1
|
Hashim GM, Shahgolzari M, Hefferon K, Yavari A, Venkataraman S. Plant-Derived Anti-Cancer Therapeutics and Biopharmaceuticals. Bioengineering (Basel) 2024; 12:7. [PMID: 39851281 PMCID: PMC11759177 DOI: 10.3390/bioengineering12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
In spite of significant advancements in diagnosis and treatment, cancer remains one of the major threats to human health due to its ability to cause disease with high morbidity and mortality. A multifactorial and multitargeted approach is required towards intervention of the multitude of signaling pathways associated with carcinogenesis inclusive of angiogenesis and metastasis. In this context, plants provide an immense source of phytotherapeutics that show great promise as anticancer drugs. There is increasing epidemiological data indicating that diets rich in vegetables and fruits could decrease the risks of certain cancers. Several studies have proved that natural plant polyphenols, such as flavonoids, lignans, phenolic acids, alkaloids, phenylpropanoids, isoprenoids, terpenes, and stilbenes, could be used in anticancer prophylaxis and therapeutics by recruitment of mechanisms inclusive of antioxidant and anti-inflammatory activities and modulation of several molecular events associated with carcinogenesis. The current review discusses the anticancer activities of principal phytochemicals with focus on signaling circuits towards targeted cancer prophylaxis and therapy. Also addressed are plant-derived anti-cancer vaccines, nanoparticles, monoclonal antibodies, and immunotherapies. This review article brings to light the importance of plants and plant-based platforms as invaluable, low-cost sources of anti-cancer molecules of particular applicability in resource-poor developing countries.
Collapse
Affiliation(s)
- Ghyda Murad Hashim
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Mehdi Shahgolzari
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan 65175-4171, Iran
| | - Kathleen Hefferon
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Afagh Yavari
- Department of Biology, Payame Noor University, Tehran P.O. Box 19395-3697, Iran
| | - Srividhya Venkataraman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
2
|
Sun X, Tian T, Lian Y, Cui Z. Current Advances in Viral Nanoparticles for Biomedicine. ACS NANO 2024; 18:33827-33863. [PMID: 39648920 DOI: 10.1021/acsnano.4c13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Viral nanoparticles (VNPs) have emerged as crucial tools in the field of biomedicine. Leveraging their biological and physicochemical properties, VNPs exhibit significant advantages in the prevention, diagnosis, and treatment of human diseases. Through techniques such as chemical bioconjugation, infusion, genetic engineering, and encapsulation, these VNPs have been endowed with multifunctional capabilities, including the display of functional peptides or proteins, encapsulation of therapeutic drugs or inorganic particles, integration with imaging agents, and conjugation with bioactive molecules. This review provides an in-depth analysis of VNPs in biomedicine, elucidating their diverse types, distinctive features, production methods, and complex design principles behind multifunctional VNPs. It highlights recent innovative research and various applications, covering their roles in imaging, drug delivery, therapeutics, gene delivery, vaccines, immunotherapy, and tissue regeneration. Additionally, the review provides an assessment of their safety and biocompatibility and discusses challenges and future opportunities in the field, underscoring the vast potential and evolving nature of VNP research.
Collapse
Affiliation(s)
- Xianxun Sun
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Tao Tian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yindong Lian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
3
|
Affonso de Oliveira JF, Moreno-Gonzalez MA, Ma Y, Deng X, Schuphan J, Steinmetz NF. Plant Virus Intratumoral Immunotherapy with CPMV and PVX Elicits Durable Antitumor Immunity in a Mouse Model of Diffuse Large B-Cell Lymphoma. Mol Pharm 2024; 21:6206-6219. [PMID: 39526560 DOI: 10.1021/acs.molpharmaceut.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Plant viruses are naturally occurring nanoparticles and adjuvants that interact with the mammalian immune system. This property can be harnessed in vaccines and immunotherapy. We have previously demonstrated that intratumoral immunotherapy with cowpea mosaic virus (CPMV) stimulates systemic and durable antitumor immunity in mouse tumor models and canine cancer patients. Here we compared the antitumor efficacy of CPMV with potato virus X (PVX) using a mouse model B-cell lymphoma (A20 and BALB/c mice). Despite their diverse morphologies and physiochemical properties, both plant viruses elicited systemic and long-lasting antitumor immune memory, preventing the recurrence of A20 lymphoma in rechallenge experiments. Data indicate differences in the underlying mechanism: CPMV persists longer in the tumor microenvironment (TME) compared to PVX; CPMV is a potent and multivalent toll-like receptor (TLR) agonist (activating TLRs 2, 4 and 7) while PVX may only weakly engage with TLR7. While CPMV and PVX recruit myeloid cells (neutrophils)─CPMV also recruits macrophages. Data further indicate that antiviral T cells may play a role in antitumor efficacy in the case of CPMV immunotherapy, however this may not be the case for PVX. Regardless of the mechanism of action, both CPMV and PVX elicited a durable antitumor response against a B-cell lymphoma tumor model and thus are intratumoral immunotherapy candidates for clinical development.
Collapse
Affiliation(s)
- Jessica Fernanda Affonso de Oliveira
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, San Diego, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Miguel A Moreno-Gonzalez
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, San Diego, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Yifeng Ma
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, San Diego, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Xinyi Deng
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, San Diego, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Juliane Schuphan
- Institut für Molekulare Biotechnologie, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Nicole F Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, San Diego, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute of Engineering Medicine, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Simms A, Zhao Z, Cedrone E, Dobrovolskaia MA, Steinmetz NF. Cowpea mosaic virus intratumoral immunotherapy maintains stability and efficacy after long-term storage. Bioeng Transl Med 2024; 9:e10693. [PMID: 39545091 PMCID: PMC11558193 DOI: 10.1002/btm2.10693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 11/17/2024] Open
Abstract
Cowpea mosaic virus (CPMV) has demonstrated superior immune stimulation and efficacy as an intratumoral immunotherapy, providing a strong argument for its clinical translation. One important consideration for any new drug candidate is the long-term stability of the drug and its formulation. Therefore, our lab has evaluated the physical stability and biological activity, that is, anti-tumor potency, of formulations of CPMV in buffer (with and without a sucrose preservative) in multiple temperature conditions ranging from ultralow freezers to a heated incubator over a period of 9 months. We found that non-refrigerated temperatures 37°C and room temperature quickly led to CPMV destabilization, as evidenced by significant protein and RNA degradation after just 1 week. Refrigerated storage at 4°C extended physical stability, though signs of particle breakage and RNA escape appeared after 6 and 9 months. CPMV stored in frozen conditions, including -20°C, -80°C, and liquid N2, remained intact and matched the characteristics of fresh CPMV throughout the duration of the study. The biological activity was evaluated using a murine dermal melanoma model, and efficacy followed the observed trends in physical stability: CPMV stored in refrigerated and warmer conditions exhibited decreased anti-tumor efficacy compared to freshly prepared formulations. Meanwhile, frozen-stored CPMV performed similarly to freshly purified CPMV, resulting in reduced tumor growth and extended survival. Data, therefore, indicates that CPMV stored long-term in cold or frozen conditions remains stable and efficacious, providing additional support to advance this powerful plant virus to translation.
Collapse
Affiliation(s)
- Andrea Simms
- Aiiso Yufeng Li Family Department of Chemical and Nano EngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCaliforniaUSA
- Shu and K.C. Chien and Peter Farrell CollaboratoryUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Zhongchao Zhao
- Aiiso Yufeng Li Family Department of Chemical and Nano EngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCaliforniaUSA
- Shu and K.C. Chien and Peter Farrell CollaboratoryUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Edward Cedrone
- Nanotechnology Characterization Laboratory, Cancer Research Technology ProgramFrederick National Laboratory for Cancer Research sponsored by the National Cancer InstituteFrederickMarylandUSA
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology ProgramFrederick National Laboratory for Cancer Research sponsored by the National Cancer InstituteFrederickMarylandUSA
| | - Nicole F. Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano EngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCaliforniaUSA
- Shu and K.C. Chien and Peter Farrell CollaboratoryUniversity of CaliforniaLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of RadiologyUniversity of California, San DiegoLa JollaCaliforniaUSA
- Institute for Materials Discovery and DesignUniversity of CaliforniaLa JollaCaliforniaUSA
- Center for Engineering in Cancer, Institute for Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| |
Collapse
|
5
|
Omole AO, Zhao Z, Chang-Liao S, de Oliveira JFA, Boone CE, Sutorus L, Sack M, Varner J, Fiering SN, Steinmetz NF. Virus nanotechnology for intratumoural immunotherapy. NATURE REVIEWS BIOENGINEERING 2024; 2:916-929. [PMID: 39698315 PMCID: PMC11655125 DOI: 10.1038/s44222-024-00231-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 12/20/2024]
Abstract
Viruses can be designed to be tools and carrier vehicles for intratumoural immunotherapy. Their nanometre-scale size and shape allow for functionalization with or encapsulation of medical cargoes and tissue-specific ligands. Importantly, immunotherapies may particularly benefit from the inherent immunomodulatory properties of viruses. For example, mammalian viruses have already been tested for oncolytic virotherapy, and bacteriophages and plant viruses can be engineered for immunotherapeutic treatment approaches. In this Review, we discuss how viruses - including oncolytic viruses, immunomodulatory plant viruses and bacteriophages - and virus-like particles can be designed for intratumoural immunotherapy to elicit anti-tumour immunity and induce systemic anti-tumour responses at distant non-injected sites. We further highlight the engineering of viruses and virus-like particles as drug-delivery systems, and outline key translational challenges and clinical opportunities.
Collapse
Affiliation(s)
- Anthony O. Omole
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Zhongchao Zhao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Sabrina Chang-Liao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jessica Fernanda Affonso de Oliveira
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Christine E. Boone
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Lucas Sutorus
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Judith Varner
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Center for Engineering in Cancer, Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Steven N. Fiering
- Department of Microbiology and Immunology, Dartmouth Cancer Center, Dartmouth Geisel School of Medicine and Dartmouth-Hitchock Health, Lebanon, NH, USA
| | - Nicole F. Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Center for Engineering in Cancer, Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Omole AO, Affonso de Oliveira JF, Sutorus L, Karan S, Zhao Z, Neun BW, Cedrone E, Clogston JD, Xu J, Sierk M, Chen Q, Meerzaman D, Dobrovolskaia MA, Steinmetz NF. Cellular fate of a plant virus immunotherapy candidate. Commun Biol 2024; 7:1382. [PMID: 39443610 PMCID: PMC11499861 DOI: 10.1038/s42003-024-06982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
Cowpea mosaic virus (CPMV) is a plant virus that is currently being developed for intratumoral immunotherapy. CPMV relieves the immune system from tumor-induced immunosuppression; reprograms the tumor microenvironment to an activated state whereby the treated and distant tumors are recognized and eradicated. Toward translational studies, we investigated the safety of CPMV, specifically addressing whether pathogenicity would be induced in mammalian cells. We show that murine macrophage immune cells recognize CPMV; however, there is no indication of de novo viral protein synthesis or RNA replication. Furthermore, we show that CPMV does not induce hemolysis, platelet aggregation and plasma coagulation amongst other assays in human blood and immune cells. Taken together, we anticipate that these results will reinforce the development of CPMV as an immunotherapeutic platform.
Collapse
Affiliation(s)
- Anthony O Omole
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jessica Fernanda Affonso de Oliveira
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Lucas Sutorus
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Sweta Karan
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Zhongchao Zhao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Barry W Neun
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Edward Cedrone
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Jie Xu
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Michael Sierk
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Nicole F Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA.
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, USA.
- Center for Engineering in Cancer, Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Jung E, Foroughishafiei A, Hun Chung Y, Steinmetz NF. Enhanced efficacy of a TLR3 agonist delivered by cowpea chlorotic mottle virus nanoparticles. SMALL SCIENCE 2024; 4:2300314. [PMID: 39640945 PMCID: PMC11615967 DOI: 10.1002/smsc.202300314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Intratumoral immunotherapies are those that are administered directly into a tumor to remodel the local tumor microenvironment and stimulate systemic anti-tumor immunity. Small molecule Toll-like receptor (TLR) agonists are undergoing development as intratumoral immunotherapies, and here we considered the TLR3 agonist poly(I:C). Because small molecule therapeutics often suffer rapid washout effects and ineffective immune cell uptake, we encapsulated poly(I:C) into nanoparticles derived from cowpea chlorotic mottle virus (CCMV). The particles (but not the separate components) stimulated the activity of macrophages in vitro and were able to reduce tumor growth and prolong survival in mouse models of colon cancer and melanoma. We also combined CCMV-poly(I:C) with oxaliplatin and found the combination therapy to be even more potent, strongly inhibiting tumor growth and increasing survival. The analysis of immune markers revealed that CCMV-poly(I:C) VLPs with oxaliplatin promoted the infiltration and activation of CD4+ and CD8+ cells and the production of IL-4 and IFN-γ, indicating a synergistic immunogenic effect. The combined treatment also enhanced the rate of apoptosis and immunogenic cell death (ICD). Our data support the development of combination therapies involving immunomodulatory plant virus nanoparticles and antineoplastic drugs to attack tumors directly and via the activation of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Anahid Foroughishafiei
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Young Hun Chung
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute of Engineering in Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Moores Cancer Center, University of California, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| |
Collapse
|
8
|
Xu M, Wei S, Duan L, Ji Y, Han X, Sun Q, Weng L. The recent advancements in protein nanoparticles for immunotherapy. NANOSCALE 2024; 16:11825-11848. [PMID: 38814163 DOI: 10.1039/d4nr00537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In recent years, the advancement of nanoparticle-based immunotherapy has introduced an innovative strategy for combatting diseases. Compared with other types of nanoparticles, protein nanoparticles have obtained substantial attention owing to their remarkable biocompatibility, biodegradability, ease of modification, and finely designed spatial structures. Nature provides several protein nanoparticle platforms, including viral capsids, ferritin, and albumin, which hold significant potential for disease treatment. These naturally occurring protein nanoparticles not only serve as effective drug delivery platforms but also augment antigen delivery and targeting capabilities through techniques like genetic modification and covalent conjugation. Motivated by nature's originality and driven by progress in computational methodologies, scientists have crafted numerous protein nanoparticles with intricate assembly structures, showing significant potential in the development of multivalent vaccines. Consequently, both naturally occurring and de novo designed protein nanoparticles are anticipated to enhance the effectiveness of immunotherapy. This review consolidates the advancements in protein nanoparticles for immunotherapy across diseases including cancer and other diseases like influenza, pneumonia, and hepatitis.
Collapse
Affiliation(s)
- Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Siyuan Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Lifan Duan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Yifan Ji
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiaofan Han
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Sun
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
9
|
Moreno-Gonzalez MA, Zhao Z, Caparco AA, Steinmetz NF. Combination of cowpea mosaic virus (CPMV) intratumoral therapy and oxaliplatin chemotherapy. MATERIALS ADVANCES 2024; 5:4878-4888. [PMID: 39634576 PMCID: PMC11615731 DOI: 10.1039/d4ma00427b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Cowpea mosaic virus is a potent intratumoral immunotherapy agent that has shown promise in preclinical studies and canine cancer trials with tumor- and tissue-agnostic efficacy. As we move towards the clinic, it is imperative to investigate combination strategies that synergize to further improve the potency of the approach. Here, we combined CPMV with the clinically approved chemotherapeutic agent oxaliplatin. CPMV's ability to recruit and activate naive immune cells synergized with oxaliplatin's ability to induce immunogenic cell death in the ID8-Defb29/Vegf-A ovarian and B16F10 melanoma murine cancer models with an increase of median survival of 57.7% and 162.2%, respectively. The combination therapy outperformed the CPMV or oxaliplatin monotherapy, and achieved a percent difference in tumor burden of 26.1% and 170.6% in the ID8-Defb29/Vegf-A ovarian and B16F10 melanoma models, respectively. Immunofluorescence staining of treated tumor sections elucidated the role of damage associated molecular patterns (calreticulin and HMGB1), innate immune cells (myeloid cells - likely neutrophils, NK cells, and macrophages), and regulatory T cells (Tregs) as a function of the treatment regimen. Overall, our proposed combination therapy modulated the dormant tumor microenvironment which resulted in effective tumor cell death. This study demonstrates the potential for clinical combination of chemotherapy and CPMV intratumoral immunotherapy.
Collapse
Affiliation(s)
- Miguel A Moreno-Gonzalez
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Center for Engineering in Cancer, Institute of Engineering in Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Moores Cancer Center, University of California, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
| | - Zhongchao Zhao
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Center for Engineering in Cancer, Institute of Engineering in Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Moores Cancer Center, University of California, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
| | - Adam A Caparco
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Center for Engineering in Cancer, Institute of Engineering in Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Moores Cancer Center, University of California, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, USA
| |
Collapse
|
10
|
Jia J, Wang X, Lin X, Zhao Y. Engineered Microorganisms for Advancing Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313389. [PMID: 38485221 DOI: 10.1002/adma.202313389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Engineered microorganisms have attracted significant interest as a unique therapeutic platform in tumor treatment. Compared with conventional cancer treatment strategies, engineering microorganism-based systems provide various distinct advantages, such as the intrinsic capability in targeting tumors, their inherent immunogenicity, in situ production of antitumor agents, and multiple synergistic functions to fight against tumors. Herein, the design, preparation, and application of the engineered microorganisms for advanced tumor therapy are thoroughly reviewed. This review presents a comprehensive survey of innovative tumor therapeutic strategies based on a series of representative engineered microorganisms, including bacteria, viruses, microalgae, and fungi. Specifically, it offers extensive analyses of the design principles, engineering strategies, and tumor therapeutic mechanisms, as well as the advantages and limitations of different engineered microorganism-based systems. Finally, the current challenges and future research prospects in this field, which can inspire new ideas for the design of creative tumor therapy paradigms utilizing engineered microorganisms and facilitate their clinical applications, are discussed.
Collapse
Affiliation(s)
- Jinxuan Jia
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaocheng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xiang Lin
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yuanjin Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| |
Collapse
|
11
|
Chung YH, Zhao Z, Jung E, Omole AO, Wang H, Sutorus L, Steinmetz NF. Systemic Administration of Cowpea Mosaic Virus Demonstrates Broad Protection Against Metastatic Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308237. [PMID: 38430536 PMCID: PMC11095214 DOI: 10.1002/advs.202308237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Indexed: 03/04/2024]
Abstract
The key challenge in cancer treatment is prevention of metastatic disease which is therapeutically resistant and carries poor prognoses necessitating efficacious prophylactic approaches that prevent metastasis and recurrence. It is previously demonstrated that cowpea mosaic virus (CPMV) induces durable antitumor responses when used in situ, i.e., intratumoral injection. As a new direction, it is showed that CPMV demonstrates widespread effectiveness as an immunoprophylactic agent - potent efficacy is demonstrated in four metastatic models of colon, ovarian, melanoma, and breast cancer. Systemic administration of CPMV stimulates the innate immune system, enabling attack of cancer cells; processing of the cancer cells and associated antigens leads to systemic, durable, and adaptive antitumor immunity. Overall, CPMV demonstrated broad efficacy as an immunoprophylactic agent in the rejection of metastatic cancer.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCA92093USA
| | - Zhongchao Zhao
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCA92093USA
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Eunkyeong Jung
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Anthony O. Omole
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Hanyang Wang
- Department of BiologyUniversity of California, San DiegoLa JollaCA92093USA
| | - Lucas Sutorus
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Nicole F. Steinmetz
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCA92093USA
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
- Department of RadiologyUniversity of California, San DiegoLa JollaCA92093USA
- Institute for Materials Discovery and DesignUniversity of California, San DiegoLa JollaCA92093USA
- Center for Engineering in CancerUniversity of California, San DiegoLa JollaCA92093USA
- Shu and K.C. Chien and Peter Farrell CollaboratoryUniversity of California, San DiegoLa JollaCA92093USA
| |
Collapse
|
12
|
Zhao Z, Xiang Y, Koellhoffer EC, Shukla S, Fiering S, Chen S, Steinmetz NF. 3D bioprinting cowpea mosaic virus as an immunotherapy depot for ovarian cancer prevention in a preclinical mouse model. MATERIALS ADVANCES 2024; 5:1480-1486. [PMID: 38380337 PMCID: PMC10876074 DOI: 10.1039/d3ma00899a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Implantable polymeric hydrogels loaded with immunostimulatory cowpea mosaic virus (CPMV) were fabricated using digital light processing (DLP) printing technology. The CPMV-laden hydrogels were surgically implanted into the peritoneal cavity to serve as depots for cancer slow-release immunotherapy. Sustained release of CPMV within the intraperitoneal space alleviates the need for repeated dosing and we demonstrated efficacy against ovarian cancer in a metastatic mouse model.
Collapse
Affiliation(s)
- Zhongchao Zhao
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA, 92093 USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
| | - Yi Xiang
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA, 92093 USA
| | - Edward C Koellhoffer
- Department of Radiology, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
| | - Sourabh Shukla
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA, 92093 USA
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth Lebanon NH 03756 USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth Lebanon NH 03756 USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA, 92093 USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA, 92093 USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
- Center for Engineering in Cancer, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
| |
Collapse
|
13
|
Zhao Z, Chung YH, Steinmetz NF. Melanoma immunotherapy enabled by M2 macrophage targeted immunomodulatory cowpea mosaic virus. MATERIALS ADVANCES 2024; 5:1473-1479. [PMID: 38380336 PMCID: PMC10876082 DOI: 10.1039/d3ma00820g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
We have developed nanoparticle formulations targeting M2 macrophages for cancer immunotherapy by conjugating high-affinity binding peptides to cowpea mosaic virus as an immunostimulatory adjuvant. We confirmed the targeting of and uptake by M2 macrophages in vitro and the therapeutic efficacy of the nanoparticles against murine melanoma in vivo.
Collapse
Affiliation(s)
- Zhongchao Zhao
- Department of NanoEngineering, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
- Center for Nano-ImmunoEngineering, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
- Moores Cancer Center, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
| | - Young Hun Chung
- Moores Cancer Center, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
- Department of Bioengineering, University of California, San Diego 9500 Gilman Dr, La Jolla CA 92093 USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
- Center for Nano-ImmunoEngineering, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
- Moores Cancer Center, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
- Department of Bioengineering, University of California, San Diego 9500 Gilman Dr, La Jolla CA 92093 USA
- Department of Radiology, University of California, San Diego 9500 Gilman Dr, La Jolla CA 92093 USA
- Institute for Materials Discovery and Design, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
- Center for Engineering in Cancer, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
| |
Collapse
|
14
|
Omole A, Affonso de Oliveira JF, Sutorus L, Steinmetz NF. Pharmacology of a Plant Virus Immunotherapy Candidate for Peritoneal Metastatic Ovarian Cancer. ACS Pharmacol Transl Sci 2024; 7:445-455. [PMID: 38357279 PMCID: PMC10863429 DOI: 10.1021/acsptsci.3c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024]
Abstract
Due to the increasing incidence of cancer, there is a need to develop new platforms that can combat this disease. Cancer immunotherapy is a platform that takes advantage of the immune system to recognize and eradicate tumors and metastases. Our lab has identified a plant virus nanoparticle, cowpea mosaic virus (CPMV) as a promising approach for cancer immunotherapy. When administered intratumorally, CPMV relieves the immune system of tumor-induced immunosuppression and reprograms the tumor microenvironment into an activated state to launch systemic antitumor immunity. The efficacy of CPMV has been tested in many tumor models and in canine cancer patients with promising results: tumor shrinkage, systemic efficacy (abscopal effect), and immune memory to prevent recurrence. To translate this drug candidate from the bench to the clinic, studies that investigate the safety, pharmacology, and toxicity are needed. In this work, we describe the efficacy of CPMV against a metastatic ovarian tumor model and investigate the biodistribution of CPMV after single or repeated intraperitoneal administration in tumor-bearing and healthy mice. CPMV shows good retention in the tumor nodules and broad bioavailability with no apparent organ toxicity based on histopathology. Data indicate persistence of the viral RNA, which remains detectable 2 weeks post final administration, a phenomenon also observed with some mammalian viral infections. Lastly, while protein was not detected in stool or urine, RNA was shed through excretion from mice; however, there was no evidence that RNA was infectious to plants. Taken together, the data indicate that systemic administration results in broad bioavailability with no apparent toxicity. While RNA is shed from the subjects, data suggest agronomical safety. This data is consistent with prior reports and provides support for translational efforts.
Collapse
Affiliation(s)
- Anthony
O. Omole
- Department
of Nanoengineering, University of California, San Diego, La Jolla, California 92093-0021, United
States
- Shu
and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Center
for Nano-ImmunoEngineering, University of
California, San Diego, La Jolla, California 92093-0403, United States
- Moores
Cancer Center, University of California,
San Diego, La Jolla, California 92037, United States
| | - Jessica Fernanda Affonso de Oliveira
- Department
of Nanoengineering, University of California, San Diego, La Jolla, California 92093-0021, United
States
- Shu
and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Center
for Nano-ImmunoEngineering, University of
California, San Diego, La Jolla, California 92093-0403, United States
- Moores
Cancer Center, University of California,
San Diego, La Jolla, California 92037, United States
| | - Lucas Sutorus
- Department
of Nanoengineering, University of California, San Diego, La Jolla, California 92093-0021, United
States
- Shu
and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Center
for Nano-ImmunoEngineering, University of
California, San Diego, La Jolla, California 92093-0403, United States
- Moores
Cancer Center, University of California,
San Diego, La Jolla, California 92037, United States
| | - Nicole F. Steinmetz
- Department
of Nanoengineering, University of California, San Diego, La Jolla, California 92093-0021, United
States
- Shu
and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Center
for Nano-ImmunoEngineering, University of
California, San Diego, La Jolla, California 92093-0403, United States
- Moores
Cancer Center, University of California,
San Diego, La Jolla, California 92037, United States
- Department
of Bioengineering, University of California,
San Diego, La Jolla, California 92093-0412, United States
- Department
of Radiology, University of California,
San Diego, La Jolla, California 92122, United States
- Institute
for Materials Discovery and Design, University
of California, San Diego, La Jolla, California 92093, United States
- Center
for Engineering in Cancer, Institute of Engineering Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
15
|
Shin MD, Jung E, Moreno‐Gonzalez MA, Ortega‐Rivera OA, Steinmetz NF. Pluronic F127 "nanoarmor" for stabilization of Cowpea mosaic virus immunotherapy. Bioeng Transl Med 2024; 9:e10574. [PMID: 38193118 PMCID: PMC10771553 DOI: 10.1002/btm2.10574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 01/10/2024] Open
Abstract
Our lab demonstrated that intratumoral Cowpea mosaic virus (CPMV) is a potent antitumor immunotherapy when used as in situ vaccine. As we pave the way for human clinical translation, formulation chemistry needs to be optimized for long-term storage of the drug candidate. In this work, CPMV was nanoengineered with Pluronic F127 to realize liquid and gel formulations which mitigate structural changes and RNA release during long-term storage. We evaluated the CPMV-F127 formulations for their stability and biological activity through a combination of in vitro assays and efficacy in vivo using a B16F10 murine melanoma model. Results demonstrate that both F127 liquid and gel formulations preserve CPMV structure and function following extended periods of thermal incubation at 4°C, 25°C, and 37°C. Heat-incubated CPMV without formulation resulted in structural changes and inferior in vivo efficacy. In stark contrast, in vivo efficacy was preserved when CPMV was formulated and protected with the F127 "nanoarmor."
Collapse
Affiliation(s)
- Matthew D. Shin
- Department of NanoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Eunkyeong Jung
- Department of NanoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Miguel A. Moreno‐Gonzalez
- Department of NanoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Oscar A. Ortega‐Rivera
- Department of NanoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Nicole F. Steinmetz
- Department of NanoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of CaliforniaLa JollaCaliforniaUSA
- Department of RadiologyUniversity of CaliforniaLa JollaCaliforniaUSA
- Moores Cancer CenterUniversity of CaliforniaLa JollaCaliforniaUSA
- Institute for Materials Discovery and Design, Department of NanoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
| |
Collapse
|
16
|
Chung YH, Ortega-Rivera OA, Volckaert BA, Jung E, Zhao Z, Steinmetz NF. Viral nanoparticle vaccines against S100A9 reduce lung tumor seeding and metastasis. Proc Natl Acad Sci U S A 2023; 120:e2221859120. [PMID: 37844250 PMCID: PMC10614828 DOI: 10.1073/pnas.2221859120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/25/2023] [Indexed: 10/18/2023] Open
Abstract
Metastatic cancer accounts for 90% of all cancer-related deaths and continues to be one of the toughest challenges in cancer treatment. A growing body of data indicates that S100A9, a major regulator of inflammation, plays a central role in cancer progression and metastasis, particularly in the lungs, where S100A9 forms a premetastatic niche. Thus, we developed a vaccine against S100A9 derived from plant viruses and virus-like particles. Using multiple tumor mouse models, we demonstrate the effectiveness of the S100A9 vaccine candidates in preventing tumor seeding within the lungs and outgrowth of metastatic disease. The elicited antibodies showed high specificity toward S100A9 without cross-reactivity toward S100A8, another member of the S100A family. When tested in metastatic mouse models of breast cancer and melanoma, the vaccines significantly reduced lung tumor nodules after intravenous challenge or postsurgical removal of the primary tumor. Mechanistically, the vaccines reduce the levels of S100A9 within the lungs and sera, thereby increasing the expression of immunostimulatory cytokines with antitumor function [(interleukin) IL-12 and interferonγ] while reducing levels of immunosuppressive cytokines (IL-10 and transforming growth factorβ). This also correlated with decreased myeloid-derived suppressor cell populations within the lungs. This work has wide-ranging impact, as S100A9 is overexpressed in multiple cancers and linked with poor prognosis in cancer patients. The data presented lay the foundation for the development of therapies and vaccines targeting S100A9 to prevent metastasis.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, CA92093
- Moores Cancer Center, University of California, San Diego, CA92093
| | | | | | - Eunkyeong Jung
- Department of NanoEngineering, University of California, San Diego, CA92093
| | - Zhongchao Zhao
- Moores Cancer Center, University of California, San Diego, CA92093
- Department of NanoEngineering, University of California, San Diego, CA92093
| | - Nicole F. Steinmetz
- Department of Bioengineering, University of California, San Diego, CA92093
- Moores Cancer Center, University of California, San Diego, CA92093
- Department of NanoEngineering, University of California, San Diego, CA92093
- Department of Radiology, University of California, San Diego, CA92093
- Institute for Materials Discovery and Design, University of California, San Diego, CA92093
- Center for Nano-ImmunoEngineering, University of California, San Diego, CA92093
- Center for Engineering in Cancer, University of California, San Diego, CA92093
| |
Collapse
|
17
|
Jung E, Chung YH, Steinmetz NF. TLR Agonists Delivered by Plant Virus and Bacteriophage Nanoparticles for Cancer Immunotherapy. Bioconjug Chem 2023; 34:1596-1605. [PMID: 37611278 PMCID: PMC10538388 DOI: 10.1021/acs.bioconjchem.3c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Toll-like receptors (TLRs) are promising targets in cancer immunotherapy due to their role in activating the immune system; therefore, various small-molecule TLR agonists have been tested in clinical applications. However, the clinical use of TLR agonists is hindered by their non-specific side effects and poor pharmacokinetics. To overcome these limitations, we used plant virus nanoparticles (VNPs) and bacteriophage virus-like particles (VLPs) as drug delivery systems. We conjugated TLR3 or TLR7 agonists to cowpea mosaic virus (CPMV) VNPs, cowpea chlorotic mottle virus (CCMV) VNPs, and bacteriophage Qβ VLPs. The conjugation of TLR7 agonist, 2-methoxyethoxy-8-oxo-9-(4-carboxybenzyl)adenine (1V209), resulted in the potent activation of immune cells and promoted the production of pro-inflammatory cytokine interleukin 6. We found that 1V209 conjugated to CPMV, CCMV, and Qβ reduced tumor growth in vivo and prolonged the survival of mice compared to those treated with free 1V209 or a simple admixture of 1V209 and viral particles. Nucleic acid-based TLR3 agonist, polyinosinic acid with polycytidylic acid (poly(I:C)), was also delivered by CPMV VNPs, resulting in enhanced mice survival. All our data suggest that coupling and co-delivery are required to enhance the anti-tumor efficacy of TLR agonists and simple mixing of the VLPs with the agonists does not confer a survival benefit. The delivery of 1V209 or poly(I:C) conjugated to VNPs/VLPs probably enhances their efficacy due to the multivalent presentation, prolongation of tumor residence time, and targeting of the innate immune cells mediated by the VNP/VLP carrier.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Young Hun Chung
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| |
Collapse
|
18
|
Nikitin N, Vasiliev Y, Kovalenko A, Ryabchevskaya E, Kondakova O, Evtushenko E, Karpova O. Plant Viruses as Adjuvants for Next-Generation Vaccines and Immunotherapy. Vaccines (Basel) 2023; 11:1372. [PMID: 37631940 PMCID: PMC10458565 DOI: 10.3390/vaccines11081372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
Vaccines are the cornerstone of infectious disease control and prevention. The outbreak of SARS-CoV-2 has confirmed the urgent need for a new approach to the design of novel vaccines. Plant viruses and their derivatives are being used increasingly for the development of new medical and biotechnological applications, and this is reflected in a number of preclinical and clinical studies. Plant viruses have a unique combination of features (biosafety, low reactogenicity, inexpensiveness and ease of production, etc.), which determine their potential. This review presents the latest data on the use of plant viruses with different types of symmetry as vaccine components and adjuvants in cancer immunotherapy. The discussion concludes that the most promising approaches might be those that use structurally modified plant viruses (spherical particles) obtained from the Tobacco mosaic virus. These particles combine high adsorption properties (as a carrier) with strong immunogenicity, as has been confirmed using various antigens in animal models. According to current research, it is evident that plant viruses have great potential for application in the development of vaccines and in cancer immunotherapy.
Collapse
Affiliation(s)
- Nikolai Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | | | - Angelina Kovalenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ekaterina Ryabchevskaya
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Olga Kondakova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ekaterina Evtushenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Olga Karpova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
19
|
Shahgolzari M, Venkataraman S, Osano A, Akpa PA, Hefferon K. Plant Virus Nanoparticles Combat Cancer. Vaccines (Basel) 2023; 11:1278. [PMID: 37631846 PMCID: PMC10459942 DOI: 10.3390/vaccines11081278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Plant virus nanoparticles (PVNPs) have garnered considerable interest as a promising nanotechnology approach to combat cancer. Owing to their biocompatibility, stability, and adjustable surface functionality, PVNPs hold tremendous potential for both therapeutic and imaging applications. The versatility of PVNPs is evident from their ability to be tailored to transport a range of therapeutic agents, including chemotherapy drugs, siRNA, and immunomodulators, thereby facilitating targeted delivery to the tumor microenvironment (TME). Furthermore, PVNPs may be customized with targeting ligands to selectively bind to cancer cell receptors, reducing off-target effects. Additionally, PVNPs possess immunogenic properties and can be engineered to exhibit tumor-associated antigens, thereby stimulating anti-tumor immune responses. In conclusion, the potential of PVNPs as a versatile platform for fighting cancer is immense, and further research is required to fully explore their potential and translate them into clinical applications.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Srividhya Venkataraman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Anne Osano
- Department of Natural Sciences, Bowie State University, Bowie, MD 20715, USA
| | - Paul Achile Akpa
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | - Kathleen Hefferon
- Department of Microbiology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
20
|
Jung E, Chung YH, Mao C, Fiering SN, Steinmetz NF. The Potency of Cowpea Mosaic Virus Particles for Cancer In Situ Vaccination Is Unaffected by the Specific Encapsidated Viral RNA. Mol Pharm 2023; 20:3589-3597. [PMID: 37294891 PMCID: PMC10530639 DOI: 10.1021/acs.molpharmaceut.3c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant virus nanoparticles can be used as drug carriers, imaging reagents, vaccine carriers, and immune adjuvants in the formulation of intratumoral in situ cancer vaccines. One example is the cowpea mosaic virus (CPMV), a nonenveloped virus with a bipartite positive-strand RNA genome with each RNA packaged separately into identical protein capsids. Based on differences in their densities, the components carrying RNA-1 (6 kb) denoted as the bottom (B) component or carrying RNA-2 (3.5 kb) denoted as the middle (M) component can be separated from each other and from a top (T) component, which is devoid of any RNA. Previous preclinical mouse studies and canine cancer trials used mixed populations of CPMV (containing B, M, and T components), so it is unclear whether the particle types differ in their efficacies. It is known that the CPMV RNA genome contributes to immunostimulation by activation of TLR7. To determine whether the two RNA genomes that have different sizes and unrelated sequences cause different immune stimulation, we compared the therapeutic efficacies of B and M components and unfractionated CPMV in vitro and in mouse cancer models. We found that separated B and M particles behaved similarly to the mixed CPMV, activating innate immune cells to induce the secretion of pro-inflammatory cytokines such as IFNα, IFNγ, IL-6, and IL-12, while inhibiting immunosuppressive cytokines such as TGF-β and IL-10. In murine models of melanoma and colon cancer, the mixed and separated CPMV particles all significantly reduced tumor growth and prolonged survival with no significant difference. This shows that the specific RNA genomes similarly stimulate the immune system even though B particles have 40% more RNA than M particles; each CPMV particle type can be used as an effective adjuvant against cancer with the same efficacy as native mixed CPMV. From a translational point of view, the use of either B or M component vs the mixed CPMV formulation offers the advantage that separated B or M alone is noninfectious toward plants and thus provides agronomic safety.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Young Hun Chung
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Chenkai Mao
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire 03755, United States
| | - Steven N Fiering
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire 03755, United States
- Dartmouth Cancer Center, Dartmouth Geisel School of Medicine, Hanover, New Hampshire 03755, United States
| | - Nicole F Steinmetz
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Institute for Materials Design and Discovery, University of California San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
21
|
Shah S, Famta P, Tiwari V, Kotha AK, Kashikar R, Chougule MB, Chung YH, Steinmetz NF, Uddin M, Singh SB, Srivastava S. Instigation of the epoch of nanovaccines in cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1870. [PMID: 36410742 PMCID: PMC10182210 DOI: 10.1002/wnan.1870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Cancer is an unprecedented proliferation of cells leading to abnormalities in differentiation and maturation. Treatment of primary and metastatic cancer is challenging. In addition to surgery, chemotherapy and radiation therapies have been conventionally used; however, they suffer from severe toxicity and non-specificity. Immunotherapy, the science of programming the body's own defense system against cancer has gained tremendous attention in the last few decades. However, partial immunogenic stimulation, premature degradation and inability to activate dendritic and helper T cells has resulted in limited clinical success. The era of nanomedicine has brought about several breakthroughs in various pharmaceutical and biomedical fields. Hereby, we review and discuss the interplay of tumor microenvironment (TME) and the immunological cascade and how they can be employed to develop nanoparticle-based cancer vaccines and immunotherapies. Nanoparticles composed of lipids, polymers and inorganic materials contain useful properties suitable for vaccine development. Proteinaceous vaccines derived from mammalian viruses, bacteriophages and plant viruses also have unique advantages due to their immunomodulation capabilities. This review accounts for all such considerations. Additionally, we explore how attributes of nanotechnology can be utilized to develop successful nanomedicine-based vaccines for cancer therapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering, & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, INDIA
| | - Arun K Kotha
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Rama Kashikar
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Young Hun Chung
- Departments of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole F. Steinmetz
- Departments of Bioengineering, NanoEngineering, Radiology, Moores Cancer Center, Center for Nano-ImmunoEngineering, Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mohammad Uddin
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| |
Collapse
|
22
|
Liu C, Yu Y, Fang L, Wang J, Sun C, Li H, Zhuang J, Sun C. Plant-derived nanoparticles and plant virus nanoparticles: Bioactivity, health management, and delivery potential. Crit Rev Food Sci Nutr 2023; 64:8875-8891. [PMID: 37128778 DOI: 10.1080/10408398.2023.2204375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Natural plants have acquired an increasing attention in biomedical research. Recent studies have revealed that plant-derived nanoparticles (PDNPs), which are nano-sized membrane vesicles released by plants, are one of the important material bases for the health promotion of natural plants. A great deal of research in this field has focused on nanoparticles derived from fresh vegetables and fruits. Generally, PDNPs contain lipids, proteins, nucleic acids, and other active small molecules and exhibit unique biological regulatory activity and editability. Specifically, they have emerged as important mediators of intercellular communication, and thus, are potentially suitable for therapeutic purposes. In this review, PDNPs were extensively explored; by evaluating them systematically starting from the origin and isolation, toward their characteristics, including morphological compositions, biological functions, and delivery potentials, as well as distinguishing them from plant-derived exosomes and highlighting the limitations of the current research. Meanwhile, we elucidated the variations in PDNPs infected by pathogenic microorganisms and emphasized on the biological functions and characteristics of plant virus nanoparticles. After clarifying these problems, it is beneficial to further research on PDNPs in the future and develop their clinical application value.
Collapse
Affiliation(s)
- Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Yang Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liguang Fang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jia Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chunjie Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
23
|
Tscheuschner G, Ponader M, Raab C, Weider PS, Hartfiel R, Kaufmann JO, Völzke JL, Bosc-Bierne G, Prinz C, Schwaar T, Andrle P, Bäßler H, Nguyen K, Zhu Y, Mey ASJS, Mostafa A, Bald I, Weller MG. Efficient Purification of Cowpea Chlorotic Mottle Virus by a Novel Peptide Aptamer. Viruses 2023; 15:v15030697. [PMID: 36992405 PMCID: PMC10051510 DOI: 10.3390/v15030697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/31/2023] Open
Abstract
The cowpea chlorotic mottle virus (CCMV) is a plant virus explored as a nanotechnological platform. The robust self-assembly mechanism of its capsid protein allows for drug encapsulation and targeted delivery. Additionally, the capsid nanoparticle can be used as a programmable platform to display different molecular moieties. In view of future applications, efficient production and purification of plant viruses are key steps. In established protocols, the need for ultracentrifugation is a significant limitation due to cost, difficult scalability, and safety issues. In addition, the purity of the final virus isolate often remains unclear. Here, an advanced protocol for the purification of the CCMV from infected plant tissue was developed, focusing on efficiency, economy, and final purity. The protocol involves precipitation with PEG 8000, followed by affinity extraction using a novel peptide aptamer. The efficiency of the protocol was validated using size exclusion chromatography, MALDI-TOF mass spectrometry, reversed-phase HPLC, and sandwich immunoassay. Furthermore, it was demonstrated that the final eluate of the affinity column is of exceptional purity (98.4%) determined by HPLC and detection at 220 nm. The scale-up of our proposed method seems to be straightforward, which opens the way to the large-scale production of such nanomaterials. This highly improved protocol may facilitate the use and implementation of plant viruses as nanotechnological platforms for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Georg Tscheuschner
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Marco Ponader
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Christopher Raab
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Prisca S Weider
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Reni Hartfiel
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Jan Ole Kaufmann
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, 81675 Munich, Germany
| | - Jule L Völzke
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Gaby Bosc-Bierne
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Carsten Prinz
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | | | - Paul Andrle
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Henriette Bäßler
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Khoa Nguyen
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Yanchen Zhu
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Antonia S J S Mey
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Amr Mostafa
- Institute of Chemistry-Physical Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Ilko Bald
- Institute of Chemistry-Physical Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Michael G Weller
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| |
Collapse
|
24
|
Zhao Z, Ortega-Rivera OA, Chung YH, Simms A, Steinmetz NF. A co-formulated vaccine of irradiated cancer cells and cowpea mosaic virus improves ovarian cancer rejection. J Mater Chem B 2023. [PMID: 36861401 DOI: 10.1039/d2tb02355e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Ovarian cancer ranks fifth in cancer deaths amongst women, and most patients are diagnosed with late-stage and disseminated diseases. Surgical debulking and chemotherapy remove most of the tumor burden and provide a short period of remission; however, most patients experience cancer relapse and eventually succumb to the disease. Therefore, there is an urgent need for the development of vaccines to prime anti-tumor immunity and prevent its recurrence. Here we developed vaccine formulations composed of a mixture of irradiated cancer cells (ICCs, providing the antigen) and cowpea mosaic virus (CPMV) adjuvants. More specifically we compared the efficacy of co-formulated vs. mixtures of ICCs and CPMV. Specifically, we compared co-formulations where the ICCs and CPMV are bonded through natural CPMV-cell interactions or chemical coupling vs. mixtures of PEGylated CPMV and ICCs, where PEGylation of CPMV prevents ICC interactions. Flow cytometry and confocal imaging provided insights into the composition of the vaccines and their efficacy was tested using a mouse model of disseminated ovarian cancer. 67% of the mice receiving the co-formulated CPMV-ICCs survived the initial tumor challenge, and 60% of the surviving mice rejected tumors in a re-challenge experiment. In stark contrast, simple mixtures of the ICCs and (PEGylated) CPMV adjuvants were ineffective. Overall, this study highlights the importance of the co-delivery of cancer antigens and adjuvants in ovarian cancer vaccine development.
Collapse
Affiliation(s)
- Zhongchao Zhao
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA. .,Center for Nano-ImmunoEngineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Moores Cancer Center, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Oscar A Ortega-Rivera
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| | - Young Hun Chung
- Moores Cancer Center, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Andrea Simms
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA. .,Center for Nano-ImmunoEngineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Moores Cancer Center, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Institute for Materials Discovery and Design, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Center for Engineering in Cancer, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| |
Collapse
|
25
|
Chung YH, Volckaert BA, Steinmetz NF. Development of a Modular NTA:His Tag Viral Vaccine for Co-delivery of Antigen and Adjuvant. Bioconjug Chem 2023; 34:269-278. [PMID: 36608270 PMCID: PMC10545220 DOI: 10.1021/acs.bioconjchem.2c00601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The SARS-CoV-2 pandemic has highlighted the need for vaccines that are effective, but quickly produced. Of note, vaccines with plug-and-play capabilities that co-deliver antigen and adjuvant to the same cell have shown remarkable success. Our approach of utilizing a nitrilotriacetic acid (NTA) histidine (His)-tag chemistry with viral adjuvants incorporates both of these characteristics: plug-and-play and co-delivery. We specifically utilize the cowpea mosaic virus (CPMV) and the virus-like particles from bacteriophage Qβ as adjuvants and bind the model antigen ovalbumin (OVA). Successful binding of the antigen to the adjuvant/carrier was verified by SDS-PAGE, western blot, and ELISA. Immunization in C57BL/6J mice demonstrates that with Qβ - but not CPMV - there is an improved antibody response against the target antigen using the Qβ-NiNTA:His-OVA versus a simple admixture of antigen and adjuvant. Antibody isotyping also shows that formulation of the vaccines can alter T helper biases; while the Qβ-NiNTA:His-OVA particle produces a balanced Th1/Th2 bias the admixture was strongly Th2. In a mouse model of B16F10-OVA, we further demonstrate improved survival and slower tumor growth in the vaccine groups compared to controls. The NiNTA:His chemistry demonstrates potential for rapid development of future generation vaccines enabling plug-and-play capabilities with effectiveness boosted by co-delivery to the same cell.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
| | - Britney A Volckaert
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
26
|
Jung E, Mao C, Bhatia M, Koellhoffer EC, Fiering SN, Steinmetz NF. Inactivated Cowpea Mosaic Virus for In Situ Vaccination: Differential Efficacy of Formalin vs UV-Inactivated Formulations. Mol Pharm 2023; 20:500-507. [PMID: 36399598 PMCID: PMC9812890 DOI: 10.1021/acs.molpharmaceut.2c00744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cowpea mosaic virus (CPMV) has been developed as a promising nanoplatform technology for cancer immunotherapy; when applied as in situ vaccine, CPMV exhibits potent, systemic, and durable efficacy. While CPMV is not infectious to mammals, it is infectious to legumes; therefore, agronomic safety needs to be addressed to broaden the translational application of CPMV. RNA-containing formulations are preferred over RNA-free virus-like particles because the RNA and protein, each, contribute to CPMV's potent antitumor efficacy. We have previously optimized inactivation methods to develop CPMV that contains RNA but is not infectious to plants. We established that inactivated CPMV has reduced efficacy compared to untreated, native CPMV. However, a systematic comparison between native CPMV and different inactivated forms of CPMV was not done. Therefore, in this study, we directly compared the therapeutic efficacies and mechanisms of immune activation of CPMV, ultraviolet- (UV-), and formalin (Form)-inactivated CPMV to explain the differential efficacies. In a B16F10 melanoma mouse tumor model, Form-CPMV suppressed the tumor growth with prolonged survival (there were no statistical differences comparing CPMV and Form-CPMV). In comparison, UV-CPMV inhibited tumor growth significantly but not as well as Form-CPMV or CPMV. The reduced therapeutic efficacy of UV-CPMV is explained by the degree of cross-linking and aggregated state of the RNA, which renders it inaccessible for sensing by Toll-like receptor (TLR) 7/8 to activate immune responses. The mechanistic studies showed that the highly aggregated state of UV-CPMV inhibited TLR7 signaling more so than for the Form-CPMV formulation, reducing the secretion of interleukin-6 (IL-6) and interferon-α (IFN-α), cytokines associated with TLR7 signaling. These findings support the translational development of Form-CPMV as a noninfectious immunotherapeutic agent.
Collapse
Affiliation(s)
| | | | - Misha Bhatia
- Department of Nanoengineering, University of, California San Diego, La Jolla, California 92093, United, States
| | - Edward C. Koellhoffer
- Radiology, University of California San Diego, La Jolla, California 92093, United States
| | - Steven N. Fiering
- Department of Microbiology and, Immunology and Dartmouth Cancer Center, Dartmouth, Geisel School of Medicine, Hanover, New Hampshire 03755, United States
| | - Nicole F. Steinmetz
- Department of Nanoengineering, Radiology, Bioengineering, Moores Cancer Center, Center for Nano-Immuno Engineering, and Institute for Materials, Design and Discovery, University of California San Diego, La, Jolla, California 92093, United States
| |
Collapse
|
27
|
Kim SA, Lee Y, Ko Y, Kim S, Kim GB, Lee NK, Ahn W, Kim N, Nam GH, Lee EJ, Kim IS. Protein-based nanocages for vaccine development. J Control Release 2023; 353:767-791. [PMID: 36516900 DOI: 10.1016/j.jconrel.2022.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Protein nanocages have attracted considerable attention in various fields of nanomedicine due to their intrinsic properties, including biocompatibility, biodegradability, high structural stability, and ease of modification of their surfaces and inner cavities. In vaccine development, these protein nanocages are suited for efficient targeting to and retention in the lymph nodes and can enhance immunogenicity through various mechanisms, including excellent uptake by antigen-presenting cells and crosslinking with multiple B cell receptors. This review highlights the superiority of protein nanocages as antigen delivery carriers based on their physiological and immunological properties such as biodistribution, immunogenicity, stability, and multifunctionality. With a focus on design, we discuss the utilization and efficacy of protein nanocages such as virus-like particles, caged proteins, and artificial caged proteins against cancer and infectious diseases such as coronavirus disease 2019 (COVID-19). In addition, we summarize available knowledge on the protein nanocages that are currently used in clinical trials and provide a general outlook on conventional distribution techniques and hurdles faced, particularly for therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Seong A Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea; Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yeram Lee
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Yeju Ko
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Seohyun Kim
- Department of Research and Development, SHIFTBIO INC., Seoul, Republic of Korea
| | - Gi Beom Kim
- Department of Research and Development, SHIFTBIO INC., Seoul, Republic of Korea
| | - Na Kyeong Lee
- Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Wonkyung Ahn
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Nayeon Kim
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Gi-Hoon Nam
- Department of Research and Development, SHIFTBIO INC., Seoul, Republic of Korea; Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Lee
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea; Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
28
|
Chung YH, Volckaert BA, Steinmetz NF. Metastatic Colon Cancer Treatment Using S100A9-Targeted Cowpea Mosaic Virus Nanoparticles. Biomacromolecules 2022; 23:5127-5136. [PMID: 36375170 PMCID: PMC9772157 DOI: 10.1021/acs.biomac.2c00873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peritoneal metastases (PMs) occur due to the metastasis of gynecological and gastrointestinal cancers such as ovarian, colon, pancreatic, or gastric tumors. PM outgrowth is often fatal, and patients with PMs have a median survival of 6 months. Cowpea mosaic virus (CPMV) has been shown, when injected intratumorally, to act as an immunomodulator reversing the immunosuppressive tumor microenvironment, therefore turning cold tumors hot and priming systemic antitumor immunity. However, not all tumors are injectable, and PMs especially will require targeted treatments to direct CPMV toward the disseminated tumor nodules. Toward this goal, we designed and tested a CPMV nanoparticle targeted to S100A9, a key immune mediator for many cancer types indicated in cancer growth, invasiveness, and metastasis. Here, we chose to use an intraperitoneal (IP) colon cancer model, and analysis of IP gavage fluid demonstrates that S100A9 is upregulated following IP challenge. S100A9-targeted CPMV particles displaying peptide ligands specific for S100A9 homed to IP-disseminated tumors, and treatment led to improved survival and decreased tumor burden. Targeting CPMV to S100A9 improves preclinical outcomes and harbors the potential of utilizing CPMV for the treatment of IP-disseminated diseases.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Britney A. Volckaert
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Nicole F. Steinmetz
- Corresponding Author: Nicole F. Steinmetz – Department of Bioengineering, Moores Cancer Center, Department of NanoEngineering, Department of Radiology, Institute for Materials Discovery and Design, Center for Nano-Immuno Engineering, and Center for Engineering in Cancer, University of California, San Diego, La Jolla, California 92093-0021, United States;
| |
Collapse
|
29
|
Mao C, Beiss V, Ho GW, Fields J, Steinmetz NF, Fiering S. In situ vaccination with cowpea mosaic virus elicits systemic antitumor immunity and potentiates immune checkpoint blockade. J Immunother Cancer 2022; 10:e005834. [PMID: 36460333 PMCID: PMC9723958 DOI: 10.1136/jitc-2022-005834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In situ vaccination (ISV) is a cancer immunotherapy strategy in which immunostimulatory reagents are introduced directly into a tumor to stimulate antitumor immunity both against the treated tumor and systemically against untreated tumors. Recently, we showed that cowpea mosaic virus (CPMV) is a potent multi-toll-like receptor (TLR) agonist with potent efficacy for treating tumors in mice and dogs by ISV. However, ISV with CPMV alone does not uniformly treat all mouse tumor models tested, however this can be overcome through strategic combinations. More insight is needed to delineate potency and mechanism of systemic antitumor immunity and abscopal effect. METHOD We investigated the systemic efficacy (abscopal effect) of CPMV ISV with a two-tumor mouse model using murine tumor lines B16F10, 4T1, CT26 and MC38. Flow cytometry identified changes in cell populations responsible for systemic efficacy of CPMV. Transgenic knockout mice and depleting antibodies validated the role of relevant candidate cell populations and cytokines. We evaluated these findings and engineered a multicomponent combination therapy to specifically target the candidate cell population and investigated its systemic efficacy, acquired resistance and immunological memory in mouse models. RESULTS ISV with CPMV induces systemic antitumor T-cell-mediated immunity that inhibits growth of untreated tumors and requires conventional type-1 dendritic cells (cDC1s). Furthermore, using multiple tumor mouse models resistant to anti-programmed death 1 (PD-1) therapy, we tested the hypothesis that CPMV along with local activation of antigen-presenting cells with agonistic anti-CD40 can synergize and strengthen antitumor efficacy. Indeed, this combination ISV strategy induces an influx of CD8+ T cells, triggers regression in both treated local and untreated distant tumors and potentiates tumor responses to anti-PD-1 therapy. Moreover, serial ISV overcomes resistance to anti-PD-1 therapy and establishes tumor-specific immunological memory. CONCLUSIONS These findings provide new insights into in situ TLR activation and cDC1 recruitment as effective strategies to overcome resistance to immunotherapy in treated and untreated tumors.
Collapse
Affiliation(s)
- Chenkai Mao
- Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Veronique Beiss
- Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Gregory W Ho
- Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Jennifer Fields
- Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Steven Fiering
- Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
- Geisel School of Medicine at Dartmouth, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, USA
| |
Collapse
|
30
|
Affonso de Oliveira JF, Chan SK, Omole AO, Agrawal V, Steinmetz NF. In Vivo Fate of Cowpea Mosaic Virus In Situ Vaccine: Biodistribution and Clearance. ACS NANO 2022; 16:18315-18328. [PMID: 36264973 PMCID: PMC9840517 DOI: 10.1021/acsnano.2c06143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cowpea mosaic virus (CPMV) is a nucleoprotein nanoparticle that functions as a highly potent immunomodulator when administered intratumorally and is used as an in situ vaccine. CPMV in situ vaccination remodels the tumor microenvironment and primes a highly potent, systemic, and durable antitumor immune response against the treated and untreated, distant metastatic sites (abscopal effect). Potent efficacy was demonstrated in multiple tumor mouse models and, most importantly, in canine cancer patients with spontaneous tumors. Data indicate that presence of anti-CPMV antibodies are not neutralizing and that in fact opsonization leads to enhanced efficacy. Plant viruses are part of the food chain, but to date, there is no information on human exposure to CPMV. Therefore, patient sera were tested for the presence of immunoglobulins against CPMV, and indeed, >50% of deidentified patient samples tested positive for CPMV antibodies. To get a broader sense of plant virus exposure and immunogenicity in humans, we also tested sera for antibodies against tobacco mosaic virus (>90% patients tested positive), potato virus X (<20% patients tested positive), and cowpea chlorotic mottle virus (no antibodies were detected). Further, patient sera were analyzed for the presence of antibodies against the coliphage Qβ, a platform technology currently undergoing clinical trials for in situ vaccination; we found that 60% of patients present with anti-Qβ antibodies. Thus, data indicate human exposure to CPMV and other plant viruses and phages. Next, we thought to address agronomical safety; i.e., we examined the fate of CPMV after intratumoral treatment and oral gavage (to mimic consumption by food). Because live CPMV is used, an important question is whether there is any evidence of shedding of infectious particles from mice or patients. CPMV is noninfectious toward mammals; however, it is infectious toward plants including black-eyed peas and other legumes. Biodistribution data in tumor-bearing and healthy mice indicate little leaching from tumors and clearance via the reticuloendothelial system followed by biliary excretion. While there was evidence of shedding of RNA in stool, there was no evidence of infectious particles when plants were challenged with stool extracts, thus indicating agronomical safety. Together these data aid the translational development of CPMV as a drug candidate for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Soo Khim Chan
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| | - Anthony O Omole
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| | - Vanshika Agrawal
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| |
Collapse
|
31
|
Multifunctional Plant Virus Nanoparticles for Targeting Breast Cancer Tumors. Vaccines (Basel) 2022; 10:vaccines10091431. [PMID: 36146510 PMCID: PMC9502313 DOI: 10.3390/vaccines10091431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer treatment using plant-virus-based nanoparticles (PVNPs) has achieved considerable success in preclinical studies. PVNP-based breast cancer therapies include non-targeted and targeted nanoplatforms for delivery of anticancer therapeutic chemo and immune agents and cancer vaccines for activation of local and systemic antitumor immunity. Interestingly, PVNP platforms combined with other tumor immunotherapeutic options and other modalities of oncotherapy can improve tumor efficacy treatment. These applications can be achieved by encapsulation of a wide range of active ingredients and conjugating ligands for targeting immune and tumor cells. This review presents the current breast cancer treatments based on PVNP platforms.
Collapse
|
32
|
Liu T, Li L, Cheng C, He B, Jiang T. Emerging prospects of protein/peptide-based nanoassemblies for drug delivery and vaccine development. NANO RESEARCH 2022; 15:7267-7285. [PMID: 35692441 PMCID: PMC9166156 DOI: 10.1007/s12274-022-4385-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 05/09/2023]
Abstract
Proteins have been widely used in the biomedical field because of their well-defined architecture, accurate molecular weight, excellent biocompatibility and biodegradability, and easy-to-functionalization. Inspired by the wisdom of nature, increasing proteins/peptides that possess self-assembling capabilities have been explored and designed to generate nanoassemblies with unique structure and function, including spatially organized conformation, passive and active targeting, stimuli-responsiveness, and high stability. These characteristics make protein/peptide-based nanoassembly an ideal platform for drug delivery and vaccine development. In this review, we focus on recent advances in subsistent protein/peptide-based nanoassemblies, including protein nanocages, virus-like particles, self-assemblable natural proteins, and self-assemblable artificial peptides. The origin and characteristics of various protein/peptide-based assemblies and their applications in drug delivery and vaccine development are summarized. In the end, the prospects and challenges are discussed for the further development of protein/peptide-based nanoassemblies.
Collapse
Affiliation(s)
- Taiyu Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Lu Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
33
|
Xue F, Cornelissen JJ, Yuan Q, Cao S. Delivery of MicroRNAs by plant virus-based nanoparticles to functionally alter the osteogenic differentiation of human mesenchymal stem cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Beiss V, Mao C, Fiering SN, Steinmetz NF. Cowpea Mosaic Virus Outperforms Other Members of the Secoviridae as In Situ Vaccine for Cancer Immunotherapy. Mol Pharm 2022; 19:1573-1585. [PMID: 35333531 DOI: 10.1021/acs.molpharmaceut.2c00058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In situ vaccination for cancer immunotherapy uses intratumoral administration of small molecules, proteins, nanoparticles, or viruses that activate pathogen recognition receptors (PRRs) to reprogram the tumor microenvironment and prime systemic antitumor immunity. Cowpea mosaic virus (CPMV) is a plant virus that─while noninfectious toward mammals─activates mammalian PRRs. Application of CPMV as in situ vaccine (ISV) results in a potent and durable efficacy in tumor mouse models and canine patients; data indicate that CPMV outperforms small molecule PRR agonists and other nonrelated plant viruses and virus-like particles (VLPs). In this work, we set out to compare the potency of CPMV versus other plant viruses from the Secoviridae. We developed protocols to produce and isolate cowpea severe mosaic virus (CPSMV) and tobacco ring spot virus (TRSV) from plants. CPSMV, like CPMV, is a comovirus with genome and protein homology, while TRSV lacks homology and is from the genus nepovirus. When applied as ISV in a mouse model of dermal melanoma (using B16F10 cells and C57Bl6J mice), CPMV outperformed CPSMV and TRSV─again highlighting the unique potency of CPMV. Mechanistically, the increased potency is related to increased signaling through toll-like receptors (TLRs)─in particular, CPMV signals through TLR2, 4, and 7. Using knockout (KO) mouse models, we demonstrate here that all three plant viruses signal through the adaptor molecule MyD88─with CPSMV and TRSV predominantly activating TLR2 and 4. CPMV induced significantly more interferon β (IFNβ) compared to TRSV and CPSMV; therefore, IFNβ released upon signaling through TLR7 may be a differentiator for the observed potency of CPMV-ISV. Additionally, CPMV induced a different temporal pattern of intratumoral cytokine generation characterized by significantly increased inflammatory cytokines 4 days after the second of 2 weekly treatments, as if CPMV induced a "memory response". This higher, longer-lasting induction of cytokines may be another key differentiator that explains the unique potency of CPMV-ISV.
Collapse
Affiliation(s)
- Veronique Beiss
- Departments of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Chenkai Mao
- Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Health, Lebanon, New Hampshire 03756, United States
| | - Steven N Fiering
- Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Health, Lebanon, New Hampshire 03756, United States
| | - Nicole F Steinmetz
- Departments of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States.,Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Health, Lebanon, New Hampshire 03756, United States.,Departments of Radiology, University of California San Diego, La Jolla, California 92093, United States.,Departments of Bioengineering, University of California San Diego, La Jolla, California 92093, United States.,Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States.,Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92093, United States.,Institute for Materials Discovery and Design, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
35
|
Koellhoffer EC, Mao C, Beiss V, Wang L, Fiering SN, Boone CE, Steinmetz NF. Inactivated Cowpea Mosaic Virus in Combination with OX40 Agonist Primes Potent Antitumor Immunity in a Bilateral Melanoma Mouse Model. Mol Pharm 2022; 19:592-601. [PMID: 34978197 PMCID: PMC9207558 DOI: 10.1021/acs.molpharmaceut.1c00681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Viral immunotherapies are being recognized in cancer treatment, with several currently approved or undergoing clinical testing. While contemporary approaches have focused on oncolytic viral therapies, our efforts center on the development of plant virus-based cancer immunotherapies. In a previous work, we demonstrated the potent efficacy of the cowpea mosaic virus (CPMV), a plant virus that does not replicate in animals, applied as an in situ vaccine. CPMV is an immunostimulatory drug candidate, and intratumoral administration remodels the tumor microenvironment leading to activation of local and systemic antitumor immunity. Efficacy has been demonstrated in multiple tumor mouse models and canine cancer patients. As wild-type CPMV is infectious toward various legumes and because shedding of infectious virus from patients may be an agricultural concern, we developed UV-inactivated CPMV (termed inCPMV) which is not infectious toward plants. We report that as a monotherapy, wild-type CPMV outperforms inCPMV in mouse models of dermal melanoma or disseminated colon cancer. Efficacy of inCPMV is less than that of CPMV and similar to that of RNA-free CPMV. Immunological investigation using knockout mice shows that inCPMV does not signal through TLR7 (toll-like receptor); structure-function studies indicate that the RNA is highly cross-linked and therefore unable to activate TLR7. Wild-type CPMV signals through TLR2, -4, and -7, whereas inCPMV more closely resembles RNA-free CPMV which signals through TLR2 and -4 only. The structural features of inCPMV explain the increased potency of wild-type CPMV through the triple pronged TLR activation. Strikingly, when inCPMV is used in combination with an anti-OX40 agonist antibody (administered systemically), exceptional efficacy was demonstrated in a bilateral B16F10 dermal melanoma model. Combination therapy, with in situ vaccination applied only into the primary tumor, controlled the progression of the secondary, untreated tumors, with 10 out of 14 animals surviving for at least 100 days post tumor challenge without development of recurrence or metastatic disease. This study highlights the potential of inCPMV as an in situ vaccine candidate and demonstrates the power of combined immunotherapy approaches. Strategic immunocombination therapies are the formula for success, and the combination of in situ vaccination strategies along with therapeutic antibodies targeting the cancer immunity cycle is a particularly powerful approach.
Collapse
Affiliation(s)
- Edward C Koellhoffer
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Chenkai Mao
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Veronique Beiss
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Lu Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Steven N Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, United States
- Norris Cotton Cancer Center, Geisel School of Medicine and Dartmouth Hitchcock Medical System, Lebanon, New Hampshire 03755, United States
| | - Christine E Boone
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Design and Discovery, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
36
|
Hills RA, Howarth M. Virus-like particles against infectious disease and cancer: guidance for the nano-architect. Curr Opin Biotechnol 2022; 73:346-354. [PMID: 34735984 PMCID: PMC8555979 DOI: 10.1016/j.copbio.2021.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
Virus-like particles (VLPs) can play important roles in prevention and therapy for infectious diseases and cancer. Here we describe recent advances in rational construction of VLP assemblies, as well as new approaches to enhance long-lasting antibody and CD8+ T cell responses. DNA origami and computational protein design identified optimal spacing of antigens. Chemical biology advances enabled simple and irreversible VLP decoration with protein or polysaccharide antigens. Mosaic VLPs co-displayed antigens to generate cross-reactive antibodies against different influenza strains and coronaviruses. The mode of action of adjuvants inside VLPs was established through knock-outs and repackaging of innate immune stimuli. VLPs themselves showed their power as adjuvants in cancer models. Finally, landmark clinical results were obtained against malaria and the SARS-CoV-2 pandemic.
Collapse
|
37
|
Venkataraman S, Apka P, Shoeb E, Badar U, Hefferon K. Plant Virus Nanoparticles for Anti-cancer Therapy. Front Bioeng Biotechnol 2021; 9:642794. [PMID: 34976959 PMCID: PMC8714775 DOI: 10.3389/fbioe.2021.642794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Plant virus nanoparticles (VNPs) are inexpensive to produce, safe, biodegradable and efficacious as treatments. The applications of r plant virus nanoparticles range from epitope carriers for vaccines to agents in cancer immunotherapy. Both VNPs and virus-like particles (VLPs) are highly immunogenic and are readily phagocytosed by antigen presenting cells (APCs), which in turn elicit antigen processing and display of pathogenic epitopes on their surfaces. Since the VLPs are composed of multiple copies of their respective capsid proteins, they present repetitive multivalent scaffolds which aid in antigen presentation. Therefore, the VLPs prove to be highly suitable platforms for delivery and presentation of antigenic epitopes, resulting in induction of more robust immune response compared to those of their soluble counterparts. Since the tumor microenvironment poses the challenge of self-antigen tolerance, VLPs are preferrable platforms for delivery and display of self-antigens as well as otherwise weakly immunogenic antigens. These properties, in addition to their diminutive size, enable the VLPs to deliver vaccines to the draining lymph nodes in addition to promoting APC interactions. Furthermore, many plant viral VLPs possess inherent adjuvant properties dispensing with the requirement of additional adjuvants to stimulate immune activity. Some of the highly immunogenic VLPs elicit innate immune activity, which in turn instigate adaptive immunity in tumor micro-environments. Plant viral VLPs are nontoxic, inherently stable, and capable of being mass-produced as well as being modified with antigens and drugs, therefore providing an attractive option for eliciting anti-tumor immunity. The following review explores the use of plant viruses as epitope carrying nanoparticles and as a novel tools in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Paul Apka
- Theranostics and Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Erum Shoeb
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Genetics, University of Karachi, Karachi, Pakistan
| | - Uzma Badar
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Genetics, University of Karachi, Karachi, Pakistan
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Xu LQ, Yao LJ, Jiang D, Zhou LJ, Chen M, Liao WZ, Zou WH, Peng HJ. A uracil auxotroph Toxoplasma gondii exerting immunomodulation to inhibit breast cancer growth and metastasis. Parasit Vectors 2021; 14:601. [PMID: 34895326 PMCID: PMC8665513 DOI: 10.1186/s13071-021-05032-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Breast cancer is the most common cause of cancer-related death among women, and prognosis is especially poor for patients with triple-negative breast cancer (TNBC); therefore, there is an urgent need for new effective therapies. Recent studies have demonstrated that the uracil auxotroph Toxoplasma gondii vaccine displays anti-tumor effects. Here, we examined the immunotherapy effects of an attenuated uracil auxotroph strain of T. gondii against 4T1 murine breast cancer. METHODS We constructed a uracil auxotroph T. gondii RH strain via orotidine 5'-monophosphate decarboxylase gene deletion (RH-Δompdc) with CRISPR/Cas9 technology. The strain's virulence in the T. gondii-infected mice was determined in vitro and in vivo by parasite replication assay, plaque assay, parasite burden detection in mice peritoneal fluids and survival analysis. The immunomodulation ability of the strain was evaluated by cytokine detection. Its anti-tumor effect was evaluated after its in situ inoculation into 4T1 tumors in a mouse model; the tumor volume was measured, and the 4T1 lung metastasis was detected by hematoxylin and eosin and Ki67 antibody staining, and the cytokine levels were measured by an enzyme-linked immunosorbent assay. RESULTS The RH-Δompdc strain proliferated normally when supplemented with uracil, but it was unable to propagate without the addition of uracil and in vivo, which suggested that it was avirulent to the hosts. This mutant showed vaccine characteristics that could induce intense immune responses both in vitro and in vivo by significantly boosting the expression of inflammatory cytokines. Inoculation of RH-Δompdc in situ into the 4T1 tumor inhibited tumor growth, reduced lung metastasis, promoted the survival of the tumor-bearing mice and increased the secretion of Th1 cytokines, including interleukin-12 (IL-12) and interferon-γ (INF-δ), in both the serum and tumor microenvironment (TME). CONCLUSION Inoculation of the uracil auxotroph RH-Δompdc directly into the 4T1 tumor stimulated anti-infection and anti-tumor immunity in mice, and resulted in inhibition of tumor growth and metastasis, promotion of the survival of the tumor-bearing mice and increased secretion of IL-12 and IFN-γ in both the serum and TME. Our findings suggest that the immunomodulation caused by RH-Δompdc could be a potential anti-tumor strategy.
Collapse
Affiliation(s)
- Li-Qing Xu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Li-Jie Yao
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Dan Jiang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Li-Juan Zhou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Min Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Wen-Zhong Liao
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Wei-Hao Zou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
39
|
Chung YH, Park J, Cai H, Steinmetz NF. S100A9-Targeted Cowpea Mosaic Virus as a Prophylactic and Therapeutic Immunotherapy against Metastatic Breast Cancer and Melanoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101796. [PMID: 34519180 PMCID: PMC8564454 DOI: 10.1002/advs.202101796] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Indexed: 05/05/2023]
Abstract
Prognosis and treatment of metastatic cancer continues to be one of the most difficult and challenging areas of oncology. Treatment usually consists of chemotherapeutics, which may be ineffective due to drug resistance, adverse effects, and dose-limiting toxicity. Therefore, novel approaches such as immunotherapy have been investigated to improve patient outcomes and minimize side effects. S100A9 is a calcium-binding protein implicated in tumor metastasis, progression, and aggressiveness that modulates the tumor microenvironment into an immunosuppressive state. S100A9 is expressed in and secreted by immune cells in the pre-metastatic niche, as well as, post-tumor development, therefore making it a suitable targeted for prophylaxis and therapy. In previous work, it is demonstrated that cowpea mosaic virus (CPMV) acts as an adjuvant when administered intratumorally. Here, it is demonstrated that systemically administered, S100A9-targeted CPMV homes to the lungs leading to recruitment of innate immune cells. This approach is efficacious both prophylactically and therapeutically against lung metastasis from melanoma and breast cancer. The current research will facilitate and accelerate the development of next-generation targeted immunotherapies administered as prophylaxis, that is, after surgery of a primary breast tumor to prevent outgrowth of metastasis, as well as, therapy to treat established metastatic disease.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of BioengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
| | - Jooneon Park
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
| | - Hui Cai
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
| | - Nicole F. Steinmetz
- Department of BioengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Department of RadiologyUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Institute for Materials Discovery and DesignUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Center for Nano‐ImmunoEngineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Moores Cancer CenterUniversity of CaliforniaLa JollaSan DiegoCAUSA
| |
Collapse
|
40
|
Venkataraman S, Hefferon K. Application of Plant Viruses in Biotechnology, Medicine, and Human Health. Viruses 2021; 13:1697. [PMID: 34578279 PMCID: PMC8473230 DOI: 10.3390/v13091697] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023] Open
Abstract
Plant-based nanotechnology programs using virus-like particles (VLPs) and virus nanoparticles (VNPs) are emerging platforms that are increasingly used for a variety of applications in biotechnology and medicine. Tobacco mosaic virus (TMV) and potato virus X (PVX), by virtue of having high aspect ratios, make ideal platforms for drug delivery. TMV and PVX both possess rod-shaped structures and single-stranded RNA genomes encapsidated by their respective capsid proteins and have shown great promise as drug delivery systems. Cowpea mosaic virus (CPMV) has an icosahedral structure, and thus brings unique benefits as a nanoparticle. The uses of these three plant viruses as either nanostructures or expression vectors for high value pharmaceutical proteins such as vaccines and antibodies are discussed extensively in the following review. In addition, the potential uses of geminiviruses in medical biotechnology are explored. The uses of these expression vectors in plant biotechnology applications are also discussed. Finally, in this review, we project future prospects for plant viruses in the fields of medicine, human health, prophylaxis, and therapy of human diseases.
Collapse
Affiliation(s)
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada;
| |
Collapse
|
41
|
Ortega-Rivera OA, Pokorski JK, Steinmetz NF. A single-dose, implant-based, trivalent virus-like particle vaccine against "cholesterol checkpoint" proteins. ADVANCED THERAPEUTICS 2021; 4:2100014. [PMID: 34541299 PMCID: PMC8447230 DOI: 10.1002/adtp.202100014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Indexed: 01/23/2023]
Abstract
Cardiovascular disease is the number one cause of death globally. Lowering cholesterol levels in plasma is the mainstay therapy; however lifelong treatment and adverse effects call for improved therapeutic interventions. We developed a trivalent vaccine candidate targeting proprotein convertase subtilisin/kexin-9 (PCSK9), apolipoprotein B (ApoB), and cholesteryl ester transfer protein (CETP). Vaccine candidates were developed using bacteriophage Qβ-based virus-like particles (VLPs) displaying antigens of PCKS9, ApoB, and CETP, respectively. Vaccine candidate mixtures were formulated as slow-release PLGA:VLP implants using hot-melt extrusion. The delivery of the trivalent vaccine candidate via the implant produced antibodies against the cholesterol checkpoint proteins at levels comparable to a three-dose injection schedule with soluble mixtures. The reduction in PCSK9 and ApoB levels in plasma, inhibition of CETP (in vitro), and total plasma cholesterol decrease was achieved. All-together, we present a platform technology for a single-dose multi-target vaccination platform targeting cholesterol checkpoint proteins.
Collapse
Affiliation(s)
- Oscar A. Ortega-Rivera
- Department of NanoEngineering, University of California-San Diego, La Jolla CA 92039, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla CA 92039, USA
| | - Jonathan K. Pokorski
- Department of NanoEngineering, University of California-San Diego, La Jolla CA 92039, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla CA 92039, USA
- Institute for Materials Discovery and Design, University of California-San Diego, La Jolla CA 92039, USA
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla CA 92039, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla CA 92039, USA
- Institute for Materials Discovery and Design, University of California-San Diego, La Jolla CA 92039, USA
- Department of Bioengineering, University of California-San Diego, La Jolla CA 92039, USA
- Department of Radiology, University of California-San Diego, La Jolla CA 92039, USA
- Moores Cancer Center, University of California-San Diego, La Jolla CA 92039, USA
| |
Collapse
|
42
|
Frontiers in Bioengineering and Biotechnology: Plant Nanoparticles for Anti-Cancer Therapy. Vaccines (Basel) 2021; 9:vaccines9080830. [PMID: 34451955 PMCID: PMC8402531 DOI: 10.3390/vaccines9080830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 11/26/2022] Open
Abstract
Naturally occurring viral nanomaterials have gained popularity owing to their biocompatible and biodegradable nature. Plant virus nanoparticles (VNPs) can be used as nanocarriers for a number of biomedical applications. Plant VNPs are inexpensive to produce, safe to administer and efficacious as treatments. The following review describes how plant virus architecture facilitates the use of VNPs for imaging and a variety of therapeutic applications, with particular emphasis on cancer. Examples of plant viruses which have been engineered to carry drugs and diagnostic agents for specific types of cancer are provided. The drug delivery system in response to the internal conditions is known as stimuli response, recently becoming more applicable using plant viruses based VNPs. The review concludes with a perspective of the future of plant VNPs and plant virus-like particles (VLPs) in cancer research and therapy.
Collapse
|
43
|
Chan SK, Steinmetz NF. Isolation of Cowpea Mosaic Virus-Binding Peptides. Biomacromolecules 2021; 22:3613-3623. [PMID: 34314166 DOI: 10.1021/acs.biomac.1c00712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The plant virus cowpea mosaic virus (CPMV) is a natural nanocarrier that has been developed as a platform technology for the delivery of various payloads including peptide epitopes for vaccines, contrast agents for imaging, and drugs for therapy. Genetic fusion and chemical conjugations are the mainstay approaches to load the active ingredient to the exterior and/or interior of CPMV. However, these methods have limitations; genetic engineering is limited to biologics, and chemical alteration often requires multistep reactions with modification of both CPMV and the active ingredient. Either method can also result in particle instability. Therefore, to provide an alternate path toward CPMV functionalization, we report the isolation of peptides that specifically bind to CPMV, termed CPMV-binding peptides (CBP). We used a commercial M13 phage display 7-mer peptide library to pan for and select peptides that selectively bind to CPMV. Biopanning and characterization of lead candidates resulted in isolation of the motif "GWRVSEF/L" as the CPMV-specific motif with phenylalanine (F) at the seventh position being stronger than leucine (L). Specificity to CPMV was demonstrated, and cross-reactivity toward other plant viruses was not observed. To demonstrate cargo loading, GWRVSEF was tagged with biotin, fluorescein isothiocyanate (FITC), and a human epidermal growth factor receptor 2 (HER2)-specific targeting peptide ligand. Display of the active ingredient was confirmed, and utility of tagged and targeted CPMV in cell binding assays was demonstrated. The CBP functionalization strategy offers a new avenue for CPMV nanoparticle functionalization and should offer a versatile tool to add active ingredients that otherwise may be difficult to conjugate or display.
Collapse
|
44
|
Mao C, Beiss V, Fields J, Steinmetz NF, Fiering S. Cowpea mosaic virus stimulates antitumor immunity through recognition by multiple MYD88-dependent toll-like receptors. Biomaterials 2021; 275:120914. [PMID: 34126409 DOI: 10.1016/j.biomaterials.2021.120914] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Cowpea mosaic virus (CPMV), a non-enveloped plant virus, and empty CPMV (eCPMV), a virus-like particle (VLP) composed of CPMV capsid without nucleic acids, are potent in situ cancer vaccines when administered intratumorally (I.T.). However, it is unclear how immune cells recognize these nanoparticles and why they are immunogenic, which was investigated in this study. CPMV generated stronger selective induction of cytokines and chemokines in naïve mouse splenocytes and exhibited more potent anti-tumor efficacy than eCPMV. MyD88 is required for both CPMV- and eCPMV-elicited immune responses. Screening with human embryonic kidney (HEK)-293 cell toll-like receptor (TLR) reporter assays along with experiments in corresponding TLR-/- mice indicated CPMV and eCPMV capsids are recognized by MyD88-dependent TLR2 and TLR4. CPMV, but not eCPMV, is additionally recognized by TLR7. Secretion of type I interferons (IFNs), which requires the interaction between TLR7 and encapsulated single-stranded RNAs (ssRNAs), is critical to CPMV's better efficacy. The same recognition mechanisms are also functional in human peripheral blood mononuclear cells (PBMCs). Overall, these findings link CPMV immunotherapy efficacy with molecular recognition, provide rationale for how to develop more potent viral particles, accentuate the value of multi-TLR agonists as in situ cancer vaccines, and highlight the functional importance of type I IFNs for in situ vaccination.
Collapse
Affiliation(s)
- Chenkai Mao
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States
| | - Veronique Beiss
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Jennifer Fields
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States; Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth Hitchcock Medical System, Lebanon, NH, 03756, United States
| | - Nicole F Steinmetz
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, United States; Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, United States; Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute for Materials Design and Discovery, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States; Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth Hitchcock Medical System, Lebanon, NH, 03756, United States.
| |
Collapse
|
45
|
Nkanga CI, Steinmetz NF. The pharmacology of plant virus nanoparticles. Virology 2021; 556:39-61. [PMID: 33545555 PMCID: PMC7974633 DOI: 10.1016/j.virol.2021.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
The application of nanoparticles for medical purposes has made enormous strides in providing new solutions to health problems. The observation that plant virus-based nanoparticles (VNPs) can be repurposed and engineered as smart bio-vehicles for targeted drug delivery and imaging has launched extensive research for improving the therapeutic and diagnostic management of various diseases. There is evidence that VNPs are promising high value nanocarriers with potential for translational development. This is mainly due to their unique features, encompassing structural uniformity, ease of manufacture and functionalization by means of expression, chemical biology and self-assembly. While the development pipeline is moving rapidly, with many reports focusing on engineering and manufacturing aspects to tailor the properties and efficacy of VNPs, fewer studies have focused on gaining insights into the nanotoxicity of this novel platform nanotechnology. Herein, we discuss the pharmacology of VNPs as a function of formulation and route of administration. VNPs are reviewed in the context of their application as therapeutic adjuvants or nanocarrier excipients to initiate, enhance, attenuate or impede the formulation's toxicity. The summary of the data however also underlines the need for meticulous VNP structure-nanotoxicity studies to improve our understanding of their in vivo fates and pharmacological profiles to pave the way for translation of VNP-based formulations into the clinical setting.
Collapse
Affiliation(s)
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, United States; Department of Bioengineering, Department of Radiology, Center for NanoImmunoEngineering, Moores Cancer Center, Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, CA, 92039, United States.
| |
Collapse
|
46
|
Chariou PL, Beiss V, Ma Y, Steinmetz NF. In situ vaccine application of inactivated CPMV nanoparticles for cancer immunotherapy. MATERIALS ADVANCES 2021; 2:1644-1656. [PMID: 34368764 PMCID: PMC8323807 DOI: 10.1039/d0ma00752h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/26/2021] [Indexed: 05/24/2023]
Abstract
Cowpea mosaic virus (CPMV) is currently in the development pipeline for multiple biomedical applications, including cancer immunotherapy. In particular the application of CPMV as in situ vaccine has shown promise; here the plant viral nanoparticle is used as an adjuvant and is injected directly into a tumor to reverse immunosuppression and prime systemic anti-tumor immunity. Efficacy of this CPMV-based cancer immunotherapy has been demonstrated in multiple tumor mouse models and canine cancer patients. However, while CPMV is non-infectious to mammals, it is infectious to legumes and therefore, from a safety perspective, it is desired to develop non-infectious CPMV formulations. Non-infectious virus-like particles of CPMV devoid of nucleic acids have been produced; nevertheless, efficacy of such empty CPMV nanoparticles does not match efficacy of nucleic acid-laden CPMV. The multivalent capsid activates the innate immune system through pathogen pattern recognition receptors (PRRs) such as toll-like receptors (TLRs); the RNA cargo provides additional signaling through TLR-7/8, which boosts the efficacy of this adjuvant. Therefore, in this study, we set out to develop RNA-laden, but non-infectious CPMV. We report inactivation of CPMV using UV light and chemical inactivation using β-propiolactone (βPL) or formalin. 7.5 J cm-2 UV, 50 mM βPL or 1 mM formalin was determined to be sufficient to inactivate CPMV and prevented plant infection. We compared the immunogenicity of native CPMV and inactivated CPMV formulations in vitro and in vivo using RAW-Blue™ reporter cells and a murine syngeneic, orthotropic melanoma model (using B16F10 cells and C57BL6 mice). While the in vitro assay indicated activation of the RAW-Blue™ reporter cells by formaldehyde and UV-inactivated CPMV at levels comparable to native CPMV; βPL-inactivated CPMV appeared to have diminished activity. Tumor mouse model experiments indicate potent efficacy of the chemically-inactivated CPMV (UV-treated CPMV was not tested) leading to tumor regression and increased survival; efficacy was somewhat reduced when compared to CPMV, however these samples outperformed the empty CPMV nanoparticles. These results will facilitate the translational development of safe and potent CPMV-based cancer immunotherapies.
Collapse
Affiliation(s)
- Paul L. Chariou
- Department of Bioengineering, University of California-San DiegoLa JollaCA 92039USA
| | - Veronique Beiss
- Department of NanoEngineering, University of California-San DiegoLa JollaCA 92039USA
| | - Yifeng Ma
- Department of NanoEngineering, University of California-San DiegoLa JollaCA 92039USA
| | - Nicole F. Steinmetz
- Department of Bioengineering, University of California-San DiegoLa JollaCA 92039USA
- Department of NanoEngineering, University of California-San DiegoLa JollaCA 92039USA
- Department of Radiology, University of California-San DiegoLa JollaCA 92039USA
- Moores Cancer Center, University of California-San DiegoLa JollaCA 92039USA
- Center for Nano-ImmunoEngineering, University of California-San DiegoLa JollaCA 92039USA
- Institute for Materials Discovery and Design, University of California-San DiegoLa JollaCA 92039USA
| |
Collapse
|
47
|
Stump CT, Ho G, Mao C, Veliz FA, Beiss V, Fields J, Steinmetz NF, Fiering S. Remission-Stage Ovarian Cancer Cell Vaccine with Cowpea Mosaic Virus Adjuvant Prevents Tumor Growth. Cancers (Basel) 2021; 13:627. [PMID: 33562450 PMCID: PMC7915664 DOI: 10.3390/cancers13040627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is the deadliest gynecological malignancy. Though most patients enter remission following initial interventions, relapse is common and often fatal. Accordingly, there is a substantial need for ovarian cancer therapies that prevent relapse. Following remission generated by surgical debulking and chemotherapy, but prior to relapse, resected and inactivated tumor tissue could be used as a personalized vaccine antigen source. The patient's own tumor contains relevant antigens and, when combined with the appropriate adjuvant, could generate systemic antitumor immunity to prevent relapse. Here, we model this process in mice to investigate the optimal tumor preparation and vaccine adjuvant. Cowpea mosaic virus (CPMV) has shown remarkable efficacy as an immunostimulatory cancer therapy in ovarian cancer mouse models, so we use CPMV as an adjuvant in a prophylactic vaccine against a murine ovarian cancer model. Compared to its codelivery with tumor antigens prepared in three other ways, we show that CPMV co-delivered with irradiated ovarian cancer cells constitutes an effective prophylactic vaccine against a syngeneic model of ovarian cancer in C57BL/6J mice. Following two vaccinations, 72% of vaccinated mice reject tumor challenges, and all those mice survived subsequent rechallenges, demonstrating immunologic memory formation. This study supports remission-stage vaccines using irradiated patient tumor tissue as a promising option for treating ovarian cancer, and validates CPMV as an antitumor vaccine adjuvant for that purpose.
Collapse
Affiliation(s)
- Courtney T. Stump
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA;
| | - Gregory Ho
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA; (G.H.); (C.M.)
| | - Chenkai Mao
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA; (G.H.); (C.M.)
| | - Frank A. Veliz
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Veronique Beiss
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA; (V.B.); (N.F.S.)
| | - Jennifer Fields
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA;
| | - Nicole F. Steinmetz
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA; (V.B.); (N.F.S.)
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA; (G.H.); (C.M.)
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA;
| |
Collapse
|