-drug conjugates (ADCs) are biopharmaceuticals produced by chemically linking small molecules (payloads) to antibodies that possess specific affinity for the target cell. The ADCs currently on the commercially market are the result of a stochastic conjugation of highly-potent payloads to multiple sites on the monoclonal antibody, resulting in a heterogeneous drug-antibody ratio (DAR) and drug distribution. The heterogeneity inherent to ADCs not produced site-specifically may not only be detrimental to the quality of the drug but also is less-desirable from the perspective of regulatory science. An ideal method or unified approach used to measure the DAR for ADCs, a critical aspect of their analysis and characterization, has not yet been established in the ADC field and remains an often-challenging issue for bioanalytical chemists. In this review we describe, compare, and evaluate the characteristics of various DAR determination methods for ADCs featuring recently reported technologies. The future landscape of bioconjugate DAR analysis is also discussed.
Collapse
|
44
|
Matsuda Y. Current approaches for the purification of antibody-drug conjugates. J Sep Sci 2021; 45:27-37. [PMID: 34473399 DOI: 10.1002/jssc.202100575] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/21/2023]
Abstract
In the past two decades, antibody-drug conjugates have gained increasing attention because they expand the therapeutic index when compared with that of traditional chemotherapies. Antibody-drug conjugates are highly complex structures consisting of antibodies covalently conjugated with small-molecule cytotoxic drugs. The complex structure of antibody-drug conjugates makes chemistry, manufacturing, and control difficult. In contrast to antibody production, distinct purification methods following conjugation of antibodies with drug-linkers are required for the manufacturing. For process development of antibody drug conjugates, the drug-to-antibody ratio, free drug-linkers, and aggregates are critical quality attributes that must be strictly controlled and removed by appropriate purification techniques. In this review, features of various purification methods used to purify antibody drug conjugates are described and evaluated. The future landscape of the antibody-conjugates field is also discussed briefly.
Collapse
|
45
|
Verscheure L, Cerdobbel A, Sandra P, Lynen F, Sandra K. Monoclonal antibody charge variant characterization by fully automated four-dimensional liquid chromatography-mass spectrometry. J Chromatogr A 2021; 1653:462409. [PMID: 34325295 DOI: 10.1016/j.chroma.2021.462409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Fully automated characterization of monoclonal antibody (mAb) charge variants using four-dimensional liquid chromatography-mass spectrometry (4D-LC-MS) is reported and illustrated. Charge variants resolved by cation-exchange chromatography (CEX) using a salt- or pH-gradient are collected in loops installed on a multiple heart-cutting valve and consequently subjected to online desalting, denaturation, reduction and trypsin digestion prior to LC-MS based peptide mapping. This innovation which substantially reduces turnaround time, sample manipulation, loss and artefacts and increases information gathering, is described in great technical detail, and applied to characterize the charge heterogeneity associated with three therapeutic mAbs. Sequence coverages > 95% are obtained for major and minor charge variants (> 1.0%). Post-translational modifications (PTMs) and modification sites are readily revealed in a repeatable manner including unstable succinimide intermediates which are not maintained when performing classical in-solution overnight digestion of offline collected CEX peaks.
Collapse
Affiliation(s)
- Liesa Verscheure
- RIC group, President Kennedypark 26, Kortrijk 8500, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - An Cerdobbel
- RIC group, President Kennedypark 26, Kortrijk 8500, Belgium
| | - Pat Sandra
- RIC group, President Kennedypark 26, Kortrijk 8500, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Koen Sandra
- RIC group, President Kennedypark 26, Kortrijk 8500, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium.
| |
Collapse
|
46
|
Skeene K, Khatri K, Soloviev Z, Lapthorn C. Current status and future prospects for ion-mobility mass spectrometry in the biopharmaceutical industry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140697. [PMID: 34246790 DOI: 10.1016/j.bbapap.2021.140697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Detailed characterization of protein reagents and biopharmaceuticals is key in defining successful drug discovery campaigns, aimed at bringing molecules through different discovery stages up to development and commercialization. There are many challenges in this process, with complex and detailed analyses playing paramount roles in modern industry. Mass spectrometry (MS) has become an essential tool for characterization of proteins ever since the onset of soft ionization techniques and has taken the lead in quality assessment of biopharmaceutical molecules, and protein reagents, used in the drug discovery pipeline. MS use spans from identification of correct sequences, to intact molecule analyses, protein complexes and more recently epitope and paratope identification. MS toolkits could be incredibly diverse and with ever evolving instrumentation, increasingly novel MS-based techniques are becoming indispensable tools in the biopharmaceutical industry. Here we discuss application of Ion Mobility MS (IMMS) in an industrial setting, and what the current applications and outlook are for making IMMS more mainstream.
Collapse
Affiliation(s)
- Kirsty Skeene
- Biopharm Process Research, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Kshitij Khatri
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Collegeville, PA 19406, USA.
| | - Zoja Soloviev
- Protein, Cellular and Structural Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Cris Lapthorn
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| |
Collapse
|
47
|
Camperi J, Grunert I, Heinrich K, Winter M, Özipek S, Hoelterhoff S, Weindl T, Mayr K, Bulau P, Meier M, Mølhøj M, Leiss M, Guillarme D, Bathke A, Stella C. Inter-laboratory study to evaluate the performance of automated online characterization of antibody charge variants by multi-dimensional LC-MS/MS. Talanta 2021; 234:122628. [PMID: 34364437 DOI: 10.1016/j.talanta.2021.122628] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022]
Abstract
An international study was conducted to evaluate the performance and reliability of an online multi-dimensional (mD)-LC-MS/MS approach for the characterization of antibody charge variants. The characterization of antibody charge variants is traditionally performed by time-consuming, offline isolation of charge variant fractions by ion exchange chromatography (IEC) that are subsequently subjected individually to LC-MS/MS peptide mapping. This newly developed mD-LC-MS/MS approach enables automated and rapid characterization of charge variants using much lower sample requirements. This online workflow includes sample reduction, digestion, peptide mapping, and subsequent mass spectrometric analysis within a single, fully-automated procedure. The benefits of using online mD-LC-MS/MS for variant characterization include fewer handling steps, a more than 10-fold reduction in required sample amount, reduced sample hold time as well as a shortening of the overall turnaround time from weeks to few days compared to standard offline procedures. In this site-to-site comparison study, we evaluated the online peptide mapping data collected from charge variants of trastuzumab (Herceptin®) across three international laboratories. The purpose of this study was to compare the overall performance of the online mD-LC-MS/MS approach for antibody charge variant characterization, with all participating sites employing different mD-LC-MS/MS setups (e.g., instrument vendors, modules, columns, CDS software). The high sequence coverage (95%-97%) obtained in each laboratory, enabled a reproducible generation of tryptic peptides and the comparison of values of the charge variants. Results obtained at all three participating sites were in good agreement, highlighting the reliability and performance of this approach, and correspond with data gained by the standard offline procedure. Overall, our results underscore of the benefit mD-LC-MS/MS technology for therapeutic antibody characterization, confirming its potential to become an important tool in the toolbox of protein characterization scientists.
Collapse
Affiliation(s)
- Julien Camperi
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ingrid Grunert
- Pharma Technical Development, Roche, Nonnenwald 2, 82377, Penzberg, Germany
| | - Katrin Heinrich
- Pharma Technical Development, Roche, Nonnenwald 2, 82377, Penzberg, Germany
| | - Martin Winter
- Pharma Technical Development, Roche, Nonnenwald 2, 82377, Penzberg, Germany
| | - Saban Özipek
- Pharma Technical Development, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Sina Hoelterhoff
- Pharma Technical Development, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Thomas Weindl
- Pharma Research and Early Development, Roche, Nonnenwald 2, 82377, Penzberg, Germany
| | - Kilian Mayr
- Pharma Research and Early Development, Roche, Nonnenwald 2, 82377, Penzberg, Germany
| | - Patrick Bulau
- Pharma Technical Development, Roche, Nonnenwald 2, 82377, Penzberg, Germany
| | - Monika Meier
- Pharma Technical Development, Roche, Nonnenwald 2, 82377, Penzberg, Germany
| | - Michael Mølhøj
- Pharma Research and Early Development, Roche, Nonnenwald 2, 82377, Penzberg, Germany
| | - Michael Leiss
- Pharma Technical Development, Roche, Nonnenwald 2, 82377, Penzberg, Germany
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet, 1, 1206, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, 1211, Geneva 4, Switzerland
| | - Anja Bathke
- Pharma Technical Development, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Cinzia Stella
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|